Merge existing fixes from spi/for-5.14
[platform/kernel/linux-starfive.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
52
53 enum {
54         TLSV4,
55         TLSV6,
56         TLS_NUM_PROTS,
57 };
58
59 static const struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static const struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_sw_proto_ops;
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66                          const struct proto *base);
67
68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72         WRITE_ONCE(sk->sk_prot,
73                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74 }
75
76 int wait_on_pending_writer(struct sock *sk, long *timeo)
77 {
78         int rc = 0;
79         DEFINE_WAIT_FUNC(wait, woken_wake_function);
80
81         add_wait_queue(sk_sleep(sk), &wait);
82         while (1) {
83                 if (!*timeo) {
84                         rc = -EAGAIN;
85                         break;
86                 }
87
88                 if (signal_pending(current)) {
89                         rc = sock_intr_errno(*timeo);
90                         break;
91                 }
92
93                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
94                         break;
95         }
96         remove_wait_queue(sk_sleep(sk), &wait);
97         return rc;
98 }
99
100 int tls_push_sg(struct sock *sk,
101                 struct tls_context *ctx,
102                 struct scatterlist *sg,
103                 u16 first_offset,
104                 int flags)
105 {
106         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
107         int ret = 0;
108         struct page *p;
109         size_t size;
110         int offset = first_offset;
111
112         size = sg->length - offset;
113         offset += sg->offset;
114
115         ctx->in_tcp_sendpages = true;
116         while (1) {
117                 if (sg_is_last(sg))
118                         sendpage_flags = flags;
119
120                 /* is sending application-limited? */
121                 tcp_rate_check_app_limited(sk);
122                 p = sg_page(sg);
123 retry:
124                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
125
126                 if (ret != size) {
127                         if (ret > 0) {
128                                 offset += ret;
129                                 size -= ret;
130                                 goto retry;
131                         }
132
133                         offset -= sg->offset;
134                         ctx->partially_sent_offset = offset;
135                         ctx->partially_sent_record = (void *)sg;
136                         ctx->in_tcp_sendpages = false;
137                         return ret;
138                 }
139
140                 put_page(p);
141                 sk_mem_uncharge(sk, sg->length);
142                 sg = sg_next(sg);
143                 if (!sg)
144                         break;
145
146                 offset = sg->offset;
147                 size = sg->length;
148         }
149
150         ctx->in_tcp_sendpages = false;
151
152         return 0;
153 }
154
155 static int tls_handle_open_record(struct sock *sk, int flags)
156 {
157         struct tls_context *ctx = tls_get_ctx(sk);
158
159         if (tls_is_pending_open_record(ctx))
160                 return ctx->push_pending_record(sk, flags);
161
162         return 0;
163 }
164
165 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166                       unsigned char *record_type)
167 {
168         struct cmsghdr *cmsg;
169         int rc = -EINVAL;
170
171         for_each_cmsghdr(cmsg, msg) {
172                 if (!CMSG_OK(msg, cmsg))
173                         return -EINVAL;
174                 if (cmsg->cmsg_level != SOL_TLS)
175                         continue;
176
177                 switch (cmsg->cmsg_type) {
178                 case TLS_SET_RECORD_TYPE:
179                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
180                                 return -EINVAL;
181
182                         if (msg->msg_flags & MSG_MORE)
183                                 return -EINVAL;
184
185                         rc = tls_handle_open_record(sk, msg->msg_flags);
186                         if (rc)
187                                 return rc;
188
189                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
190                         rc = 0;
191                         break;
192                 default:
193                         return -EINVAL;
194                 }
195         }
196
197         return rc;
198 }
199
200 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
201                             int flags)
202 {
203         struct scatterlist *sg;
204         u16 offset;
205
206         sg = ctx->partially_sent_record;
207         offset = ctx->partially_sent_offset;
208
209         ctx->partially_sent_record = NULL;
210         return tls_push_sg(sk, ctx, sg, offset, flags);
211 }
212
213 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
214 {
215         struct scatterlist *sg;
216
217         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
218                 put_page(sg_page(sg));
219                 sk_mem_uncharge(sk, sg->length);
220         }
221         ctx->partially_sent_record = NULL;
222 }
223
224 static void tls_write_space(struct sock *sk)
225 {
226         struct tls_context *ctx = tls_get_ctx(sk);
227
228         /* If in_tcp_sendpages call lower protocol write space handler
229          * to ensure we wake up any waiting operations there. For example
230          * if do_tcp_sendpages where to call sk_wait_event.
231          */
232         if (ctx->in_tcp_sendpages) {
233                 ctx->sk_write_space(sk);
234                 return;
235         }
236
237 #ifdef CONFIG_TLS_DEVICE
238         if (ctx->tx_conf == TLS_HW)
239                 tls_device_write_space(sk, ctx);
240         else
241 #endif
242                 tls_sw_write_space(sk, ctx);
243
244         ctx->sk_write_space(sk);
245 }
246
247 /**
248  * tls_ctx_free() - free TLS ULP context
249  * @sk:  socket to with @ctx is attached
250  * @ctx: TLS context structure
251  *
252  * Free TLS context. If @sk is %NULL caller guarantees that the socket
253  * to which @ctx was attached has no outstanding references.
254  */
255 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
256 {
257         if (!ctx)
258                 return;
259
260         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
261         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
262         mutex_destroy(&ctx->tx_lock);
263
264         if (sk)
265                 kfree_rcu(ctx, rcu);
266         else
267                 kfree(ctx);
268 }
269
270 static void tls_sk_proto_cleanup(struct sock *sk,
271                                  struct tls_context *ctx, long timeo)
272 {
273         if (unlikely(sk->sk_write_pending) &&
274             !wait_on_pending_writer(sk, &timeo))
275                 tls_handle_open_record(sk, 0);
276
277         /* We need these for tls_sw_fallback handling of other packets */
278         if (ctx->tx_conf == TLS_SW) {
279                 kfree(ctx->tx.rec_seq);
280                 kfree(ctx->tx.iv);
281                 tls_sw_release_resources_tx(sk);
282                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
283         } else if (ctx->tx_conf == TLS_HW) {
284                 tls_device_free_resources_tx(sk);
285                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
286         }
287
288         if (ctx->rx_conf == TLS_SW) {
289                 tls_sw_release_resources_rx(sk);
290                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
291         } else if (ctx->rx_conf == TLS_HW) {
292                 tls_device_offload_cleanup_rx(sk);
293                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
294         }
295 }
296
297 static void tls_sk_proto_close(struct sock *sk, long timeout)
298 {
299         struct inet_connection_sock *icsk = inet_csk(sk);
300         struct tls_context *ctx = tls_get_ctx(sk);
301         long timeo = sock_sndtimeo(sk, 0);
302         bool free_ctx;
303
304         if (ctx->tx_conf == TLS_SW)
305                 tls_sw_cancel_work_tx(ctx);
306
307         lock_sock(sk);
308         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
309
310         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
311                 tls_sk_proto_cleanup(sk, ctx, timeo);
312
313         write_lock_bh(&sk->sk_callback_lock);
314         if (free_ctx)
315                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
316         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
317         if (sk->sk_write_space == tls_write_space)
318                 sk->sk_write_space = ctx->sk_write_space;
319         write_unlock_bh(&sk->sk_callback_lock);
320         release_sock(sk);
321         if (ctx->tx_conf == TLS_SW)
322                 tls_sw_free_ctx_tx(ctx);
323         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
324                 tls_sw_strparser_done(ctx);
325         if (ctx->rx_conf == TLS_SW)
326                 tls_sw_free_ctx_rx(ctx);
327         ctx->sk_proto->close(sk, timeout);
328
329         if (free_ctx)
330                 tls_ctx_free(sk, ctx);
331 }
332
333 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
334                                   int __user *optlen, int tx)
335 {
336         int rc = 0;
337         struct tls_context *ctx = tls_get_ctx(sk);
338         struct tls_crypto_info *crypto_info;
339         struct cipher_context *cctx;
340         int len;
341
342         if (get_user(len, optlen))
343                 return -EFAULT;
344
345         if (!optval || (len < sizeof(*crypto_info))) {
346                 rc = -EINVAL;
347                 goto out;
348         }
349
350         if (!ctx) {
351                 rc = -EBUSY;
352                 goto out;
353         }
354
355         /* get user crypto info */
356         if (tx) {
357                 crypto_info = &ctx->crypto_send.info;
358                 cctx = &ctx->tx;
359         } else {
360                 crypto_info = &ctx->crypto_recv.info;
361                 cctx = &ctx->rx;
362         }
363
364         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
365                 rc = -EBUSY;
366                 goto out;
367         }
368
369         if (len == sizeof(*crypto_info)) {
370                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
371                         rc = -EFAULT;
372                 goto out;
373         }
374
375         switch (crypto_info->cipher_type) {
376         case TLS_CIPHER_AES_GCM_128: {
377                 struct tls12_crypto_info_aes_gcm_128 *
378                   crypto_info_aes_gcm_128 =
379                   container_of(crypto_info,
380                                struct tls12_crypto_info_aes_gcm_128,
381                                info);
382
383                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
384                         rc = -EINVAL;
385                         goto out;
386                 }
387                 lock_sock(sk);
388                 memcpy(crypto_info_aes_gcm_128->iv,
389                        cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
390                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
391                 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
392                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
393                 release_sock(sk);
394                 if (copy_to_user(optval,
395                                  crypto_info_aes_gcm_128,
396                                  sizeof(*crypto_info_aes_gcm_128)))
397                         rc = -EFAULT;
398                 break;
399         }
400         case TLS_CIPHER_AES_GCM_256: {
401                 struct tls12_crypto_info_aes_gcm_256 *
402                   crypto_info_aes_gcm_256 =
403                   container_of(crypto_info,
404                                struct tls12_crypto_info_aes_gcm_256,
405                                info);
406
407                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
408                         rc = -EINVAL;
409                         goto out;
410                 }
411                 lock_sock(sk);
412                 memcpy(crypto_info_aes_gcm_256->iv,
413                        cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
414                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
415                 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
416                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
417                 release_sock(sk);
418                 if (copy_to_user(optval,
419                                  crypto_info_aes_gcm_256,
420                                  sizeof(*crypto_info_aes_gcm_256)))
421                         rc = -EFAULT;
422                 break;
423         }
424         default:
425                 rc = -EINVAL;
426         }
427
428 out:
429         return rc;
430 }
431
432 static int do_tls_getsockopt(struct sock *sk, int optname,
433                              char __user *optval, int __user *optlen)
434 {
435         int rc = 0;
436
437         switch (optname) {
438         case TLS_TX:
439         case TLS_RX:
440                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
441                                             optname == TLS_TX);
442                 break;
443         default:
444                 rc = -ENOPROTOOPT;
445                 break;
446         }
447         return rc;
448 }
449
450 static int tls_getsockopt(struct sock *sk, int level, int optname,
451                           char __user *optval, int __user *optlen)
452 {
453         struct tls_context *ctx = tls_get_ctx(sk);
454
455         if (level != SOL_TLS)
456                 return ctx->sk_proto->getsockopt(sk, level,
457                                                  optname, optval, optlen);
458
459         return do_tls_getsockopt(sk, optname, optval, optlen);
460 }
461
462 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
463                                   unsigned int optlen, int tx)
464 {
465         struct tls_crypto_info *crypto_info;
466         struct tls_crypto_info *alt_crypto_info;
467         struct tls_context *ctx = tls_get_ctx(sk);
468         size_t optsize;
469         int rc = 0;
470         int conf;
471
472         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
473                 rc = -EINVAL;
474                 goto out;
475         }
476
477         if (tx) {
478                 crypto_info = &ctx->crypto_send.info;
479                 alt_crypto_info = &ctx->crypto_recv.info;
480         } else {
481                 crypto_info = &ctx->crypto_recv.info;
482                 alt_crypto_info = &ctx->crypto_send.info;
483         }
484
485         /* Currently we don't support set crypto info more than one time */
486         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
487                 rc = -EBUSY;
488                 goto out;
489         }
490
491         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
492         if (rc) {
493                 rc = -EFAULT;
494                 goto err_crypto_info;
495         }
496
497         /* check version */
498         if (crypto_info->version != TLS_1_2_VERSION &&
499             crypto_info->version != TLS_1_3_VERSION) {
500                 rc = -EINVAL;
501                 goto err_crypto_info;
502         }
503
504         /* Ensure that TLS version and ciphers are same in both directions */
505         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
506                 if (alt_crypto_info->version != crypto_info->version ||
507                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
508                         rc = -EINVAL;
509                         goto err_crypto_info;
510                 }
511         }
512
513         switch (crypto_info->cipher_type) {
514         case TLS_CIPHER_AES_GCM_128:
515                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
516                 break;
517         case TLS_CIPHER_AES_GCM_256: {
518                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
519                 break;
520         }
521         case TLS_CIPHER_AES_CCM_128:
522                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
523                 break;
524         case TLS_CIPHER_CHACHA20_POLY1305:
525                 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
526                 break;
527         default:
528                 rc = -EINVAL;
529                 goto err_crypto_info;
530         }
531
532         if (optlen != optsize) {
533                 rc = -EINVAL;
534                 goto err_crypto_info;
535         }
536
537         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
538                                       sizeof(*crypto_info),
539                                       optlen - sizeof(*crypto_info));
540         if (rc) {
541                 rc = -EFAULT;
542                 goto err_crypto_info;
543         }
544
545         if (tx) {
546                 rc = tls_set_device_offload(sk, ctx);
547                 conf = TLS_HW;
548                 if (!rc) {
549                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
550                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
551                 } else {
552                         rc = tls_set_sw_offload(sk, ctx, 1);
553                         if (rc)
554                                 goto err_crypto_info;
555                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
556                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
557                         conf = TLS_SW;
558                 }
559         } else {
560                 rc = tls_set_device_offload_rx(sk, ctx);
561                 conf = TLS_HW;
562                 if (!rc) {
563                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
564                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
565                 } else {
566                         rc = tls_set_sw_offload(sk, ctx, 0);
567                         if (rc)
568                                 goto err_crypto_info;
569                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
570                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
571                         conf = TLS_SW;
572                 }
573                 tls_sw_strparser_arm(sk, ctx);
574         }
575
576         if (tx)
577                 ctx->tx_conf = conf;
578         else
579                 ctx->rx_conf = conf;
580         update_sk_prot(sk, ctx);
581         if (tx) {
582                 ctx->sk_write_space = sk->sk_write_space;
583                 sk->sk_write_space = tls_write_space;
584         } else {
585                 sk->sk_socket->ops = &tls_sw_proto_ops;
586         }
587         goto out;
588
589 err_crypto_info:
590         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
591 out:
592         return rc;
593 }
594
595 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
596                              unsigned int optlen)
597 {
598         int rc = 0;
599
600         switch (optname) {
601         case TLS_TX:
602         case TLS_RX:
603                 lock_sock(sk);
604                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
605                                             optname == TLS_TX);
606                 release_sock(sk);
607                 break;
608         default:
609                 rc = -ENOPROTOOPT;
610                 break;
611         }
612         return rc;
613 }
614
615 static int tls_setsockopt(struct sock *sk, int level, int optname,
616                           sockptr_t optval, unsigned int optlen)
617 {
618         struct tls_context *ctx = tls_get_ctx(sk);
619
620         if (level != SOL_TLS)
621                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
622                                                  optlen);
623
624         return do_tls_setsockopt(sk, optname, optval, optlen);
625 }
626
627 struct tls_context *tls_ctx_create(struct sock *sk)
628 {
629         struct inet_connection_sock *icsk = inet_csk(sk);
630         struct tls_context *ctx;
631
632         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
633         if (!ctx)
634                 return NULL;
635
636         mutex_init(&ctx->tx_lock);
637         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
638         ctx->sk_proto = READ_ONCE(sk->sk_prot);
639         ctx->sk = sk;
640         return ctx;
641 }
642
643 static void tls_build_proto(struct sock *sk)
644 {
645         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
646         struct proto *prot = READ_ONCE(sk->sk_prot);
647
648         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
649         if (ip_ver == TLSV6 &&
650             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
651                 mutex_lock(&tcpv6_prot_mutex);
652                 if (likely(prot != saved_tcpv6_prot)) {
653                         build_protos(tls_prots[TLSV6], prot);
654                         smp_store_release(&saved_tcpv6_prot, prot);
655                 }
656                 mutex_unlock(&tcpv6_prot_mutex);
657         }
658
659         if (ip_ver == TLSV4 &&
660             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
661                 mutex_lock(&tcpv4_prot_mutex);
662                 if (likely(prot != saved_tcpv4_prot)) {
663                         build_protos(tls_prots[TLSV4], prot);
664                         smp_store_release(&saved_tcpv4_prot, prot);
665                 }
666                 mutex_unlock(&tcpv4_prot_mutex);
667         }
668 }
669
670 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
671                          const struct proto *base)
672 {
673         prot[TLS_BASE][TLS_BASE] = *base;
674         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
675         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
676         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
677
678         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
679         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
680         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
681
682         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
683         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
684         prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
685         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
686
687         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
688         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
689         prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
690         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
691
692 #ifdef CONFIG_TLS_DEVICE
693         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
694         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
695         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
696
697         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
698         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
699         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
700
701         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
702
703         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
704
705         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
706 #endif
707 #ifdef CONFIG_TLS_TOE
708         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
709         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
710         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
711 #endif
712 }
713
714 static int tls_init(struct sock *sk)
715 {
716         struct tls_context *ctx;
717         int rc = 0;
718
719         tls_build_proto(sk);
720
721 #ifdef CONFIG_TLS_TOE
722         if (tls_toe_bypass(sk))
723                 return 0;
724 #endif
725
726         /* The TLS ulp is currently supported only for TCP sockets
727          * in ESTABLISHED state.
728          * Supporting sockets in LISTEN state will require us
729          * to modify the accept implementation to clone rather then
730          * share the ulp context.
731          */
732         if (sk->sk_state != TCP_ESTABLISHED)
733                 return -ENOTCONN;
734
735         /* allocate tls context */
736         write_lock_bh(&sk->sk_callback_lock);
737         ctx = tls_ctx_create(sk);
738         if (!ctx) {
739                 rc = -ENOMEM;
740                 goto out;
741         }
742
743         ctx->tx_conf = TLS_BASE;
744         ctx->rx_conf = TLS_BASE;
745         update_sk_prot(sk, ctx);
746 out:
747         write_unlock_bh(&sk->sk_callback_lock);
748         return rc;
749 }
750
751 static void tls_update(struct sock *sk, struct proto *p,
752                        void (*write_space)(struct sock *sk))
753 {
754         struct tls_context *ctx;
755
756         ctx = tls_get_ctx(sk);
757         if (likely(ctx)) {
758                 ctx->sk_write_space = write_space;
759                 ctx->sk_proto = p;
760         } else {
761                 /* Pairs with lockless read in sk_clone_lock(). */
762                 WRITE_ONCE(sk->sk_prot, p);
763                 sk->sk_write_space = write_space;
764         }
765 }
766
767 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
768 {
769         u16 version, cipher_type;
770         struct tls_context *ctx;
771         struct nlattr *start;
772         int err;
773
774         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
775         if (!start)
776                 return -EMSGSIZE;
777
778         rcu_read_lock();
779         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
780         if (!ctx) {
781                 err = 0;
782                 goto nla_failure;
783         }
784         version = ctx->prot_info.version;
785         if (version) {
786                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
787                 if (err)
788                         goto nla_failure;
789         }
790         cipher_type = ctx->prot_info.cipher_type;
791         if (cipher_type) {
792                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
793                 if (err)
794                         goto nla_failure;
795         }
796         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
797         if (err)
798                 goto nla_failure;
799
800         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
801         if (err)
802                 goto nla_failure;
803
804         rcu_read_unlock();
805         nla_nest_end(skb, start);
806         return 0;
807
808 nla_failure:
809         rcu_read_unlock();
810         nla_nest_cancel(skb, start);
811         return err;
812 }
813
814 static size_t tls_get_info_size(const struct sock *sk)
815 {
816         size_t size = 0;
817
818         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
819                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
820                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
821                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
822                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
823                 0;
824
825         return size;
826 }
827
828 static int __net_init tls_init_net(struct net *net)
829 {
830         int err;
831
832         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
833         if (!net->mib.tls_statistics)
834                 return -ENOMEM;
835
836         err = tls_proc_init(net);
837         if (err)
838                 goto err_free_stats;
839
840         return 0;
841 err_free_stats:
842         free_percpu(net->mib.tls_statistics);
843         return err;
844 }
845
846 static void __net_exit tls_exit_net(struct net *net)
847 {
848         tls_proc_fini(net);
849         free_percpu(net->mib.tls_statistics);
850 }
851
852 static struct pernet_operations tls_proc_ops = {
853         .init = tls_init_net,
854         .exit = tls_exit_net,
855 };
856
857 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
858         .name                   = "tls",
859         .owner                  = THIS_MODULE,
860         .init                   = tls_init,
861         .update                 = tls_update,
862         .get_info               = tls_get_info,
863         .get_info_size          = tls_get_info_size,
864 };
865
866 static int __init tls_register(void)
867 {
868         int err;
869
870         err = register_pernet_subsys(&tls_proc_ops);
871         if (err)
872                 return err;
873
874         tls_sw_proto_ops = inet_stream_ops;
875         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
876         tls_sw_proto_ops.sendpage_locked   = tls_sw_sendpage_locked;
877
878         tls_device_init();
879         tcp_register_ulp(&tcp_tls_ulp_ops);
880
881         return 0;
882 }
883
884 static void __exit tls_unregister(void)
885 {
886         tcp_unregister_ulp(&tcp_tls_ulp_ops);
887         tls_device_cleanup();
888         unregister_pernet_subsys(&tls_proc_ops);
889 }
890
891 module_init(tls_register);
892 module_exit(tls_unregister);