Merge tag 'ib-leds-netdev-v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 #include "tls.h"
49
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54
55 enum {
56         TLSV4,
57         TLSV6,
58         TLS_NUM_PROTS,
59 };
60
61 #define CIPHER_SIZE_DESC(cipher) [cipher] = { \
62         .iv = cipher ## _IV_SIZE, \
63         .key = cipher ## _KEY_SIZE, \
64         .salt = cipher ## _SALT_SIZE, \
65         .tag = cipher ## _TAG_SIZE, \
66         .rec_seq = cipher ## _REC_SEQ_SIZE, \
67 }
68
69 const struct tls_cipher_size_desc tls_cipher_size_desc[] = {
70         CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128),
71         CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256),
72         CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128),
73         CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305),
74         CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM),
75         CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM),
76 };
77
78 static const struct proto *saved_tcpv6_prot;
79 static DEFINE_MUTEX(tcpv6_prot_mutex);
80 static const struct proto *saved_tcpv4_prot;
81 static DEFINE_MUTEX(tcpv4_prot_mutex);
82 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
83 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
84 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
85                          const struct proto *base);
86
87 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
88 {
89         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
90
91         WRITE_ONCE(sk->sk_prot,
92                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
93         WRITE_ONCE(sk->sk_socket->ops,
94                    &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
95 }
96
97 int wait_on_pending_writer(struct sock *sk, long *timeo)
98 {
99         int rc = 0;
100         DEFINE_WAIT_FUNC(wait, woken_wake_function);
101
102         add_wait_queue(sk_sleep(sk), &wait);
103         while (1) {
104                 if (!*timeo) {
105                         rc = -EAGAIN;
106                         break;
107                 }
108
109                 if (signal_pending(current)) {
110                         rc = sock_intr_errno(*timeo);
111                         break;
112                 }
113
114                 if (sk_wait_event(sk, timeo,
115                                   !READ_ONCE(sk->sk_write_pending), &wait))
116                         break;
117         }
118         remove_wait_queue(sk_sleep(sk), &wait);
119         return rc;
120 }
121
122 int tls_push_sg(struct sock *sk,
123                 struct tls_context *ctx,
124                 struct scatterlist *sg,
125                 u16 first_offset,
126                 int flags)
127 {
128         struct bio_vec bvec;
129         struct msghdr msg = {
130                 .msg_flags = MSG_SENDPAGE_NOTLAST | MSG_SPLICE_PAGES | flags,
131         };
132         int ret = 0;
133         struct page *p;
134         size_t size;
135         int offset = first_offset;
136
137         size = sg->length - offset;
138         offset += sg->offset;
139
140         ctx->splicing_pages = true;
141         while (1) {
142                 if (sg_is_last(sg))
143                         msg.msg_flags = flags;
144
145                 /* is sending application-limited? */
146                 tcp_rate_check_app_limited(sk);
147                 p = sg_page(sg);
148 retry:
149                 bvec_set_page(&bvec, p, size, offset);
150                 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
151
152                 ret = tcp_sendmsg_locked(sk, &msg, size);
153
154                 if (ret != size) {
155                         if (ret > 0) {
156                                 offset += ret;
157                                 size -= ret;
158                                 goto retry;
159                         }
160
161                         offset -= sg->offset;
162                         ctx->partially_sent_offset = offset;
163                         ctx->partially_sent_record = (void *)sg;
164                         ctx->splicing_pages = false;
165                         return ret;
166                 }
167
168                 put_page(p);
169                 sk_mem_uncharge(sk, sg->length);
170                 sg = sg_next(sg);
171                 if (!sg)
172                         break;
173
174                 offset = sg->offset;
175                 size = sg->length;
176         }
177
178         ctx->splicing_pages = false;
179
180         return 0;
181 }
182
183 static int tls_handle_open_record(struct sock *sk, int flags)
184 {
185         struct tls_context *ctx = tls_get_ctx(sk);
186
187         if (tls_is_pending_open_record(ctx))
188                 return ctx->push_pending_record(sk, flags);
189
190         return 0;
191 }
192
193 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
194                      unsigned char *record_type)
195 {
196         struct cmsghdr *cmsg;
197         int rc = -EINVAL;
198
199         for_each_cmsghdr(cmsg, msg) {
200                 if (!CMSG_OK(msg, cmsg))
201                         return -EINVAL;
202                 if (cmsg->cmsg_level != SOL_TLS)
203                         continue;
204
205                 switch (cmsg->cmsg_type) {
206                 case TLS_SET_RECORD_TYPE:
207                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
208                                 return -EINVAL;
209
210                         if (msg->msg_flags & MSG_MORE)
211                                 return -EINVAL;
212
213                         rc = tls_handle_open_record(sk, msg->msg_flags);
214                         if (rc)
215                                 return rc;
216
217                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
218                         rc = 0;
219                         break;
220                 default:
221                         return -EINVAL;
222                 }
223         }
224
225         return rc;
226 }
227
228 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
229                             int flags)
230 {
231         struct scatterlist *sg;
232         u16 offset;
233
234         sg = ctx->partially_sent_record;
235         offset = ctx->partially_sent_offset;
236
237         ctx->partially_sent_record = NULL;
238         return tls_push_sg(sk, ctx, sg, offset, flags);
239 }
240
241 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
242 {
243         struct scatterlist *sg;
244
245         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
246                 put_page(sg_page(sg));
247                 sk_mem_uncharge(sk, sg->length);
248         }
249         ctx->partially_sent_record = NULL;
250 }
251
252 static void tls_write_space(struct sock *sk)
253 {
254         struct tls_context *ctx = tls_get_ctx(sk);
255
256         /* If splicing_pages call lower protocol write space handler
257          * to ensure we wake up any waiting operations there. For example
258          * if splicing pages where to call sk_wait_event.
259          */
260         if (ctx->splicing_pages) {
261                 ctx->sk_write_space(sk);
262                 return;
263         }
264
265 #ifdef CONFIG_TLS_DEVICE
266         if (ctx->tx_conf == TLS_HW)
267                 tls_device_write_space(sk, ctx);
268         else
269 #endif
270                 tls_sw_write_space(sk, ctx);
271
272         ctx->sk_write_space(sk);
273 }
274
275 /**
276  * tls_ctx_free() - free TLS ULP context
277  * @sk:  socket to with @ctx is attached
278  * @ctx: TLS context structure
279  *
280  * Free TLS context. If @sk is %NULL caller guarantees that the socket
281  * to which @ctx was attached has no outstanding references.
282  */
283 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
284 {
285         if (!ctx)
286                 return;
287
288         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
289         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
290         mutex_destroy(&ctx->tx_lock);
291
292         if (sk)
293                 kfree_rcu(ctx, rcu);
294         else
295                 kfree(ctx);
296 }
297
298 static void tls_sk_proto_cleanup(struct sock *sk,
299                                  struct tls_context *ctx, long timeo)
300 {
301         if (unlikely(sk->sk_write_pending) &&
302             !wait_on_pending_writer(sk, &timeo))
303                 tls_handle_open_record(sk, 0);
304
305         /* We need these for tls_sw_fallback handling of other packets */
306         if (ctx->tx_conf == TLS_SW) {
307                 kfree(ctx->tx.rec_seq);
308                 kfree(ctx->tx.iv);
309                 tls_sw_release_resources_tx(sk);
310                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
311         } else if (ctx->tx_conf == TLS_HW) {
312                 tls_device_free_resources_tx(sk);
313                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
314         }
315
316         if (ctx->rx_conf == TLS_SW) {
317                 tls_sw_release_resources_rx(sk);
318                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
319         } else if (ctx->rx_conf == TLS_HW) {
320                 tls_device_offload_cleanup_rx(sk);
321                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
322         }
323 }
324
325 static void tls_sk_proto_close(struct sock *sk, long timeout)
326 {
327         struct inet_connection_sock *icsk = inet_csk(sk);
328         struct tls_context *ctx = tls_get_ctx(sk);
329         long timeo = sock_sndtimeo(sk, 0);
330         bool free_ctx;
331
332         if (ctx->tx_conf == TLS_SW)
333                 tls_sw_cancel_work_tx(ctx);
334
335         lock_sock(sk);
336         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
337
338         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
339                 tls_sk_proto_cleanup(sk, ctx, timeo);
340
341         write_lock_bh(&sk->sk_callback_lock);
342         if (free_ctx)
343                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
344         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
345         if (sk->sk_write_space == tls_write_space)
346                 sk->sk_write_space = ctx->sk_write_space;
347         write_unlock_bh(&sk->sk_callback_lock);
348         release_sock(sk);
349         if (ctx->tx_conf == TLS_SW)
350                 tls_sw_free_ctx_tx(ctx);
351         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
352                 tls_sw_strparser_done(ctx);
353         if (ctx->rx_conf == TLS_SW)
354                 tls_sw_free_ctx_rx(ctx);
355         ctx->sk_proto->close(sk, timeout);
356
357         if (free_ctx)
358                 tls_ctx_free(sk, ctx);
359 }
360
361 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
362                                   int __user *optlen, int tx)
363 {
364         int rc = 0;
365         struct tls_context *ctx = tls_get_ctx(sk);
366         struct tls_crypto_info *crypto_info;
367         struct cipher_context *cctx;
368         int len;
369
370         if (get_user(len, optlen))
371                 return -EFAULT;
372
373         if (!optval || (len < sizeof(*crypto_info))) {
374                 rc = -EINVAL;
375                 goto out;
376         }
377
378         if (!ctx) {
379                 rc = -EBUSY;
380                 goto out;
381         }
382
383         /* get user crypto info */
384         if (tx) {
385                 crypto_info = &ctx->crypto_send.info;
386                 cctx = &ctx->tx;
387         } else {
388                 crypto_info = &ctx->crypto_recv.info;
389                 cctx = &ctx->rx;
390         }
391
392         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
393                 rc = -EBUSY;
394                 goto out;
395         }
396
397         if (len == sizeof(*crypto_info)) {
398                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
399                         rc = -EFAULT;
400                 goto out;
401         }
402
403         switch (crypto_info->cipher_type) {
404         case TLS_CIPHER_AES_GCM_128: {
405                 struct tls12_crypto_info_aes_gcm_128 *
406                   crypto_info_aes_gcm_128 =
407                   container_of(crypto_info,
408                                struct tls12_crypto_info_aes_gcm_128,
409                                info);
410
411                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
412                         rc = -EINVAL;
413                         goto out;
414                 }
415                 memcpy(crypto_info_aes_gcm_128->iv,
416                        cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
417                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
418                 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
419                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
420                 if (copy_to_user(optval,
421                                  crypto_info_aes_gcm_128,
422                                  sizeof(*crypto_info_aes_gcm_128)))
423                         rc = -EFAULT;
424                 break;
425         }
426         case TLS_CIPHER_AES_GCM_256: {
427                 struct tls12_crypto_info_aes_gcm_256 *
428                   crypto_info_aes_gcm_256 =
429                   container_of(crypto_info,
430                                struct tls12_crypto_info_aes_gcm_256,
431                                info);
432
433                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
434                         rc = -EINVAL;
435                         goto out;
436                 }
437                 memcpy(crypto_info_aes_gcm_256->iv,
438                        cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
439                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
440                 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
441                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
442                 if (copy_to_user(optval,
443                                  crypto_info_aes_gcm_256,
444                                  sizeof(*crypto_info_aes_gcm_256)))
445                         rc = -EFAULT;
446                 break;
447         }
448         case TLS_CIPHER_AES_CCM_128: {
449                 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
450                         container_of(crypto_info,
451                                 struct tls12_crypto_info_aes_ccm_128, info);
452
453                 if (len != sizeof(*aes_ccm_128)) {
454                         rc = -EINVAL;
455                         goto out;
456                 }
457                 memcpy(aes_ccm_128->iv,
458                        cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
459                        TLS_CIPHER_AES_CCM_128_IV_SIZE);
460                 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
461                        TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
462                 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
463                         rc = -EFAULT;
464                 break;
465         }
466         case TLS_CIPHER_CHACHA20_POLY1305: {
467                 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
468                         container_of(crypto_info,
469                                 struct tls12_crypto_info_chacha20_poly1305,
470                                 info);
471
472                 if (len != sizeof(*chacha20_poly1305)) {
473                         rc = -EINVAL;
474                         goto out;
475                 }
476                 memcpy(chacha20_poly1305->iv,
477                        cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
478                        TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
479                 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
480                        TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
481                 if (copy_to_user(optval, chacha20_poly1305,
482                                 sizeof(*chacha20_poly1305)))
483                         rc = -EFAULT;
484                 break;
485         }
486         case TLS_CIPHER_SM4_GCM: {
487                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
488                         container_of(crypto_info,
489                                 struct tls12_crypto_info_sm4_gcm, info);
490
491                 if (len != sizeof(*sm4_gcm_info)) {
492                         rc = -EINVAL;
493                         goto out;
494                 }
495                 memcpy(sm4_gcm_info->iv,
496                        cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
497                        TLS_CIPHER_SM4_GCM_IV_SIZE);
498                 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
499                        TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
500                 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
501                         rc = -EFAULT;
502                 break;
503         }
504         case TLS_CIPHER_SM4_CCM: {
505                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
506                         container_of(crypto_info,
507                                 struct tls12_crypto_info_sm4_ccm, info);
508
509                 if (len != sizeof(*sm4_ccm_info)) {
510                         rc = -EINVAL;
511                         goto out;
512                 }
513                 memcpy(sm4_ccm_info->iv,
514                        cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
515                        TLS_CIPHER_SM4_CCM_IV_SIZE);
516                 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
517                        TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
518                 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
519                         rc = -EFAULT;
520                 break;
521         }
522         case TLS_CIPHER_ARIA_GCM_128: {
523                 struct tls12_crypto_info_aria_gcm_128 *
524                   crypto_info_aria_gcm_128 =
525                   container_of(crypto_info,
526                                struct tls12_crypto_info_aria_gcm_128,
527                                info);
528
529                 if (len != sizeof(*crypto_info_aria_gcm_128)) {
530                         rc = -EINVAL;
531                         goto out;
532                 }
533                 memcpy(crypto_info_aria_gcm_128->iv,
534                        cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE,
535                        TLS_CIPHER_ARIA_GCM_128_IV_SIZE);
536                 memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq,
537                        TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE);
538                 if (copy_to_user(optval,
539                                  crypto_info_aria_gcm_128,
540                                  sizeof(*crypto_info_aria_gcm_128)))
541                         rc = -EFAULT;
542                 break;
543         }
544         case TLS_CIPHER_ARIA_GCM_256: {
545                 struct tls12_crypto_info_aria_gcm_256 *
546                   crypto_info_aria_gcm_256 =
547                   container_of(crypto_info,
548                                struct tls12_crypto_info_aria_gcm_256,
549                                info);
550
551                 if (len != sizeof(*crypto_info_aria_gcm_256)) {
552                         rc = -EINVAL;
553                         goto out;
554                 }
555                 memcpy(crypto_info_aria_gcm_256->iv,
556                        cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE,
557                        TLS_CIPHER_ARIA_GCM_256_IV_SIZE);
558                 memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq,
559                        TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE);
560                 if (copy_to_user(optval,
561                                  crypto_info_aria_gcm_256,
562                                  sizeof(*crypto_info_aria_gcm_256)))
563                         rc = -EFAULT;
564                 break;
565         }
566         default:
567                 rc = -EINVAL;
568         }
569
570 out:
571         return rc;
572 }
573
574 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
575                                    int __user *optlen)
576 {
577         struct tls_context *ctx = tls_get_ctx(sk);
578         unsigned int value;
579         int len;
580
581         if (get_user(len, optlen))
582                 return -EFAULT;
583
584         if (len != sizeof(value))
585                 return -EINVAL;
586
587         value = ctx->zerocopy_sendfile;
588         if (copy_to_user(optval, &value, sizeof(value)))
589                 return -EFAULT;
590
591         return 0;
592 }
593
594 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
595                                     int __user *optlen)
596 {
597         struct tls_context *ctx = tls_get_ctx(sk);
598         int value, len;
599
600         if (ctx->prot_info.version != TLS_1_3_VERSION)
601                 return -EINVAL;
602
603         if (get_user(len, optlen))
604                 return -EFAULT;
605         if (len < sizeof(value))
606                 return -EINVAL;
607
608         value = -EINVAL;
609         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
610                 value = ctx->rx_no_pad;
611         if (value < 0)
612                 return value;
613
614         if (put_user(sizeof(value), optlen))
615                 return -EFAULT;
616         if (copy_to_user(optval, &value, sizeof(value)))
617                 return -EFAULT;
618
619         return 0;
620 }
621
622 static int do_tls_getsockopt(struct sock *sk, int optname,
623                              char __user *optval, int __user *optlen)
624 {
625         int rc = 0;
626
627         lock_sock(sk);
628
629         switch (optname) {
630         case TLS_TX:
631         case TLS_RX:
632                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
633                                             optname == TLS_TX);
634                 break;
635         case TLS_TX_ZEROCOPY_RO:
636                 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
637                 break;
638         case TLS_RX_EXPECT_NO_PAD:
639                 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
640                 break;
641         default:
642                 rc = -ENOPROTOOPT;
643                 break;
644         }
645
646         release_sock(sk);
647
648         return rc;
649 }
650
651 static int tls_getsockopt(struct sock *sk, int level, int optname,
652                           char __user *optval, int __user *optlen)
653 {
654         struct tls_context *ctx = tls_get_ctx(sk);
655
656         if (level != SOL_TLS)
657                 return ctx->sk_proto->getsockopt(sk, level,
658                                                  optname, optval, optlen);
659
660         return do_tls_getsockopt(sk, optname, optval, optlen);
661 }
662
663 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
664                                   unsigned int optlen, int tx)
665 {
666         struct tls_crypto_info *crypto_info;
667         struct tls_crypto_info *alt_crypto_info;
668         struct tls_context *ctx = tls_get_ctx(sk);
669         size_t optsize;
670         int rc = 0;
671         int conf;
672
673         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
674                 return -EINVAL;
675
676         if (tx) {
677                 crypto_info = &ctx->crypto_send.info;
678                 alt_crypto_info = &ctx->crypto_recv.info;
679         } else {
680                 crypto_info = &ctx->crypto_recv.info;
681                 alt_crypto_info = &ctx->crypto_send.info;
682         }
683
684         /* Currently we don't support set crypto info more than one time */
685         if (TLS_CRYPTO_INFO_READY(crypto_info))
686                 return -EBUSY;
687
688         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
689         if (rc) {
690                 rc = -EFAULT;
691                 goto err_crypto_info;
692         }
693
694         /* check version */
695         if (crypto_info->version != TLS_1_2_VERSION &&
696             crypto_info->version != TLS_1_3_VERSION) {
697                 rc = -EINVAL;
698                 goto err_crypto_info;
699         }
700
701         /* Ensure that TLS version and ciphers are same in both directions */
702         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
703                 if (alt_crypto_info->version != crypto_info->version ||
704                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
705                         rc = -EINVAL;
706                         goto err_crypto_info;
707                 }
708         }
709
710         switch (crypto_info->cipher_type) {
711         case TLS_CIPHER_AES_GCM_128:
712                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
713                 break;
714         case TLS_CIPHER_AES_GCM_256: {
715                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
716                 break;
717         }
718         case TLS_CIPHER_AES_CCM_128:
719                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
720                 break;
721         case TLS_CIPHER_CHACHA20_POLY1305:
722                 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
723                 break;
724         case TLS_CIPHER_SM4_GCM:
725                 optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
726                 break;
727         case TLS_CIPHER_SM4_CCM:
728                 optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
729                 break;
730         case TLS_CIPHER_ARIA_GCM_128:
731                 if (crypto_info->version != TLS_1_2_VERSION) {
732                         rc = -EINVAL;
733                         goto err_crypto_info;
734                 }
735                 optsize = sizeof(struct tls12_crypto_info_aria_gcm_128);
736                 break;
737         case TLS_CIPHER_ARIA_GCM_256:
738                 if (crypto_info->version != TLS_1_2_VERSION) {
739                         rc = -EINVAL;
740                         goto err_crypto_info;
741                 }
742                 optsize = sizeof(struct tls12_crypto_info_aria_gcm_256);
743                 break;
744         default:
745                 rc = -EINVAL;
746                 goto err_crypto_info;
747         }
748
749         if (optlen != optsize) {
750                 rc = -EINVAL;
751                 goto err_crypto_info;
752         }
753
754         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
755                                       sizeof(*crypto_info),
756                                       optlen - sizeof(*crypto_info));
757         if (rc) {
758                 rc = -EFAULT;
759                 goto err_crypto_info;
760         }
761
762         if (tx) {
763                 rc = tls_set_device_offload(sk, ctx);
764                 conf = TLS_HW;
765                 if (!rc) {
766                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
767                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
768                 } else {
769                         rc = tls_set_sw_offload(sk, ctx, 1);
770                         if (rc)
771                                 goto err_crypto_info;
772                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
773                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
774                         conf = TLS_SW;
775                 }
776         } else {
777                 rc = tls_set_device_offload_rx(sk, ctx);
778                 conf = TLS_HW;
779                 if (!rc) {
780                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
781                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
782                 } else {
783                         rc = tls_set_sw_offload(sk, ctx, 0);
784                         if (rc)
785                                 goto err_crypto_info;
786                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
787                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
788                         conf = TLS_SW;
789                 }
790                 tls_sw_strparser_arm(sk, ctx);
791         }
792
793         if (tx)
794                 ctx->tx_conf = conf;
795         else
796                 ctx->rx_conf = conf;
797         update_sk_prot(sk, ctx);
798         if (tx) {
799                 ctx->sk_write_space = sk->sk_write_space;
800                 sk->sk_write_space = tls_write_space;
801         } else {
802                 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
803
804                 tls_strp_check_rcv(&rx_ctx->strp);
805         }
806         return 0;
807
808 err_crypto_info:
809         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
810         return rc;
811 }
812
813 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
814                                    unsigned int optlen)
815 {
816         struct tls_context *ctx = tls_get_ctx(sk);
817         unsigned int value;
818
819         if (sockptr_is_null(optval) || optlen != sizeof(value))
820                 return -EINVAL;
821
822         if (copy_from_sockptr(&value, optval, sizeof(value)))
823                 return -EFAULT;
824
825         if (value > 1)
826                 return -EINVAL;
827
828         ctx->zerocopy_sendfile = value;
829
830         return 0;
831 }
832
833 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
834                                     unsigned int optlen)
835 {
836         struct tls_context *ctx = tls_get_ctx(sk);
837         u32 val;
838         int rc;
839
840         if (ctx->prot_info.version != TLS_1_3_VERSION ||
841             sockptr_is_null(optval) || optlen < sizeof(val))
842                 return -EINVAL;
843
844         rc = copy_from_sockptr(&val, optval, sizeof(val));
845         if (rc)
846                 return -EFAULT;
847         if (val > 1)
848                 return -EINVAL;
849         rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
850         if (rc < 1)
851                 return rc == 0 ? -EINVAL : rc;
852
853         lock_sock(sk);
854         rc = -EINVAL;
855         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
856                 ctx->rx_no_pad = val;
857                 tls_update_rx_zc_capable(ctx);
858                 rc = 0;
859         }
860         release_sock(sk);
861
862         return rc;
863 }
864
865 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
866                              unsigned int optlen)
867 {
868         int rc = 0;
869
870         switch (optname) {
871         case TLS_TX:
872         case TLS_RX:
873                 lock_sock(sk);
874                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
875                                             optname == TLS_TX);
876                 release_sock(sk);
877                 break;
878         case TLS_TX_ZEROCOPY_RO:
879                 lock_sock(sk);
880                 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
881                 release_sock(sk);
882                 break;
883         case TLS_RX_EXPECT_NO_PAD:
884                 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
885                 break;
886         default:
887                 rc = -ENOPROTOOPT;
888                 break;
889         }
890         return rc;
891 }
892
893 static int tls_setsockopt(struct sock *sk, int level, int optname,
894                           sockptr_t optval, unsigned int optlen)
895 {
896         struct tls_context *ctx = tls_get_ctx(sk);
897
898         if (level != SOL_TLS)
899                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
900                                                  optlen);
901
902         return do_tls_setsockopt(sk, optname, optval, optlen);
903 }
904
905 struct tls_context *tls_ctx_create(struct sock *sk)
906 {
907         struct inet_connection_sock *icsk = inet_csk(sk);
908         struct tls_context *ctx;
909
910         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
911         if (!ctx)
912                 return NULL;
913
914         mutex_init(&ctx->tx_lock);
915         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
916         ctx->sk_proto = READ_ONCE(sk->sk_prot);
917         ctx->sk = sk;
918         return ctx;
919 }
920
921 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
922                             const struct proto_ops *base)
923 {
924         ops[TLS_BASE][TLS_BASE] = *base;
925
926         ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
927         ops[TLS_SW  ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked;
928
929         ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
930         ops[TLS_BASE][TLS_SW  ].splice_read     = tls_sw_splice_read;
931
932         ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
933         ops[TLS_SW  ][TLS_SW  ].splice_read     = tls_sw_splice_read;
934
935 #ifdef CONFIG_TLS_DEVICE
936         ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
937         ops[TLS_HW  ][TLS_BASE].sendpage_locked = NULL;
938
939         ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
940         ops[TLS_HW  ][TLS_SW  ].sendpage_locked = NULL;
941
942         ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
943
944         ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
945
946         ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
947         ops[TLS_HW  ][TLS_HW  ].sendpage_locked = NULL;
948 #endif
949 #ifdef CONFIG_TLS_TOE
950         ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
951 #endif
952 }
953
954 static void tls_build_proto(struct sock *sk)
955 {
956         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
957         struct proto *prot = READ_ONCE(sk->sk_prot);
958
959         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
960         if (ip_ver == TLSV6 &&
961             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
962                 mutex_lock(&tcpv6_prot_mutex);
963                 if (likely(prot != saved_tcpv6_prot)) {
964                         build_protos(tls_prots[TLSV6], prot);
965                         build_proto_ops(tls_proto_ops[TLSV6],
966                                         sk->sk_socket->ops);
967                         smp_store_release(&saved_tcpv6_prot, prot);
968                 }
969                 mutex_unlock(&tcpv6_prot_mutex);
970         }
971
972         if (ip_ver == TLSV4 &&
973             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
974                 mutex_lock(&tcpv4_prot_mutex);
975                 if (likely(prot != saved_tcpv4_prot)) {
976                         build_protos(tls_prots[TLSV4], prot);
977                         build_proto_ops(tls_proto_ops[TLSV4],
978                                         sk->sk_socket->ops);
979                         smp_store_release(&saved_tcpv4_prot, prot);
980                 }
981                 mutex_unlock(&tcpv4_prot_mutex);
982         }
983 }
984
985 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
986                          const struct proto *base)
987 {
988         prot[TLS_BASE][TLS_BASE] = *base;
989         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
990         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
991         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
992
993         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
994         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
995         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
996
997         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
998         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
999         prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
1000         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
1001
1002         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
1003         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
1004         prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
1005         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
1006
1007 #ifdef CONFIG_TLS_DEVICE
1008         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1009         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
1010         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
1011
1012         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
1013         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
1014         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
1015
1016         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
1017
1018         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
1019
1020         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
1021 #endif
1022 #ifdef CONFIG_TLS_TOE
1023         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
1024         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
1025         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
1026 #endif
1027 }
1028
1029 static int tls_init(struct sock *sk)
1030 {
1031         struct tls_context *ctx;
1032         int rc = 0;
1033
1034         tls_build_proto(sk);
1035
1036 #ifdef CONFIG_TLS_TOE
1037         if (tls_toe_bypass(sk))
1038                 return 0;
1039 #endif
1040
1041         /* The TLS ulp is currently supported only for TCP sockets
1042          * in ESTABLISHED state.
1043          * Supporting sockets in LISTEN state will require us
1044          * to modify the accept implementation to clone rather then
1045          * share the ulp context.
1046          */
1047         if (sk->sk_state != TCP_ESTABLISHED)
1048                 return -ENOTCONN;
1049
1050         /* allocate tls context */
1051         write_lock_bh(&sk->sk_callback_lock);
1052         ctx = tls_ctx_create(sk);
1053         if (!ctx) {
1054                 rc = -ENOMEM;
1055                 goto out;
1056         }
1057
1058         ctx->tx_conf = TLS_BASE;
1059         ctx->rx_conf = TLS_BASE;
1060         update_sk_prot(sk, ctx);
1061 out:
1062         write_unlock_bh(&sk->sk_callback_lock);
1063         return rc;
1064 }
1065
1066 static void tls_update(struct sock *sk, struct proto *p,
1067                        void (*write_space)(struct sock *sk))
1068 {
1069         struct tls_context *ctx;
1070
1071         WARN_ON_ONCE(sk->sk_prot == p);
1072
1073         ctx = tls_get_ctx(sk);
1074         if (likely(ctx)) {
1075                 ctx->sk_write_space = write_space;
1076                 ctx->sk_proto = p;
1077         } else {
1078                 /* Pairs with lockless read in sk_clone_lock(). */
1079                 WRITE_ONCE(sk->sk_prot, p);
1080                 sk->sk_write_space = write_space;
1081         }
1082 }
1083
1084 static u16 tls_user_config(struct tls_context *ctx, bool tx)
1085 {
1086         u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1087
1088         switch (config) {
1089         case TLS_BASE:
1090                 return TLS_CONF_BASE;
1091         case TLS_SW:
1092                 return TLS_CONF_SW;
1093         case TLS_HW:
1094                 return TLS_CONF_HW;
1095         case TLS_HW_RECORD:
1096                 return TLS_CONF_HW_RECORD;
1097         }
1098         return 0;
1099 }
1100
1101 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1102 {
1103         u16 version, cipher_type;
1104         struct tls_context *ctx;
1105         struct nlattr *start;
1106         int err;
1107
1108         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1109         if (!start)
1110                 return -EMSGSIZE;
1111
1112         rcu_read_lock();
1113         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1114         if (!ctx) {
1115                 err = 0;
1116                 goto nla_failure;
1117         }
1118         version = ctx->prot_info.version;
1119         if (version) {
1120                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1121                 if (err)
1122                         goto nla_failure;
1123         }
1124         cipher_type = ctx->prot_info.cipher_type;
1125         if (cipher_type) {
1126                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1127                 if (err)
1128                         goto nla_failure;
1129         }
1130         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1131         if (err)
1132                 goto nla_failure;
1133
1134         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1135         if (err)
1136                 goto nla_failure;
1137
1138         if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1139                 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1140                 if (err)
1141                         goto nla_failure;
1142         }
1143         if (ctx->rx_no_pad) {
1144                 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1145                 if (err)
1146                         goto nla_failure;
1147         }
1148
1149         rcu_read_unlock();
1150         nla_nest_end(skb, start);
1151         return 0;
1152
1153 nla_failure:
1154         rcu_read_unlock();
1155         nla_nest_cancel(skb, start);
1156         return err;
1157 }
1158
1159 static size_t tls_get_info_size(const struct sock *sk)
1160 {
1161         size_t size = 0;
1162
1163         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
1164                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
1165                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
1166                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
1167                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
1168                 nla_total_size(0) +             /* TLS_INFO_ZC_RO_TX */
1169                 nla_total_size(0) +             /* TLS_INFO_RX_NO_PAD */
1170                 0;
1171
1172         return size;
1173 }
1174
1175 static int __net_init tls_init_net(struct net *net)
1176 {
1177         int err;
1178
1179         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1180         if (!net->mib.tls_statistics)
1181                 return -ENOMEM;
1182
1183         err = tls_proc_init(net);
1184         if (err)
1185                 goto err_free_stats;
1186
1187         return 0;
1188 err_free_stats:
1189         free_percpu(net->mib.tls_statistics);
1190         return err;
1191 }
1192
1193 static void __net_exit tls_exit_net(struct net *net)
1194 {
1195         tls_proc_fini(net);
1196         free_percpu(net->mib.tls_statistics);
1197 }
1198
1199 static struct pernet_operations tls_proc_ops = {
1200         .init = tls_init_net,
1201         .exit = tls_exit_net,
1202 };
1203
1204 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1205         .name                   = "tls",
1206         .owner                  = THIS_MODULE,
1207         .init                   = tls_init,
1208         .update                 = tls_update,
1209         .get_info               = tls_get_info,
1210         .get_info_size          = tls_get_info_size,
1211 };
1212
1213 static int __init tls_register(void)
1214 {
1215         int err;
1216
1217         err = register_pernet_subsys(&tls_proc_ops);
1218         if (err)
1219                 return err;
1220
1221         err = tls_strp_dev_init();
1222         if (err)
1223                 goto err_pernet;
1224
1225         err = tls_device_init();
1226         if (err)
1227                 goto err_strp;
1228
1229         tcp_register_ulp(&tcp_tls_ulp_ops);
1230
1231         return 0;
1232 err_strp:
1233         tls_strp_dev_exit();
1234 err_pernet:
1235         unregister_pernet_subsys(&tls_proc_ops);
1236         return err;
1237 }
1238
1239 static void __exit tls_unregister(void)
1240 {
1241         tcp_unregister_ulp(&tcp_tls_ulp_ops);
1242         tls_strp_dev_exit();
1243         tls_device_cleanup();
1244         unregister_pernet_subsys(&tls_proc_ops);
1245 }
1246
1247 module_init(tls_register);
1248 module_exit(tls_unregister);