net: nfc: Fix use-after-free caused by nfc_llcp_find_local
[platform/kernel/linux-starfive.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 #include "tls.h"
49
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54
55 enum {
56         TLSV4,
57         TLSV6,
58         TLS_NUM_PROTS,
59 };
60
61 #define CIPHER_SIZE_DESC(cipher) [cipher] = { \
62         .iv = cipher ## _IV_SIZE, \
63         .key = cipher ## _KEY_SIZE, \
64         .salt = cipher ## _SALT_SIZE, \
65         .tag = cipher ## _TAG_SIZE, \
66         .rec_seq = cipher ## _REC_SEQ_SIZE, \
67 }
68
69 const struct tls_cipher_size_desc tls_cipher_size_desc[] = {
70         CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128),
71         CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256),
72         CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128),
73         CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305),
74         CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM),
75         CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM),
76 };
77
78 static const struct proto *saved_tcpv6_prot;
79 static DEFINE_MUTEX(tcpv6_prot_mutex);
80 static const struct proto *saved_tcpv4_prot;
81 static DEFINE_MUTEX(tcpv4_prot_mutex);
82 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
83 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
84 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
85                          const struct proto *base);
86
87 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
88 {
89         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
90
91         WRITE_ONCE(sk->sk_prot,
92                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
93         WRITE_ONCE(sk->sk_socket->ops,
94                    &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
95 }
96
97 int wait_on_pending_writer(struct sock *sk, long *timeo)
98 {
99         int rc = 0;
100         DEFINE_WAIT_FUNC(wait, woken_wake_function);
101
102         add_wait_queue(sk_sleep(sk), &wait);
103         while (1) {
104                 if (!*timeo) {
105                         rc = -EAGAIN;
106                         break;
107                 }
108
109                 if (signal_pending(current)) {
110                         rc = sock_intr_errno(*timeo);
111                         break;
112                 }
113
114                 if (sk_wait_event(sk, timeo,
115                                   !READ_ONCE(sk->sk_write_pending), &wait))
116                         break;
117         }
118         remove_wait_queue(sk_sleep(sk), &wait);
119         return rc;
120 }
121
122 int tls_push_sg(struct sock *sk,
123                 struct tls_context *ctx,
124                 struct scatterlist *sg,
125                 u16 first_offset,
126                 int flags)
127 {
128         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
129         int ret = 0;
130         struct page *p;
131         size_t size;
132         int offset = first_offset;
133
134         size = sg->length - offset;
135         offset += sg->offset;
136
137         ctx->in_tcp_sendpages = true;
138         while (1) {
139                 if (sg_is_last(sg))
140                         sendpage_flags = flags;
141
142                 /* is sending application-limited? */
143                 tcp_rate_check_app_limited(sk);
144                 p = sg_page(sg);
145 retry:
146                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
147
148                 if (ret != size) {
149                         if (ret > 0) {
150                                 offset += ret;
151                                 size -= ret;
152                                 goto retry;
153                         }
154
155                         offset -= sg->offset;
156                         ctx->partially_sent_offset = offset;
157                         ctx->partially_sent_record = (void *)sg;
158                         ctx->in_tcp_sendpages = false;
159                         return ret;
160                 }
161
162                 put_page(p);
163                 sk_mem_uncharge(sk, sg->length);
164                 sg = sg_next(sg);
165                 if (!sg)
166                         break;
167
168                 offset = sg->offset;
169                 size = sg->length;
170         }
171
172         ctx->in_tcp_sendpages = false;
173
174         return 0;
175 }
176
177 static int tls_handle_open_record(struct sock *sk, int flags)
178 {
179         struct tls_context *ctx = tls_get_ctx(sk);
180
181         if (tls_is_pending_open_record(ctx))
182                 return ctx->push_pending_record(sk, flags);
183
184         return 0;
185 }
186
187 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
188                      unsigned char *record_type)
189 {
190         struct cmsghdr *cmsg;
191         int rc = -EINVAL;
192
193         for_each_cmsghdr(cmsg, msg) {
194                 if (!CMSG_OK(msg, cmsg))
195                         return -EINVAL;
196                 if (cmsg->cmsg_level != SOL_TLS)
197                         continue;
198
199                 switch (cmsg->cmsg_type) {
200                 case TLS_SET_RECORD_TYPE:
201                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
202                                 return -EINVAL;
203
204                         if (msg->msg_flags & MSG_MORE)
205                                 return -EINVAL;
206
207                         rc = tls_handle_open_record(sk, msg->msg_flags);
208                         if (rc)
209                                 return rc;
210
211                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
212                         rc = 0;
213                         break;
214                 default:
215                         return -EINVAL;
216                 }
217         }
218
219         return rc;
220 }
221
222 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
223                             int flags)
224 {
225         struct scatterlist *sg;
226         u16 offset;
227
228         sg = ctx->partially_sent_record;
229         offset = ctx->partially_sent_offset;
230
231         ctx->partially_sent_record = NULL;
232         return tls_push_sg(sk, ctx, sg, offset, flags);
233 }
234
235 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
236 {
237         struct scatterlist *sg;
238
239         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
240                 put_page(sg_page(sg));
241                 sk_mem_uncharge(sk, sg->length);
242         }
243         ctx->partially_sent_record = NULL;
244 }
245
246 static void tls_write_space(struct sock *sk)
247 {
248         struct tls_context *ctx = tls_get_ctx(sk);
249
250         /* If in_tcp_sendpages call lower protocol write space handler
251          * to ensure we wake up any waiting operations there. For example
252          * if do_tcp_sendpages where to call sk_wait_event.
253          */
254         if (ctx->in_tcp_sendpages) {
255                 ctx->sk_write_space(sk);
256                 return;
257         }
258
259 #ifdef CONFIG_TLS_DEVICE
260         if (ctx->tx_conf == TLS_HW)
261                 tls_device_write_space(sk, ctx);
262         else
263 #endif
264                 tls_sw_write_space(sk, ctx);
265
266         ctx->sk_write_space(sk);
267 }
268
269 /**
270  * tls_ctx_free() - free TLS ULP context
271  * @sk:  socket to with @ctx is attached
272  * @ctx: TLS context structure
273  *
274  * Free TLS context. If @sk is %NULL caller guarantees that the socket
275  * to which @ctx was attached has no outstanding references.
276  */
277 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
278 {
279         if (!ctx)
280                 return;
281
282         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
283         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
284         mutex_destroy(&ctx->tx_lock);
285
286         if (sk)
287                 kfree_rcu(ctx, rcu);
288         else
289                 kfree(ctx);
290 }
291
292 static void tls_sk_proto_cleanup(struct sock *sk,
293                                  struct tls_context *ctx, long timeo)
294 {
295         if (unlikely(sk->sk_write_pending) &&
296             !wait_on_pending_writer(sk, &timeo))
297                 tls_handle_open_record(sk, 0);
298
299         /* We need these for tls_sw_fallback handling of other packets */
300         if (ctx->tx_conf == TLS_SW) {
301                 kfree(ctx->tx.rec_seq);
302                 kfree(ctx->tx.iv);
303                 tls_sw_release_resources_tx(sk);
304                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
305         } else if (ctx->tx_conf == TLS_HW) {
306                 tls_device_free_resources_tx(sk);
307                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
308         }
309
310         if (ctx->rx_conf == TLS_SW) {
311                 tls_sw_release_resources_rx(sk);
312                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
313         } else if (ctx->rx_conf == TLS_HW) {
314                 tls_device_offload_cleanup_rx(sk);
315                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
316         }
317 }
318
319 static void tls_sk_proto_close(struct sock *sk, long timeout)
320 {
321         struct inet_connection_sock *icsk = inet_csk(sk);
322         struct tls_context *ctx = tls_get_ctx(sk);
323         long timeo = sock_sndtimeo(sk, 0);
324         bool free_ctx;
325
326         if (ctx->tx_conf == TLS_SW)
327                 tls_sw_cancel_work_tx(ctx);
328
329         lock_sock(sk);
330         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
331
332         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
333                 tls_sk_proto_cleanup(sk, ctx, timeo);
334
335         write_lock_bh(&sk->sk_callback_lock);
336         if (free_ctx)
337                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
338         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
339         if (sk->sk_write_space == tls_write_space)
340                 sk->sk_write_space = ctx->sk_write_space;
341         write_unlock_bh(&sk->sk_callback_lock);
342         release_sock(sk);
343         if (ctx->tx_conf == TLS_SW)
344                 tls_sw_free_ctx_tx(ctx);
345         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
346                 tls_sw_strparser_done(ctx);
347         if (ctx->rx_conf == TLS_SW)
348                 tls_sw_free_ctx_rx(ctx);
349         ctx->sk_proto->close(sk, timeout);
350
351         if (free_ctx)
352                 tls_ctx_free(sk, ctx);
353 }
354
355 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
356                                   int __user *optlen, int tx)
357 {
358         int rc = 0;
359         struct tls_context *ctx = tls_get_ctx(sk);
360         struct tls_crypto_info *crypto_info;
361         struct cipher_context *cctx;
362         int len;
363
364         if (get_user(len, optlen))
365                 return -EFAULT;
366
367         if (!optval || (len < sizeof(*crypto_info))) {
368                 rc = -EINVAL;
369                 goto out;
370         }
371
372         if (!ctx) {
373                 rc = -EBUSY;
374                 goto out;
375         }
376
377         /* get user crypto info */
378         if (tx) {
379                 crypto_info = &ctx->crypto_send.info;
380                 cctx = &ctx->tx;
381         } else {
382                 crypto_info = &ctx->crypto_recv.info;
383                 cctx = &ctx->rx;
384         }
385
386         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
387                 rc = -EBUSY;
388                 goto out;
389         }
390
391         if (len == sizeof(*crypto_info)) {
392                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
393                         rc = -EFAULT;
394                 goto out;
395         }
396
397         switch (crypto_info->cipher_type) {
398         case TLS_CIPHER_AES_GCM_128: {
399                 struct tls12_crypto_info_aes_gcm_128 *
400                   crypto_info_aes_gcm_128 =
401                   container_of(crypto_info,
402                                struct tls12_crypto_info_aes_gcm_128,
403                                info);
404
405                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
406                         rc = -EINVAL;
407                         goto out;
408                 }
409                 memcpy(crypto_info_aes_gcm_128->iv,
410                        cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
411                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
412                 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
413                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
414                 if (copy_to_user(optval,
415                                  crypto_info_aes_gcm_128,
416                                  sizeof(*crypto_info_aes_gcm_128)))
417                         rc = -EFAULT;
418                 break;
419         }
420         case TLS_CIPHER_AES_GCM_256: {
421                 struct tls12_crypto_info_aes_gcm_256 *
422                   crypto_info_aes_gcm_256 =
423                   container_of(crypto_info,
424                                struct tls12_crypto_info_aes_gcm_256,
425                                info);
426
427                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
428                         rc = -EINVAL;
429                         goto out;
430                 }
431                 memcpy(crypto_info_aes_gcm_256->iv,
432                        cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
433                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
434                 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
435                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
436                 if (copy_to_user(optval,
437                                  crypto_info_aes_gcm_256,
438                                  sizeof(*crypto_info_aes_gcm_256)))
439                         rc = -EFAULT;
440                 break;
441         }
442         case TLS_CIPHER_AES_CCM_128: {
443                 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
444                         container_of(crypto_info,
445                                 struct tls12_crypto_info_aes_ccm_128, info);
446
447                 if (len != sizeof(*aes_ccm_128)) {
448                         rc = -EINVAL;
449                         goto out;
450                 }
451                 memcpy(aes_ccm_128->iv,
452                        cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
453                        TLS_CIPHER_AES_CCM_128_IV_SIZE);
454                 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
455                        TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
456                 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
457                         rc = -EFAULT;
458                 break;
459         }
460         case TLS_CIPHER_CHACHA20_POLY1305: {
461                 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
462                         container_of(crypto_info,
463                                 struct tls12_crypto_info_chacha20_poly1305,
464                                 info);
465
466                 if (len != sizeof(*chacha20_poly1305)) {
467                         rc = -EINVAL;
468                         goto out;
469                 }
470                 memcpy(chacha20_poly1305->iv,
471                        cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
472                        TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
473                 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
474                        TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
475                 if (copy_to_user(optval, chacha20_poly1305,
476                                 sizeof(*chacha20_poly1305)))
477                         rc = -EFAULT;
478                 break;
479         }
480         case TLS_CIPHER_SM4_GCM: {
481                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
482                         container_of(crypto_info,
483                                 struct tls12_crypto_info_sm4_gcm, info);
484
485                 if (len != sizeof(*sm4_gcm_info)) {
486                         rc = -EINVAL;
487                         goto out;
488                 }
489                 memcpy(sm4_gcm_info->iv,
490                        cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
491                        TLS_CIPHER_SM4_GCM_IV_SIZE);
492                 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
493                        TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
494                 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
495                         rc = -EFAULT;
496                 break;
497         }
498         case TLS_CIPHER_SM4_CCM: {
499                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
500                         container_of(crypto_info,
501                                 struct tls12_crypto_info_sm4_ccm, info);
502
503                 if (len != sizeof(*sm4_ccm_info)) {
504                         rc = -EINVAL;
505                         goto out;
506                 }
507                 memcpy(sm4_ccm_info->iv,
508                        cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
509                        TLS_CIPHER_SM4_CCM_IV_SIZE);
510                 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
511                        TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
512                 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
513                         rc = -EFAULT;
514                 break;
515         }
516         case TLS_CIPHER_ARIA_GCM_128: {
517                 struct tls12_crypto_info_aria_gcm_128 *
518                   crypto_info_aria_gcm_128 =
519                   container_of(crypto_info,
520                                struct tls12_crypto_info_aria_gcm_128,
521                                info);
522
523                 if (len != sizeof(*crypto_info_aria_gcm_128)) {
524                         rc = -EINVAL;
525                         goto out;
526                 }
527                 memcpy(crypto_info_aria_gcm_128->iv,
528                        cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE,
529                        TLS_CIPHER_ARIA_GCM_128_IV_SIZE);
530                 memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq,
531                        TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE);
532                 if (copy_to_user(optval,
533                                  crypto_info_aria_gcm_128,
534                                  sizeof(*crypto_info_aria_gcm_128)))
535                         rc = -EFAULT;
536                 break;
537         }
538         case TLS_CIPHER_ARIA_GCM_256: {
539                 struct tls12_crypto_info_aria_gcm_256 *
540                   crypto_info_aria_gcm_256 =
541                   container_of(crypto_info,
542                                struct tls12_crypto_info_aria_gcm_256,
543                                info);
544
545                 if (len != sizeof(*crypto_info_aria_gcm_256)) {
546                         rc = -EINVAL;
547                         goto out;
548                 }
549                 memcpy(crypto_info_aria_gcm_256->iv,
550                        cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE,
551                        TLS_CIPHER_ARIA_GCM_256_IV_SIZE);
552                 memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq,
553                        TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE);
554                 if (copy_to_user(optval,
555                                  crypto_info_aria_gcm_256,
556                                  sizeof(*crypto_info_aria_gcm_256)))
557                         rc = -EFAULT;
558                 break;
559         }
560         default:
561                 rc = -EINVAL;
562         }
563
564 out:
565         return rc;
566 }
567
568 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
569                                    int __user *optlen)
570 {
571         struct tls_context *ctx = tls_get_ctx(sk);
572         unsigned int value;
573         int len;
574
575         if (get_user(len, optlen))
576                 return -EFAULT;
577
578         if (len != sizeof(value))
579                 return -EINVAL;
580
581         value = ctx->zerocopy_sendfile;
582         if (copy_to_user(optval, &value, sizeof(value)))
583                 return -EFAULT;
584
585         return 0;
586 }
587
588 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
589                                     int __user *optlen)
590 {
591         struct tls_context *ctx = tls_get_ctx(sk);
592         int value, len;
593
594         if (ctx->prot_info.version != TLS_1_3_VERSION)
595                 return -EINVAL;
596
597         if (get_user(len, optlen))
598                 return -EFAULT;
599         if (len < sizeof(value))
600                 return -EINVAL;
601
602         value = -EINVAL;
603         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
604                 value = ctx->rx_no_pad;
605         if (value < 0)
606                 return value;
607
608         if (put_user(sizeof(value), optlen))
609                 return -EFAULT;
610         if (copy_to_user(optval, &value, sizeof(value)))
611                 return -EFAULT;
612
613         return 0;
614 }
615
616 static int do_tls_getsockopt(struct sock *sk, int optname,
617                              char __user *optval, int __user *optlen)
618 {
619         int rc = 0;
620
621         lock_sock(sk);
622
623         switch (optname) {
624         case TLS_TX:
625         case TLS_RX:
626                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
627                                             optname == TLS_TX);
628                 break;
629         case TLS_TX_ZEROCOPY_RO:
630                 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
631                 break;
632         case TLS_RX_EXPECT_NO_PAD:
633                 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
634                 break;
635         default:
636                 rc = -ENOPROTOOPT;
637                 break;
638         }
639
640         release_sock(sk);
641
642         return rc;
643 }
644
645 static int tls_getsockopt(struct sock *sk, int level, int optname,
646                           char __user *optval, int __user *optlen)
647 {
648         struct tls_context *ctx = tls_get_ctx(sk);
649
650         if (level != SOL_TLS)
651                 return ctx->sk_proto->getsockopt(sk, level,
652                                                  optname, optval, optlen);
653
654         return do_tls_getsockopt(sk, optname, optval, optlen);
655 }
656
657 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
658                                   unsigned int optlen, int tx)
659 {
660         struct tls_crypto_info *crypto_info;
661         struct tls_crypto_info *alt_crypto_info;
662         struct tls_context *ctx = tls_get_ctx(sk);
663         size_t optsize;
664         int rc = 0;
665         int conf;
666
667         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
668                 return -EINVAL;
669
670         if (tx) {
671                 crypto_info = &ctx->crypto_send.info;
672                 alt_crypto_info = &ctx->crypto_recv.info;
673         } else {
674                 crypto_info = &ctx->crypto_recv.info;
675                 alt_crypto_info = &ctx->crypto_send.info;
676         }
677
678         /* Currently we don't support set crypto info more than one time */
679         if (TLS_CRYPTO_INFO_READY(crypto_info))
680                 return -EBUSY;
681
682         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
683         if (rc) {
684                 rc = -EFAULT;
685                 goto err_crypto_info;
686         }
687
688         /* check version */
689         if (crypto_info->version != TLS_1_2_VERSION &&
690             crypto_info->version != TLS_1_3_VERSION) {
691                 rc = -EINVAL;
692                 goto err_crypto_info;
693         }
694
695         /* Ensure that TLS version and ciphers are same in both directions */
696         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
697                 if (alt_crypto_info->version != crypto_info->version ||
698                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
699                         rc = -EINVAL;
700                         goto err_crypto_info;
701                 }
702         }
703
704         switch (crypto_info->cipher_type) {
705         case TLS_CIPHER_AES_GCM_128:
706                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
707                 break;
708         case TLS_CIPHER_AES_GCM_256: {
709                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
710                 break;
711         }
712         case TLS_CIPHER_AES_CCM_128:
713                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
714                 break;
715         case TLS_CIPHER_CHACHA20_POLY1305:
716                 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
717                 break;
718         case TLS_CIPHER_SM4_GCM:
719                 optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
720                 break;
721         case TLS_CIPHER_SM4_CCM:
722                 optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
723                 break;
724         case TLS_CIPHER_ARIA_GCM_128:
725                 if (crypto_info->version != TLS_1_2_VERSION) {
726                         rc = -EINVAL;
727                         goto err_crypto_info;
728                 }
729                 optsize = sizeof(struct tls12_crypto_info_aria_gcm_128);
730                 break;
731         case TLS_CIPHER_ARIA_GCM_256:
732                 if (crypto_info->version != TLS_1_2_VERSION) {
733                         rc = -EINVAL;
734                         goto err_crypto_info;
735                 }
736                 optsize = sizeof(struct tls12_crypto_info_aria_gcm_256);
737                 break;
738         default:
739                 rc = -EINVAL;
740                 goto err_crypto_info;
741         }
742
743         if (optlen != optsize) {
744                 rc = -EINVAL;
745                 goto err_crypto_info;
746         }
747
748         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
749                                       sizeof(*crypto_info),
750                                       optlen - sizeof(*crypto_info));
751         if (rc) {
752                 rc = -EFAULT;
753                 goto err_crypto_info;
754         }
755
756         if (tx) {
757                 rc = tls_set_device_offload(sk, ctx);
758                 conf = TLS_HW;
759                 if (!rc) {
760                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
761                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
762                 } else {
763                         rc = tls_set_sw_offload(sk, ctx, 1);
764                         if (rc)
765                                 goto err_crypto_info;
766                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
767                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
768                         conf = TLS_SW;
769                 }
770         } else {
771                 rc = tls_set_device_offload_rx(sk, ctx);
772                 conf = TLS_HW;
773                 if (!rc) {
774                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
775                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
776                 } else {
777                         rc = tls_set_sw_offload(sk, ctx, 0);
778                         if (rc)
779                                 goto err_crypto_info;
780                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
781                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
782                         conf = TLS_SW;
783                 }
784                 tls_sw_strparser_arm(sk, ctx);
785         }
786
787         if (tx)
788                 ctx->tx_conf = conf;
789         else
790                 ctx->rx_conf = conf;
791         update_sk_prot(sk, ctx);
792         if (tx) {
793                 ctx->sk_write_space = sk->sk_write_space;
794                 sk->sk_write_space = tls_write_space;
795         } else {
796                 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
797
798                 tls_strp_check_rcv(&rx_ctx->strp);
799         }
800         return 0;
801
802 err_crypto_info:
803         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
804         return rc;
805 }
806
807 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
808                                    unsigned int optlen)
809 {
810         struct tls_context *ctx = tls_get_ctx(sk);
811         unsigned int value;
812
813         if (sockptr_is_null(optval) || optlen != sizeof(value))
814                 return -EINVAL;
815
816         if (copy_from_sockptr(&value, optval, sizeof(value)))
817                 return -EFAULT;
818
819         if (value > 1)
820                 return -EINVAL;
821
822         ctx->zerocopy_sendfile = value;
823
824         return 0;
825 }
826
827 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
828                                     unsigned int optlen)
829 {
830         struct tls_context *ctx = tls_get_ctx(sk);
831         u32 val;
832         int rc;
833
834         if (ctx->prot_info.version != TLS_1_3_VERSION ||
835             sockptr_is_null(optval) || optlen < sizeof(val))
836                 return -EINVAL;
837
838         rc = copy_from_sockptr(&val, optval, sizeof(val));
839         if (rc)
840                 return -EFAULT;
841         if (val > 1)
842                 return -EINVAL;
843         rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
844         if (rc < 1)
845                 return rc == 0 ? -EINVAL : rc;
846
847         lock_sock(sk);
848         rc = -EINVAL;
849         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
850                 ctx->rx_no_pad = val;
851                 tls_update_rx_zc_capable(ctx);
852                 rc = 0;
853         }
854         release_sock(sk);
855
856         return rc;
857 }
858
859 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
860                              unsigned int optlen)
861 {
862         int rc = 0;
863
864         switch (optname) {
865         case TLS_TX:
866         case TLS_RX:
867                 lock_sock(sk);
868                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
869                                             optname == TLS_TX);
870                 release_sock(sk);
871                 break;
872         case TLS_TX_ZEROCOPY_RO:
873                 lock_sock(sk);
874                 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
875                 release_sock(sk);
876                 break;
877         case TLS_RX_EXPECT_NO_PAD:
878                 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
879                 break;
880         default:
881                 rc = -ENOPROTOOPT;
882                 break;
883         }
884         return rc;
885 }
886
887 static int tls_setsockopt(struct sock *sk, int level, int optname,
888                           sockptr_t optval, unsigned int optlen)
889 {
890         struct tls_context *ctx = tls_get_ctx(sk);
891
892         if (level != SOL_TLS)
893                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
894                                                  optlen);
895
896         return do_tls_setsockopt(sk, optname, optval, optlen);
897 }
898
899 struct tls_context *tls_ctx_create(struct sock *sk)
900 {
901         struct inet_connection_sock *icsk = inet_csk(sk);
902         struct tls_context *ctx;
903
904         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
905         if (!ctx)
906                 return NULL;
907
908         mutex_init(&ctx->tx_lock);
909         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
910         ctx->sk_proto = READ_ONCE(sk->sk_prot);
911         ctx->sk = sk;
912         return ctx;
913 }
914
915 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
916                             const struct proto_ops *base)
917 {
918         ops[TLS_BASE][TLS_BASE] = *base;
919
920         ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
921         ops[TLS_SW  ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked;
922
923         ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
924         ops[TLS_BASE][TLS_SW  ].splice_read     = tls_sw_splice_read;
925
926         ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
927         ops[TLS_SW  ][TLS_SW  ].splice_read     = tls_sw_splice_read;
928
929 #ifdef CONFIG_TLS_DEVICE
930         ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
931         ops[TLS_HW  ][TLS_BASE].sendpage_locked = NULL;
932
933         ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
934         ops[TLS_HW  ][TLS_SW  ].sendpage_locked = NULL;
935
936         ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
937
938         ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
939
940         ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
941         ops[TLS_HW  ][TLS_HW  ].sendpage_locked = NULL;
942 #endif
943 #ifdef CONFIG_TLS_TOE
944         ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
945 #endif
946 }
947
948 static void tls_build_proto(struct sock *sk)
949 {
950         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
951         struct proto *prot = READ_ONCE(sk->sk_prot);
952
953         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
954         if (ip_ver == TLSV6 &&
955             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
956                 mutex_lock(&tcpv6_prot_mutex);
957                 if (likely(prot != saved_tcpv6_prot)) {
958                         build_protos(tls_prots[TLSV6], prot);
959                         build_proto_ops(tls_proto_ops[TLSV6],
960                                         sk->sk_socket->ops);
961                         smp_store_release(&saved_tcpv6_prot, prot);
962                 }
963                 mutex_unlock(&tcpv6_prot_mutex);
964         }
965
966         if (ip_ver == TLSV4 &&
967             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
968                 mutex_lock(&tcpv4_prot_mutex);
969                 if (likely(prot != saved_tcpv4_prot)) {
970                         build_protos(tls_prots[TLSV4], prot);
971                         build_proto_ops(tls_proto_ops[TLSV4],
972                                         sk->sk_socket->ops);
973                         smp_store_release(&saved_tcpv4_prot, prot);
974                 }
975                 mutex_unlock(&tcpv4_prot_mutex);
976         }
977 }
978
979 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
980                          const struct proto *base)
981 {
982         prot[TLS_BASE][TLS_BASE] = *base;
983         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
984         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
985         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
986
987         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
988         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
989         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
990
991         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
992         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
993         prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
994         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
995
996         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
997         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
998         prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
999         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
1000
1001 #ifdef CONFIG_TLS_DEVICE
1002         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1003         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
1004         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
1005
1006         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
1007         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
1008         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
1009
1010         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
1011
1012         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
1013
1014         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
1015 #endif
1016 #ifdef CONFIG_TLS_TOE
1017         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
1018         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
1019         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
1020 #endif
1021 }
1022
1023 static int tls_init(struct sock *sk)
1024 {
1025         struct tls_context *ctx;
1026         int rc = 0;
1027
1028         tls_build_proto(sk);
1029
1030 #ifdef CONFIG_TLS_TOE
1031         if (tls_toe_bypass(sk))
1032                 return 0;
1033 #endif
1034
1035         /* The TLS ulp is currently supported only for TCP sockets
1036          * in ESTABLISHED state.
1037          * Supporting sockets in LISTEN state will require us
1038          * to modify the accept implementation to clone rather then
1039          * share the ulp context.
1040          */
1041         if (sk->sk_state != TCP_ESTABLISHED)
1042                 return -ENOTCONN;
1043
1044         /* allocate tls context */
1045         write_lock_bh(&sk->sk_callback_lock);
1046         ctx = tls_ctx_create(sk);
1047         if (!ctx) {
1048                 rc = -ENOMEM;
1049                 goto out;
1050         }
1051
1052         ctx->tx_conf = TLS_BASE;
1053         ctx->rx_conf = TLS_BASE;
1054         update_sk_prot(sk, ctx);
1055 out:
1056         write_unlock_bh(&sk->sk_callback_lock);
1057         return rc;
1058 }
1059
1060 static void tls_update(struct sock *sk, struct proto *p,
1061                        void (*write_space)(struct sock *sk))
1062 {
1063         struct tls_context *ctx;
1064
1065         WARN_ON_ONCE(sk->sk_prot == p);
1066
1067         ctx = tls_get_ctx(sk);
1068         if (likely(ctx)) {
1069                 ctx->sk_write_space = write_space;
1070                 ctx->sk_proto = p;
1071         } else {
1072                 /* Pairs with lockless read in sk_clone_lock(). */
1073                 WRITE_ONCE(sk->sk_prot, p);
1074                 sk->sk_write_space = write_space;
1075         }
1076 }
1077
1078 static u16 tls_user_config(struct tls_context *ctx, bool tx)
1079 {
1080         u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1081
1082         switch (config) {
1083         case TLS_BASE:
1084                 return TLS_CONF_BASE;
1085         case TLS_SW:
1086                 return TLS_CONF_SW;
1087         case TLS_HW:
1088                 return TLS_CONF_HW;
1089         case TLS_HW_RECORD:
1090                 return TLS_CONF_HW_RECORD;
1091         }
1092         return 0;
1093 }
1094
1095 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1096 {
1097         u16 version, cipher_type;
1098         struct tls_context *ctx;
1099         struct nlattr *start;
1100         int err;
1101
1102         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1103         if (!start)
1104                 return -EMSGSIZE;
1105
1106         rcu_read_lock();
1107         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1108         if (!ctx) {
1109                 err = 0;
1110                 goto nla_failure;
1111         }
1112         version = ctx->prot_info.version;
1113         if (version) {
1114                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1115                 if (err)
1116                         goto nla_failure;
1117         }
1118         cipher_type = ctx->prot_info.cipher_type;
1119         if (cipher_type) {
1120                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1121                 if (err)
1122                         goto nla_failure;
1123         }
1124         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1125         if (err)
1126                 goto nla_failure;
1127
1128         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1129         if (err)
1130                 goto nla_failure;
1131
1132         if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1133                 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1134                 if (err)
1135                         goto nla_failure;
1136         }
1137         if (ctx->rx_no_pad) {
1138                 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1139                 if (err)
1140                         goto nla_failure;
1141         }
1142
1143         rcu_read_unlock();
1144         nla_nest_end(skb, start);
1145         return 0;
1146
1147 nla_failure:
1148         rcu_read_unlock();
1149         nla_nest_cancel(skb, start);
1150         return err;
1151 }
1152
1153 static size_t tls_get_info_size(const struct sock *sk)
1154 {
1155         size_t size = 0;
1156
1157         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
1158                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
1159                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
1160                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
1161                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
1162                 nla_total_size(0) +             /* TLS_INFO_ZC_RO_TX */
1163                 nla_total_size(0) +             /* TLS_INFO_RX_NO_PAD */
1164                 0;
1165
1166         return size;
1167 }
1168
1169 static int __net_init tls_init_net(struct net *net)
1170 {
1171         int err;
1172
1173         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1174         if (!net->mib.tls_statistics)
1175                 return -ENOMEM;
1176
1177         err = tls_proc_init(net);
1178         if (err)
1179                 goto err_free_stats;
1180
1181         return 0;
1182 err_free_stats:
1183         free_percpu(net->mib.tls_statistics);
1184         return err;
1185 }
1186
1187 static void __net_exit tls_exit_net(struct net *net)
1188 {
1189         tls_proc_fini(net);
1190         free_percpu(net->mib.tls_statistics);
1191 }
1192
1193 static struct pernet_operations tls_proc_ops = {
1194         .init = tls_init_net,
1195         .exit = tls_exit_net,
1196 };
1197
1198 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1199         .name                   = "tls",
1200         .owner                  = THIS_MODULE,
1201         .init                   = tls_init,
1202         .update                 = tls_update,
1203         .get_info               = tls_get_info,
1204         .get_info_size          = tls_get_info_size,
1205 };
1206
1207 static int __init tls_register(void)
1208 {
1209         int err;
1210
1211         err = register_pernet_subsys(&tls_proc_ops);
1212         if (err)
1213                 return err;
1214
1215         err = tls_strp_dev_init();
1216         if (err)
1217                 goto err_pernet;
1218
1219         err = tls_device_init();
1220         if (err)
1221                 goto err_strp;
1222
1223         tcp_register_ulp(&tcp_tls_ulp_ops);
1224
1225         return 0;
1226 err_strp:
1227         tls_strp_dev_exit();
1228 err_pernet:
1229         unregister_pernet_subsys(&tls_proc_ops);
1230         return err;
1231 }
1232
1233 static void __exit tls_unregister(void)
1234 {
1235         tcp_unregister_ulp(&tcp_tls_ulp_ops);
1236         tls_strp_dev_exit();
1237         tls_device_cleanup();
1238         unregister_pernet_subsys(&tls_proc_ops);
1239 }
1240
1241 module_init(tls_register);
1242 module_exit(tls_unregister);