MAINTAINERS: update the LSM maintainer info
[platform/kernel/linux-starfive.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
52
53 enum {
54         TLSV4,
55         TLSV6,
56         TLS_NUM_PROTS,
57 };
58
59 static const struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static const struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66                          const struct proto *base);
67
68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69 {
70         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72         WRITE_ONCE(sk->sk_prot,
73                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74         WRITE_ONCE(sk->sk_socket->ops,
75                    &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
76 }
77
78 int wait_on_pending_writer(struct sock *sk, long *timeo)
79 {
80         int rc = 0;
81         DEFINE_WAIT_FUNC(wait, woken_wake_function);
82
83         add_wait_queue(sk_sleep(sk), &wait);
84         while (1) {
85                 if (!*timeo) {
86                         rc = -EAGAIN;
87                         break;
88                 }
89
90                 if (signal_pending(current)) {
91                         rc = sock_intr_errno(*timeo);
92                         break;
93                 }
94
95                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96                         break;
97         }
98         remove_wait_queue(sk_sleep(sk), &wait);
99         return rc;
100 }
101
102 int tls_push_sg(struct sock *sk,
103                 struct tls_context *ctx,
104                 struct scatterlist *sg,
105                 u16 first_offset,
106                 int flags)
107 {
108         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109         int ret = 0;
110         struct page *p;
111         size_t size;
112         int offset = first_offset;
113
114         size = sg->length - offset;
115         offset += sg->offset;
116
117         ctx->in_tcp_sendpages = true;
118         while (1) {
119                 if (sg_is_last(sg))
120                         sendpage_flags = flags;
121
122                 /* is sending application-limited? */
123                 tcp_rate_check_app_limited(sk);
124                 p = sg_page(sg);
125 retry:
126                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
127
128                 if (ret != size) {
129                         if (ret > 0) {
130                                 offset += ret;
131                                 size -= ret;
132                                 goto retry;
133                         }
134
135                         offset -= sg->offset;
136                         ctx->partially_sent_offset = offset;
137                         ctx->partially_sent_record = (void *)sg;
138                         ctx->in_tcp_sendpages = false;
139                         return ret;
140                 }
141
142                 put_page(p);
143                 sk_mem_uncharge(sk, sg->length);
144                 sg = sg_next(sg);
145                 if (!sg)
146                         break;
147
148                 offset = sg->offset;
149                 size = sg->length;
150         }
151
152         ctx->in_tcp_sendpages = false;
153
154         return 0;
155 }
156
157 static int tls_handle_open_record(struct sock *sk, int flags)
158 {
159         struct tls_context *ctx = tls_get_ctx(sk);
160
161         if (tls_is_pending_open_record(ctx))
162                 return ctx->push_pending_record(sk, flags);
163
164         return 0;
165 }
166
167 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
168                       unsigned char *record_type)
169 {
170         struct cmsghdr *cmsg;
171         int rc = -EINVAL;
172
173         for_each_cmsghdr(cmsg, msg) {
174                 if (!CMSG_OK(msg, cmsg))
175                         return -EINVAL;
176                 if (cmsg->cmsg_level != SOL_TLS)
177                         continue;
178
179                 switch (cmsg->cmsg_type) {
180                 case TLS_SET_RECORD_TYPE:
181                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
182                                 return -EINVAL;
183
184                         if (msg->msg_flags & MSG_MORE)
185                                 return -EINVAL;
186
187                         rc = tls_handle_open_record(sk, msg->msg_flags);
188                         if (rc)
189                                 return rc;
190
191                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
192                         rc = 0;
193                         break;
194                 default:
195                         return -EINVAL;
196                 }
197         }
198
199         return rc;
200 }
201
202 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
203                             int flags)
204 {
205         struct scatterlist *sg;
206         u16 offset;
207
208         sg = ctx->partially_sent_record;
209         offset = ctx->partially_sent_offset;
210
211         ctx->partially_sent_record = NULL;
212         return tls_push_sg(sk, ctx, sg, offset, flags);
213 }
214
215 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
216 {
217         struct scatterlist *sg;
218
219         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
220                 put_page(sg_page(sg));
221                 sk_mem_uncharge(sk, sg->length);
222         }
223         ctx->partially_sent_record = NULL;
224 }
225
226 static void tls_write_space(struct sock *sk)
227 {
228         struct tls_context *ctx = tls_get_ctx(sk);
229
230         /* If in_tcp_sendpages call lower protocol write space handler
231          * to ensure we wake up any waiting operations there. For example
232          * if do_tcp_sendpages where to call sk_wait_event.
233          */
234         if (ctx->in_tcp_sendpages) {
235                 ctx->sk_write_space(sk);
236                 return;
237         }
238
239 #ifdef CONFIG_TLS_DEVICE
240         if (ctx->tx_conf == TLS_HW)
241                 tls_device_write_space(sk, ctx);
242         else
243 #endif
244                 tls_sw_write_space(sk, ctx);
245
246         ctx->sk_write_space(sk);
247 }
248
249 /**
250  * tls_ctx_free() - free TLS ULP context
251  * @sk:  socket to with @ctx is attached
252  * @ctx: TLS context structure
253  *
254  * Free TLS context. If @sk is %NULL caller guarantees that the socket
255  * to which @ctx was attached has no outstanding references.
256  */
257 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
258 {
259         if (!ctx)
260                 return;
261
262         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
263         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
264         mutex_destroy(&ctx->tx_lock);
265
266         if (sk)
267                 kfree_rcu(ctx, rcu);
268         else
269                 kfree(ctx);
270 }
271
272 static void tls_sk_proto_cleanup(struct sock *sk,
273                                  struct tls_context *ctx, long timeo)
274 {
275         if (unlikely(sk->sk_write_pending) &&
276             !wait_on_pending_writer(sk, &timeo))
277                 tls_handle_open_record(sk, 0);
278
279         /* We need these for tls_sw_fallback handling of other packets */
280         if (ctx->tx_conf == TLS_SW) {
281                 kfree(ctx->tx.rec_seq);
282                 kfree(ctx->tx.iv);
283                 tls_sw_release_resources_tx(sk);
284                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
285         } else if (ctx->tx_conf == TLS_HW) {
286                 tls_device_free_resources_tx(sk);
287                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
288         }
289
290         if (ctx->rx_conf == TLS_SW) {
291                 tls_sw_release_resources_rx(sk);
292                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
293         } else if (ctx->rx_conf == TLS_HW) {
294                 tls_device_offload_cleanup_rx(sk);
295                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
296         }
297 }
298
299 static void tls_sk_proto_close(struct sock *sk, long timeout)
300 {
301         struct inet_connection_sock *icsk = inet_csk(sk);
302         struct tls_context *ctx = tls_get_ctx(sk);
303         long timeo = sock_sndtimeo(sk, 0);
304         bool free_ctx;
305
306         if (ctx->tx_conf == TLS_SW)
307                 tls_sw_cancel_work_tx(ctx);
308
309         lock_sock(sk);
310         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
311
312         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
313                 tls_sk_proto_cleanup(sk, ctx, timeo);
314
315         write_lock_bh(&sk->sk_callback_lock);
316         if (free_ctx)
317                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
318         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
319         if (sk->sk_write_space == tls_write_space)
320                 sk->sk_write_space = ctx->sk_write_space;
321         write_unlock_bh(&sk->sk_callback_lock);
322         release_sock(sk);
323         if (ctx->tx_conf == TLS_SW)
324                 tls_sw_free_ctx_tx(ctx);
325         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
326                 tls_sw_strparser_done(ctx);
327         if (ctx->rx_conf == TLS_SW)
328                 tls_sw_free_ctx_rx(ctx);
329         ctx->sk_proto->close(sk, timeout);
330
331         if (free_ctx)
332                 tls_ctx_free(sk, ctx);
333 }
334
335 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
336                                   int __user *optlen, int tx)
337 {
338         int rc = 0;
339         struct tls_context *ctx = tls_get_ctx(sk);
340         struct tls_crypto_info *crypto_info;
341         struct cipher_context *cctx;
342         int len;
343
344         if (get_user(len, optlen))
345                 return -EFAULT;
346
347         if (!optval || (len < sizeof(*crypto_info))) {
348                 rc = -EINVAL;
349                 goto out;
350         }
351
352         if (!ctx) {
353                 rc = -EBUSY;
354                 goto out;
355         }
356
357         /* get user crypto info */
358         if (tx) {
359                 crypto_info = &ctx->crypto_send.info;
360                 cctx = &ctx->tx;
361         } else {
362                 crypto_info = &ctx->crypto_recv.info;
363                 cctx = &ctx->rx;
364         }
365
366         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
367                 rc = -EBUSY;
368                 goto out;
369         }
370
371         if (len == sizeof(*crypto_info)) {
372                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
373                         rc = -EFAULT;
374                 goto out;
375         }
376
377         switch (crypto_info->cipher_type) {
378         case TLS_CIPHER_AES_GCM_128: {
379                 struct tls12_crypto_info_aes_gcm_128 *
380                   crypto_info_aes_gcm_128 =
381                   container_of(crypto_info,
382                                struct tls12_crypto_info_aes_gcm_128,
383                                info);
384
385                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
386                         rc = -EINVAL;
387                         goto out;
388                 }
389                 lock_sock(sk);
390                 memcpy(crypto_info_aes_gcm_128->iv,
391                        cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
392                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
393                 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
394                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
395                 release_sock(sk);
396                 if (copy_to_user(optval,
397                                  crypto_info_aes_gcm_128,
398                                  sizeof(*crypto_info_aes_gcm_128)))
399                         rc = -EFAULT;
400                 break;
401         }
402         case TLS_CIPHER_AES_GCM_256: {
403                 struct tls12_crypto_info_aes_gcm_256 *
404                   crypto_info_aes_gcm_256 =
405                   container_of(crypto_info,
406                                struct tls12_crypto_info_aes_gcm_256,
407                                info);
408
409                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
410                         rc = -EINVAL;
411                         goto out;
412                 }
413                 lock_sock(sk);
414                 memcpy(crypto_info_aes_gcm_256->iv,
415                        cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
416                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
417                 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
418                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
419                 release_sock(sk);
420                 if (copy_to_user(optval,
421                                  crypto_info_aes_gcm_256,
422                                  sizeof(*crypto_info_aes_gcm_256)))
423                         rc = -EFAULT;
424                 break;
425         }
426         case TLS_CIPHER_AES_CCM_128: {
427                 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
428                         container_of(crypto_info,
429                                 struct tls12_crypto_info_aes_ccm_128, info);
430
431                 if (len != sizeof(*aes_ccm_128)) {
432                         rc = -EINVAL;
433                         goto out;
434                 }
435                 lock_sock(sk);
436                 memcpy(aes_ccm_128->iv,
437                        cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
438                        TLS_CIPHER_AES_CCM_128_IV_SIZE);
439                 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
440                        TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
441                 release_sock(sk);
442                 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
443                         rc = -EFAULT;
444                 break;
445         }
446         case TLS_CIPHER_CHACHA20_POLY1305: {
447                 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
448                         container_of(crypto_info,
449                                 struct tls12_crypto_info_chacha20_poly1305,
450                                 info);
451
452                 if (len != sizeof(*chacha20_poly1305)) {
453                         rc = -EINVAL;
454                         goto out;
455                 }
456                 lock_sock(sk);
457                 memcpy(chacha20_poly1305->iv,
458                        cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
459                        TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
460                 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
461                        TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
462                 release_sock(sk);
463                 if (copy_to_user(optval, chacha20_poly1305,
464                                 sizeof(*chacha20_poly1305)))
465                         rc = -EFAULT;
466                 break;
467         }
468         case TLS_CIPHER_SM4_GCM: {
469                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
470                         container_of(crypto_info,
471                                 struct tls12_crypto_info_sm4_gcm, info);
472
473                 if (len != sizeof(*sm4_gcm_info)) {
474                         rc = -EINVAL;
475                         goto out;
476                 }
477                 lock_sock(sk);
478                 memcpy(sm4_gcm_info->iv,
479                        cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
480                        TLS_CIPHER_SM4_GCM_IV_SIZE);
481                 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
482                        TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
483                 release_sock(sk);
484                 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
485                         rc = -EFAULT;
486                 break;
487         }
488         case TLS_CIPHER_SM4_CCM: {
489                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
490                         container_of(crypto_info,
491                                 struct tls12_crypto_info_sm4_ccm, info);
492
493                 if (len != sizeof(*sm4_ccm_info)) {
494                         rc = -EINVAL;
495                         goto out;
496                 }
497                 lock_sock(sk);
498                 memcpy(sm4_ccm_info->iv,
499                        cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
500                        TLS_CIPHER_SM4_CCM_IV_SIZE);
501                 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
502                        TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
503                 release_sock(sk);
504                 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
505                         rc = -EFAULT;
506                 break;
507         }
508         default:
509                 rc = -EINVAL;
510         }
511
512 out:
513         return rc;
514 }
515
516 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
517                                    int __user *optlen)
518 {
519         struct tls_context *ctx = tls_get_ctx(sk);
520         unsigned int value;
521         int len;
522
523         if (get_user(len, optlen))
524                 return -EFAULT;
525
526         if (len != sizeof(value))
527                 return -EINVAL;
528
529         value = ctx->zerocopy_sendfile;
530         if (copy_to_user(optval, &value, sizeof(value)))
531                 return -EFAULT;
532
533         return 0;
534 }
535
536 static int do_tls_getsockopt(struct sock *sk, int optname,
537                              char __user *optval, int __user *optlen)
538 {
539         int rc = 0;
540
541         switch (optname) {
542         case TLS_TX:
543         case TLS_RX:
544                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
545                                             optname == TLS_TX);
546                 break;
547         case TLS_TX_ZEROCOPY_SENDFILE:
548                 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
549                 break;
550         default:
551                 rc = -ENOPROTOOPT;
552                 break;
553         }
554         return rc;
555 }
556
557 static int tls_getsockopt(struct sock *sk, int level, int optname,
558                           char __user *optval, int __user *optlen)
559 {
560         struct tls_context *ctx = tls_get_ctx(sk);
561
562         if (level != SOL_TLS)
563                 return ctx->sk_proto->getsockopt(sk, level,
564                                                  optname, optval, optlen);
565
566         return do_tls_getsockopt(sk, optname, optval, optlen);
567 }
568
569 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
570                                   unsigned int optlen, int tx)
571 {
572         struct tls_crypto_info *crypto_info;
573         struct tls_crypto_info *alt_crypto_info;
574         struct tls_context *ctx = tls_get_ctx(sk);
575         size_t optsize;
576         int rc = 0;
577         int conf;
578
579         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
580                 return -EINVAL;
581
582         if (tx) {
583                 crypto_info = &ctx->crypto_send.info;
584                 alt_crypto_info = &ctx->crypto_recv.info;
585         } else {
586                 crypto_info = &ctx->crypto_recv.info;
587                 alt_crypto_info = &ctx->crypto_send.info;
588         }
589
590         /* Currently we don't support set crypto info more than one time */
591         if (TLS_CRYPTO_INFO_READY(crypto_info))
592                 return -EBUSY;
593
594         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
595         if (rc) {
596                 rc = -EFAULT;
597                 goto err_crypto_info;
598         }
599
600         /* check version */
601         if (crypto_info->version != TLS_1_2_VERSION &&
602             crypto_info->version != TLS_1_3_VERSION) {
603                 rc = -EINVAL;
604                 goto err_crypto_info;
605         }
606
607         /* Ensure that TLS version and ciphers are same in both directions */
608         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
609                 if (alt_crypto_info->version != crypto_info->version ||
610                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
611                         rc = -EINVAL;
612                         goto err_crypto_info;
613                 }
614         }
615
616         switch (crypto_info->cipher_type) {
617         case TLS_CIPHER_AES_GCM_128:
618                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
619                 break;
620         case TLS_CIPHER_AES_GCM_256: {
621                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
622                 break;
623         }
624         case TLS_CIPHER_AES_CCM_128:
625                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
626                 break;
627         case TLS_CIPHER_CHACHA20_POLY1305:
628                 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
629                 break;
630         case TLS_CIPHER_SM4_GCM:
631                 optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
632                 break;
633         case TLS_CIPHER_SM4_CCM:
634                 optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
635                 break;
636         default:
637                 rc = -EINVAL;
638                 goto err_crypto_info;
639         }
640
641         if (optlen != optsize) {
642                 rc = -EINVAL;
643                 goto err_crypto_info;
644         }
645
646         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
647                                       sizeof(*crypto_info),
648                                       optlen - sizeof(*crypto_info));
649         if (rc) {
650                 rc = -EFAULT;
651                 goto err_crypto_info;
652         }
653
654         if (tx) {
655                 rc = tls_set_device_offload(sk, ctx);
656                 conf = TLS_HW;
657                 if (!rc) {
658                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
659                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
660                 } else {
661                         rc = tls_set_sw_offload(sk, ctx, 1);
662                         if (rc)
663                                 goto err_crypto_info;
664                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
665                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
666                         conf = TLS_SW;
667                 }
668         } else {
669                 rc = tls_set_device_offload_rx(sk, ctx);
670                 conf = TLS_HW;
671                 if (!rc) {
672                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
673                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
674                 } else {
675                         rc = tls_set_sw_offload(sk, ctx, 0);
676                         if (rc)
677                                 goto err_crypto_info;
678                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
679                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
680                         conf = TLS_SW;
681                 }
682                 tls_sw_strparser_arm(sk, ctx);
683         }
684
685         if (tx)
686                 ctx->tx_conf = conf;
687         else
688                 ctx->rx_conf = conf;
689         update_sk_prot(sk, ctx);
690         if (tx) {
691                 ctx->sk_write_space = sk->sk_write_space;
692                 sk->sk_write_space = tls_write_space;
693         }
694         return 0;
695
696 err_crypto_info:
697         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
698         return rc;
699 }
700
701 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
702                                    unsigned int optlen)
703 {
704         struct tls_context *ctx = tls_get_ctx(sk);
705         unsigned int value;
706
707         if (sockptr_is_null(optval) || optlen != sizeof(value))
708                 return -EINVAL;
709
710         if (copy_from_sockptr(&value, optval, sizeof(value)))
711                 return -EFAULT;
712
713         if (value > 1)
714                 return -EINVAL;
715
716         ctx->zerocopy_sendfile = value;
717
718         return 0;
719 }
720
721 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
722                              unsigned int optlen)
723 {
724         int rc = 0;
725
726         switch (optname) {
727         case TLS_TX:
728         case TLS_RX:
729                 lock_sock(sk);
730                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
731                                             optname == TLS_TX);
732                 release_sock(sk);
733                 break;
734         case TLS_TX_ZEROCOPY_SENDFILE:
735                 lock_sock(sk);
736                 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
737                 release_sock(sk);
738                 break;
739         default:
740                 rc = -ENOPROTOOPT;
741                 break;
742         }
743         return rc;
744 }
745
746 static int tls_setsockopt(struct sock *sk, int level, int optname,
747                           sockptr_t optval, unsigned int optlen)
748 {
749         struct tls_context *ctx = tls_get_ctx(sk);
750
751         if (level != SOL_TLS)
752                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
753                                                  optlen);
754
755         return do_tls_setsockopt(sk, optname, optval, optlen);
756 }
757
758 struct tls_context *tls_ctx_create(struct sock *sk)
759 {
760         struct inet_connection_sock *icsk = inet_csk(sk);
761         struct tls_context *ctx;
762
763         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
764         if (!ctx)
765                 return NULL;
766
767         mutex_init(&ctx->tx_lock);
768         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
769         ctx->sk_proto = READ_ONCE(sk->sk_prot);
770         ctx->sk = sk;
771         return ctx;
772 }
773
774 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
775                             const struct proto_ops *base)
776 {
777         ops[TLS_BASE][TLS_BASE] = *base;
778
779         ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
780         ops[TLS_SW  ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked;
781
782         ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
783         ops[TLS_BASE][TLS_SW  ].splice_read     = tls_sw_splice_read;
784
785         ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
786         ops[TLS_SW  ][TLS_SW  ].splice_read     = tls_sw_splice_read;
787
788 #ifdef CONFIG_TLS_DEVICE
789         ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
790         ops[TLS_HW  ][TLS_BASE].sendpage_locked = NULL;
791
792         ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
793         ops[TLS_HW  ][TLS_SW  ].sendpage_locked = NULL;
794
795         ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
796
797         ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
798
799         ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
800         ops[TLS_HW  ][TLS_HW  ].sendpage_locked = NULL;
801 #endif
802 #ifdef CONFIG_TLS_TOE
803         ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
804 #endif
805 }
806
807 static void tls_build_proto(struct sock *sk)
808 {
809         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
810         struct proto *prot = READ_ONCE(sk->sk_prot);
811
812         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
813         if (ip_ver == TLSV6 &&
814             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
815                 mutex_lock(&tcpv6_prot_mutex);
816                 if (likely(prot != saved_tcpv6_prot)) {
817                         build_protos(tls_prots[TLSV6], prot);
818                         build_proto_ops(tls_proto_ops[TLSV6],
819                                         sk->sk_socket->ops);
820                         smp_store_release(&saved_tcpv6_prot, prot);
821                 }
822                 mutex_unlock(&tcpv6_prot_mutex);
823         }
824
825         if (ip_ver == TLSV4 &&
826             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
827                 mutex_lock(&tcpv4_prot_mutex);
828                 if (likely(prot != saved_tcpv4_prot)) {
829                         build_protos(tls_prots[TLSV4], prot);
830                         build_proto_ops(tls_proto_ops[TLSV4],
831                                         sk->sk_socket->ops);
832                         smp_store_release(&saved_tcpv4_prot, prot);
833                 }
834                 mutex_unlock(&tcpv4_prot_mutex);
835         }
836 }
837
838 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
839                          const struct proto *base)
840 {
841         prot[TLS_BASE][TLS_BASE] = *base;
842         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
843         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
844         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
845
846         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
847         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
848         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
849
850         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
851         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
852         prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
853         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
854
855         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
856         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
857         prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
858         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
859
860 #ifdef CONFIG_TLS_DEVICE
861         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
862         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
863         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
864
865         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
866         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
867         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
868
869         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
870
871         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
872
873         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
874 #endif
875 #ifdef CONFIG_TLS_TOE
876         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
877         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
878         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
879 #endif
880 }
881
882 static int tls_init(struct sock *sk)
883 {
884         struct tls_context *ctx;
885         int rc = 0;
886
887         tls_build_proto(sk);
888
889 #ifdef CONFIG_TLS_TOE
890         if (tls_toe_bypass(sk))
891                 return 0;
892 #endif
893
894         /* The TLS ulp is currently supported only for TCP sockets
895          * in ESTABLISHED state.
896          * Supporting sockets in LISTEN state will require us
897          * to modify the accept implementation to clone rather then
898          * share the ulp context.
899          */
900         if (sk->sk_state != TCP_ESTABLISHED)
901                 return -ENOTCONN;
902
903         /* allocate tls context */
904         write_lock_bh(&sk->sk_callback_lock);
905         ctx = tls_ctx_create(sk);
906         if (!ctx) {
907                 rc = -ENOMEM;
908                 goto out;
909         }
910
911         ctx->tx_conf = TLS_BASE;
912         ctx->rx_conf = TLS_BASE;
913         update_sk_prot(sk, ctx);
914 out:
915         write_unlock_bh(&sk->sk_callback_lock);
916         return rc;
917 }
918
919 static void tls_update(struct sock *sk, struct proto *p,
920                        void (*write_space)(struct sock *sk))
921 {
922         struct tls_context *ctx;
923
924         ctx = tls_get_ctx(sk);
925         if (likely(ctx)) {
926                 ctx->sk_write_space = write_space;
927                 ctx->sk_proto = p;
928         } else {
929                 /* Pairs with lockless read in sk_clone_lock(). */
930                 WRITE_ONCE(sk->sk_prot, p);
931                 sk->sk_write_space = write_space;
932         }
933 }
934
935 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
936 {
937         u16 version, cipher_type;
938         struct tls_context *ctx;
939         struct nlattr *start;
940         int err;
941
942         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
943         if (!start)
944                 return -EMSGSIZE;
945
946         rcu_read_lock();
947         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
948         if (!ctx) {
949                 err = 0;
950                 goto nla_failure;
951         }
952         version = ctx->prot_info.version;
953         if (version) {
954                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
955                 if (err)
956                         goto nla_failure;
957         }
958         cipher_type = ctx->prot_info.cipher_type;
959         if (cipher_type) {
960                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
961                 if (err)
962                         goto nla_failure;
963         }
964         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
965         if (err)
966                 goto nla_failure;
967
968         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
969         if (err)
970                 goto nla_failure;
971
972         if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
973                 err = nla_put_flag(skb, TLS_INFO_ZC_SENDFILE);
974                 if (err)
975                         goto nla_failure;
976         }
977
978         rcu_read_unlock();
979         nla_nest_end(skb, start);
980         return 0;
981
982 nla_failure:
983         rcu_read_unlock();
984         nla_nest_cancel(skb, start);
985         return err;
986 }
987
988 static size_t tls_get_info_size(const struct sock *sk)
989 {
990         size_t size = 0;
991
992         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
993                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
994                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
995                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
996                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
997                 nla_total_size(0) +             /* TLS_INFO_ZC_SENDFILE */
998                 0;
999
1000         return size;
1001 }
1002
1003 static int __net_init tls_init_net(struct net *net)
1004 {
1005         int err;
1006
1007         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1008         if (!net->mib.tls_statistics)
1009                 return -ENOMEM;
1010
1011         err = tls_proc_init(net);
1012         if (err)
1013                 goto err_free_stats;
1014
1015         return 0;
1016 err_free_stats:
1017         free_percpu(net->mib.tls_statistics);
1018         return err;
1019 }
1020
1021 static void __net_exit tls_exit_net(struct net *net)
1022 {
1023         tls_proc_fini(net);
1024         free_percpu(net->mib.tls_statistics);
1025 }
1026
1027 static struct pernet_operations tls_proc_ops = {
1028         .init = tls_init_net,
1029         .exit = tls_exit_net,
1030 };
1031
1032 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1033         .name                   = "tls",
1034         .owner                  = THIS_MODULE,
1035         .init                   = tls_init,
1036         .update                 = tls_update,
1037         .get_info               = tls_get_info,
1038         .get_info_size          = tls_get_info_size,
1039 };
1040
1041 static int __init tls_register(void)
1042 {
1043         int err;
1044
1045         err = register_pernet_subsys(&tls_proc_ops);
1046         if (err)
1047                 return err;
1048
1049         tls_device_init();
1050         tcp_register_ulp(&tcp_tls_ulp_ops);
1051
1052         return 0;
1053 }
1054
1055 static void __exit tls_unregister(void)
1056 {
1057         tcp_unregister_ulp(&tcp_tls_ulp_ops);
1058         tls_device_cleanup();
1059         unregister_pernet_subsys(&tls_proc_ops);
1060 }
1061
1062 module_init(tls_register);
1063 module_exit(tls_unregister);