2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
34 #include <linux/module.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
46 #include <net/tls_toe.h>
48 MODULE_AUTHOR("Mellanox Technologies");
49 MODULE_DESCRIPTION("Transport Layer Security Support");
50 MODULE_LICENSE("Dual BSD/GPL");
51 MODULE_ALIAS_TCP_ULP("tls");
59 static const struct proto *saved_tcpv6_prot;
60 static DEFINE_MUTEX(tcpv6_prot_mutex);
61 static const struct proto *saved_tcpv4_prot;
62 static DEFINE_MUTEX(tcpv4_prot_mutex);
63 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
65 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 const struct proto *base);
68 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
72 WRITE_ONCE(sk->sk_prot,
73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74 WRITE_ONCE(sk->sk_socket->ops,
75 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
78 int wait_on_pending_writer(struct sock *sk, long *timeo)
81 DEFINE_WAIT_FUNC(wait, woken_wake_function);
83 add_wait_queue(sk_sleep(sk), &wait);
90 if (signal_pending(current)) {
91 rc = sock_intr_errno(*timeo);
95 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
98 remove_wait_queue(sk_sleep(sk), &wait);
102 int tls_push_sg(struct sock *sk,
103 struct tls_context *ctx,
104 struct scatterlist *sg,
108 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
112 int offset = first_offset;
114 size = sg->length - offset;
115 offset += sg->offset;
117 ctx->in_tcp_sendpages = true;
120 sendpage_flags = flags;
122 /* is sending application-limited? */
123 tcp_rate_check_app_limited(sk);
126 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
135 offset -= sg->offset;
136 ctx->partially_sent_offset = offset;
137 ctx->partially_sent_record = (void *)sg;
138 ctx->in_tcp_sendpages = false;
143 sk_mem_uncharge(sk, sg->length);
152 ctx->in_tcp_sendpages = false;
157 static int tls_handle_open_record(struct sock *sk, int flags)
159 struct tls_context *ctx = tls_get_ctx(sk);
161 if (tls_is_pending_open_record(ctx))
162 return ctx->push_pending_record(sk, flags);
167 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
168 unsigned char *record_type)
170 struct cmsghdr *cmsg;
173 for_each_cmsghdr(cmsg, msg) {
174 if (!CMSG_OK(msg, cmsg))
176 if (cmsg->cmsg_level != SOL_TLS)
179 switch (cmsg->cmsg_type) {
180 case TLS_SET_RECORD_TYPE:
181 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
184 if (msg->msg_flags & MSG_MORE)
187 rc = tls_handle_open_record(sk, msg->msg_flags);
191 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
202 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
205 struct scatterlist *sg;
208 sg = ctx->partially_sent_record;
209 offset = ctx->partially_sent_offset;
211 ctx->partially_sent_record = NULL;
212 return tls_push_sg(sk, ctx, sg, offset, flags);
215 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
217 struct scatterlist *sg;
219 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
220 put_page(sg_page(sg));
221 sk_mem_uncharge(sk, sg->length);
223 ctx->partially_sent_record = NULL;
226 static void tls_write_space(struct sock *sk)
228 struct tls_context *ctx = tls_get_ctx(sk);
230 /* If in_tcp_sendpages call lower protocol write space handler
231 * to ensure we wake up any waiting operations there. For example
232 * if do_tcp_sendpages where to call sk_wait_event.
234 if (ctx->in_tcp_sendpages) {
235 ctx->sk_write_space(sk);
239 #ifdef CONFIG_TLS_DEVICE
240 if (ctx->tx_conf == TLS_HW)
241 tls_device_write_space(sk, ctx);
244 tls_sw_write_space(sk, ctx);
246 ctx->sk_write_space(sk);
250 * tls_ctx_free() - free TLS ULP context
251 * @sk: socket to with @ctx is attached
252 * @ctx: TLS context structure
254 * Free TLS context. If @sk is %NULL caller guarantees that the socket
255 * to which @ctx was attached has no outstanding references.
257 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
262 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
263 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
264 mutex_destroy(&ctx->tx_lock);
272 static void tls_sk_proto_cleanup(struct sock *sk,
273 struct tls_context *ctx, long timeo)
275 if (unlikely(sk->sk_write_pending) &&
276 !wait_on_pending_writer(sk, &timeo))
277 tls_handle_open_record(sk, 0);
279 /* We need these for tls_sw_fallback handling of other packets */
280 if (ctx->tx_conf == TLS_SW) {
281 kfree(ctx->tx.rec_seq);
283 tls_sw_release_resources_tx(sk);
284 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
285 } else if (ctx->tx_conf == TLS_HW) {
286 tls_device_free_resources_tx(sk);
287 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
290 if (ctx->rx_conf == TLS_SW) {
291 tls_sw_release_resources_rx(sk);
292 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
293 } else if (ctx->rx_conf == TLS_HW) {
294 tls_device_offload_cleanup_rx(sk);
295 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
299 static void tls_sk_proto_close(struct sock *sk, long timeout)
301 struct inet_connection_sock *icsk = inet_csk(sk);
302 struct tls_context *ctx = tls_get_ctx(sk);
303 long timeo = sock_sndtimeo(sk, 0);
306 if (ctx->tx_conf == TLS_SW)
307 tls_sw_cancel_work_tx(ctx);
310 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
312 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
313 tls_sk_proto_cleanup(sk, ctx, timeo);
315 write_lock_bh(&sk->sk_callback_lock);
317 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
318 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
319 if (sk->sk_write_space == tls_write_space)
320 sk->sk_write_space = ctx->sk_write_space;
321 write_unlock_bh(&sk->sk_callback_lock);
323 if (ctx->tx_conf == TLS_SW)
324 tls_sw_free_ctx_tx(ctx);
325 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
326 tls_sw_strparser_done(ctx);
327 if (ctx->rx_conf == TLS_SW)
328 tls_sw_free_ctx_rx(ctx);
329 ctx->sk_proto->close(sk, timeout);
332 tls_ctx_free(sk, ctx);
335 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
336 int __user *optlen, int tx)
339 struct tls_context *ctx = tls_get_ctx(sk);
340 struct tls_crypto_info *crypto_info;
341 struct cipher_context *cctx;
344 if (get_user(len, optlen))
347 if (!optval || (len < sizeof(*crypto_info))) {
357 /* get user crypto info */
359 crypto_info = &ctx->crypto_send.info;
362 crypto_info = &ctx->crypto_recv.info;
366 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
371 if (len == sizeof(*crypto_info)) {
372 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
377 switch (crypto_info->cipher_type) {
378 case TLS_CIPHER_AES_GCM_128: {
379 struct tls12_crypto_info_aes_gcm_128 *
380 crypto_info_aes_gcm_128 =
381 container_of(crypto_info,
382 struct tls12_crypto_info_aes_gcm_128,
385 if (len != sizeof(*crypto_info_aes_gcm_128)) {
390 memcpy(crypto_info_aes_gcm_128->iv,
391 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
392 TLS_CIPHER_AES_GCM_128_IV_SIZE);
393 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
394 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
396 if (copy_to_user(optval,
397 crypto_info_aes_gcm_128,
398 sizeof(*crypto_info_aes_gcm_128)))
402 case TLS_CIPHER_AES_GCM_256: {
403 struct tls12_crypto_info_aes_gcm_256 *
404 crypto_info_aes_gcm_256 =
405 container_of(crypto_info,
406 struct tls12_crypto_info_aes_gcm_256,
409 if (len != sizeof(*crypto_info_aes_gcm_256)) {
414 memcpy(crypto_info_aes_gcm_256->iv,
415 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
416 TLS_CIPHER_AES_GCM_256_IV_SIZE);
417 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
418 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
420 if (copy_to_user(optval,
421 crypto_info_aes_gcm_256,
422 sizeof(*crypto_info_aes_gcm_256)))
434 static int do_tls_getsockopt(struct sock *sk, int optname,
435 char __user *optval, int __user *optlen)
442 rc = do_tls_getsockopt_conf(sk, optval, optlen,
452 static int tls_getsockopt(struct sock *sk, int level, int optname,
453 char __user *optval, int __user *optlen)
455 struct tls_context *ctx = tls_get_ctx(sk);
457 if (level != SOL_TLS)
458 return ctx->sk_proto->getsockopt(sk, level,
459 optname, optval, optlen);
461 return do_tls_getsockopt(sk, optname, optval, optlen);
464 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
465 unsigned int optlen, int tx)
467 struct tls_crypto_info *crypto_info;
468 struct tls_crypto_info *alt_crypto_info;
469 struct tls_context *ctx = tls_get_ctx(sk);
474 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
480 crypto_info = &ctx->crypto_send.info;
481 alt_crypto_info = &ctx->crypto_recv.info;
483 crypto_info = &ctx->crypto_recv.info;
484 alt_crypto_info = &ctx->crypto_send.info;
487 /* Currently we don't support set crypto info more than one time */
488 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
493 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
496 goto err_crypto_info;
500 if (crypto_info->version != TLS_1_2_VERSION &&
501 crypto_info->version != TLS_1_3_VERSION) {
503 goto err_crypto_info;
506 /* Ensure that TLS version and ciphers are same in both directions */
507 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
508 if (alt_crypto_info->version != crypto_info->version ||
509 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
511 goto err_crypto_info;
515 switch (crypto_info->cipher_type) {
516 case TLS_CIPHER_AES_GCM_128:
517 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
519 case TLS_CIPHER_AES_GCM_256: {
520 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
523 case TLS_CIPHER_AES_CCM_128:
524 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
526 case TLS_CIPHER_CHACHA20_POLY1305:
527 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
531 goto err_crypto_info;
534 if (optlen != optsize) {
536 goto err_crypto_info;
539 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
540 sizeof(*crypto_info),
541 optlen - sizeof(*crypto_info));
544 goto err_crypto_info;
548 rc = tls_set_device_offload(sk, ctx);
551 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
552 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
554 rc = tls_set_sw_offload(sk, ctx, 1);
556 goto err_crypto_info;
557 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
558 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
562 rc = tls_set_device_offload_rx(sk, ctx);
565 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
566 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
568 rc = tls_set_sw_offload(sk, ctx, 0);
570 goto err_crypto_info;
571 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
572 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
575 tls_sw_strparser_arm(sk, ctx);
582 update_sk_prot(sk, ctx);
584 ctx->sk_write_space = sk->sk_write_space;
585 sk->sk_write_space = tls_write_space;
590 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
595 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
604 rc = do_tls_setsockopt_conf(sk, optval, optlen,
615 static int tls_setsockopt(struct sock *sk, int level, int optname,
616 sockptr_t optval, unsigned int optlen)
618 struct tls_context *ctx = tls_get_ctx(sk);
620 if (level != SOL_TLS)
621 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
624 return do_tls_setsockopt(sk, optname, optval, optlen);
627 struct tls_context *tls_ctx_create(struct sock *sk)
629 struct inet_connection_sock *icsk = inet_csk(sk);
630 struct tls_context *ctx;
632 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
636 mutex_init(&ctx->tx_lock);
637 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
638 ctx->sk_proto = READ_ONCE(sk->sk_prot);
643 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
644 const struct proto_ops *base)
646 ops[TLS_BASE][TLS_BASE] = *base;
648 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
649 ops[TLS_SW ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked;
651 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE];
652 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read;
654 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE];
655 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read;
657 #ifdef CONFIG_TLS_DEVICE
658 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
659 ops[TLS_HW ][TLS_BASE].sendpage_locked = NULL;
661 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ];
662 ops[TLS_HW ][TLS_SW ].sendpage_locked = NULL;
664 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ];
666 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ];
668 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ];
669 ops[TLS_HW ][TLS_HW ].sendpage_locked = NULL;
671 #ifdef CONFIG_TLS_TOE
672 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
676 static void tls_build_proto(struct sock *sk)
678 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
679 struct proto *prot = READ_ONCE(sk->sk_prot);
681 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
682 if (ip_ver == TLSV6 &&
683 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
684 mutex_lock(&tcpv6_prot_mutex);
685 if (likely(prot != saved_tcpv6_prot)) {
686 build_protos(tls_prots[TLSV6], prot);
687 build_proto_ops(tls_proto_ops[TLSV6],
689 smp_store_release(&saved_tcpv6_prot, prot);
691 mutex_unlock(&tcpv6_prot_mutex);
694 if (ip_ver == TLSV4 &&
695 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
696 mutex_lock(&tcpv4_prot_mutex);
697 if (likely(prot != saved_tcpv4_prot)) {
698 build_protos(tls_prots[TLSV4], prot);
699 build_proto_ops(tls_proto_ops[TLSV4],
701 smp_store_release(&saved_tcpv4_prot, prot);
703 mutex_unlock(&tcpv4_prot_mutex);
707 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
708 const struct proto *base)
710 prot[TLS_BASE][TLS_BASE] = *base;
711 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
712 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
713 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
715 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
716 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
717 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
719 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
720 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
721 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
722 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
724 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
725 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
726 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
727 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
729 #ifdef CONFIG_TLS_DEVICE
730 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
731 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
732 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
734 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
735 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
736 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
738 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
740 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
742 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
744 #ifdef CONFIG_TLS_TOE
745 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
746 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
747 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
751 static int tls_init(struct sock *sk)
753 struct tls_context *ctx;
758 #ifdef CONFIG_TLS_TOE
759 if (tls_toe_bypass(sk))
763 /* The TLS ulp is currently supported only for TCP sockets
764 * in ESTABLISHED state.
765 * Supporting sockets in LISTEN state will require us
766 * to modify the accept implementation to clone rather then
767 * share the ulp context.
769 if (sk->sk_state != TCP_ESTABLISHED)
772 /* allocate tls context */
773 write_lock_bh(&sk->sk_callback_lock);
774 ctx = tls_ctx_create(sk);
780 ctx->tx_conf = TLS_BASE;
781 ctx->rx_conf = TLS_BASE;
782 update_sk_prot(sk, ctx);
784 write_unlock_bh(&sk->sk_callback_lock);
788 static void tls_update(struct sock *sk, struct proto *p,
789 void (*write_space)(struct sock *sk))
791 struct tls_context *ctx;
793 WARN_ON_ONCE(sk->sk_prot == p);
795 ctx = tls_get_ctx(sk);
797 ctx->sk_write_space = write_space;
800 /* Pairs with lockless read in sk_clone_lock(). */
801 WRITE_ONCE(sk->sk_prot, p);
802 sk->sk_write_space = write_space;
806 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
808 u16 version, cipher_type;
809 struct tls_context *ctx;
810 struct nlattr *start;
813 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
818 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
823 version = ctx->prot_info.version;
825 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
829 cipher_type = ctx->prot_info.cipher_type;
831 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
835 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
839 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
844 nla_nest_end(skb, start);
849 nla_nest_cancel(skb, start);
853 static size_t tls_get_info_size(const struct sock *sk)
857 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
858 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
859 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
860 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
861 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
867 static int __net_init tls_init_net(struct net *net)
871 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
872 if (!net->mib.tls_statistics)
875 err = tls_proc_init(net);
881 free_percpu(net->mib.tls_statistics);
885 static void __net_exit tls_exit_net(struct net *net)
888 free_percpu(net->mib.tls_statistics);
891 static struct pernet_operations tls_proc_ops = {
892 .init = tls_init_net,
893 .exit = tls_exit_net,
896 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
898 .owner = THIS_MODULE,
900 .update = tls_update,
901 .get_info = tls_get_info,
902 .get_info_size = tls_get_info_size,
905 static int __init tls_register(void)
909 err = register_pernet_subsys(&tls_proc_ops);
913 err = tls_device_init();
915 unregister_pernet_subsys(&tls_proc_ops);
919 tcp_register_ulp(&tcp_tls_ulp_ops);
924 static void __exit tls_unregister(void)
926 tcp_unregister_ulp(&tcp_tls_ulp_ops);
927 tls_device_cleanup();
928 unregister_pernet_subsys(&tls_proc_ops);
931 module_init(tls_register);
932 module_exit(tls_unregister);