tls/sw: Support MSG_SPLICE_PAGES
[platform/kernel/linux-rpi.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 #include "tls.h"
49
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54
55 enum {
56         TLSV4,
57         TLSV6,
58         TLS_NUM_PROTS,
59 };
60
61 #define CIPHER_SIZE_DESC(cipher) [cipher] = { \
62         .iv = cipher ## _IV_SIZE, \
63         .key = cipher ## _KEY_SIZE, \
64         .salt = cipher ## _SALT_SIZE, \
65         .tag = cipher ## _TAG_SIZE, \
66         .rec_seq = cipher ## _REC_SEQ_SIZE, \
67 }
68
69 const struct tls_cipher_size_desc tls_cipher_size_desc[] = {
70         CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128),
71         CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256),
72         CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128),
73         CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305),
74         CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM),
75         CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM),
76 };
77
78 static const struct proto *saved_tcpv6_prot;
79 static DEFINE_MUTEX(tcpv6_prot_mutex);
80 static const struct proto *saved_tcpv4_prot;
81 static DEFINE_MUTEX(tcpv4_prot_mutex);
82 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
83 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
84 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
85                          const struct proto *base);
86
87 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
88 {
89         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
90
91         WRITE_ONCE(sk->sk_prot,
92                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
93         WRITE_ONCE(sk->sk_socket->ops,
94                    &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
95 }
96
97 int wait_on_pending_writer(struct sock *sk, long *timeo)
98 {
99         int rc = 0;
100         DEFINE_WAIT_FUNC(wait, woken_wake_function);
101
102         add_wait_queue(sk_sleep(sk), &wait);
103         while (1) {
104                 if (!*timeo) {
105                         rc = -EAGAIN;
106                         break;
107                 }
108
109                 if (signal_pending(current)) {
110                         rc = sock_intr_errno(*timeo);
111                         break;
112                 }
113
114                 if (sk_wait_event(sk, timeo,
115                                   !READ_ONCE(sk->sk_write_pending), &wait))
116                         break;
117         }
118         remove_wait_queue(sk_sleep(sk), &wait);
119         return rc;
120 }
121
122 int tls_push_sg(struct sock *sk,
123                 struct tls_context *ctx,
124                 struct scatterlist *sg,
125                 u16 first_offset,
126                 int flags)
127 {
128         struct bio_vec bvec;
129         struct msghdr msg = {
130                 .msg_flags = MSG_SENDPAGE_NOTLAST | MSG_SPLICE_PAGES | flags,
131         };
132         int ret = 0;
133         struct page *p;
134         size_t size;
135         int offset = first_offset;
136
137         size = sg->length - offset;
138         offset += sg->offset;
139
140         ctx->splicing_pages = true;
141         while (1) {
142                 if (sg_is_last(sg))
143                         msg.msg_flags = flags;
144
145                 /* is sending application-limited? */
146                 tcp_rate_check_app_limited(sk);
147                 p = sg_page(sg);
148 retry:
149                 bvec_set_page(&bvec, p, size, offset);
150                 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
151
152                 ret = tcp_sendmsg_locked(sk, &msg, size);
153
154                 if (ret != size) {
155                         if (ret > 0) {
156                                 offset += ret;
157                                 size -= ret;
158                                 goto retry;
159                         }
160
161                         offset -= sg->offset;
162                         ctx->partially_sent_offset = offset;
163                         ctx->partially_sent_record = (void *)sg;
164                         ctx->splicing_pages = false;
165                         return ret;
166                 }
167
168                 put_page(p);
169                 sk_mem_uncharge(sk, sg->length);
170                 sg = sg_next(sg);
171                 if (!sg)
172                         break;
173
174                 offset = sg->offset;
175                 size = sg->length;
176         }
177
178         ctx->splicing_pages = false;
179
180         return 0;
181 }
182
183 static int tls_handle_open_record(struct sock *sk, int flags)
184 {
185         struct tls_context *ctx = tls_get_ctx(sk);
186
187         if (tls_is_pending_open_record(ctx))
188                 return ctx->push_pending_record(sk, flags);
189
190         return 0;
191 }
192
193 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
194                      unsigned char *record_type)
195 {
196         struct cmsghdr *cmsg;
197         int rc = -EINVAL;
198
199         for_each_cmsghdr(cmsg, msg) {
200                 if (!CMSG_OK(msg, cmsg))
201                         return -EINVAL;
202                 if (cmsg->cmsg_level != SOL_TLS)
203                         continue;
204
205                 switch (cmsg->cmsg_type) {
206                 case TLS_SET_RECORD_TYPE:
207                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
208                                 return -EINVAL;
209
210                         if (msg->msg_flags & MSG_MORE)
211                                 return -EINVAL;
212
213                         rc = tls_handle_open_record(sk, msg->msg_flags);
214                         if (rc)
215                                 return rc;
216
217                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
218                         rc = 0;
219                         break;
220                 default:
221                         return -EINVAL;
222                 }
223         }
224
225         return rc;
226 }
227
228 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
229                             int flags)
230 {
231         struct scatterlist *sg;
232         u16 offset;
233
234         sg = ctx->partially_sent_record;
235         offset = ctx->partially_sent_offset;
236
237         ctx->partially_sent_record = NULL;
238         return tls_push_sg(sk, ctx, sg, offset, flags);
239 }
240
241 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
242 {
243         struct scatterlist *sg;
244
245         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
246                 put_page(sg_page(sg));
247                 sk_mem_uncharge(sk, sg->length);
248         }
249         ctx->partially_sent_record = NULL;
250 }
251
252 static void tls_write_space(struct sock *sk)
253 {
254         struct tls_context *ctx = tls_get_ctx(sk);
255
256         /* If splicing_pages call lower protocol write space handler
257          * to ensure we wake up any waiting operations there. For example
258          * if splicing pages where to call sk_wait_event.
259          */
260         if (ctx->splicing_pages) {
261                 ctx->sk_write_space(sk);
262                 return;
263         }
264
265 #ifdef CONFIG_TLS_DEVICE
266         if (ctx->tx_conf == TLS_HW)
267                 tls_device_write_space(sk, ctx);
268         else
269 #endif
270                 tls_sw_write_space(sk, ctx);
271
272         ctx->sk_write_space(sk);
273 }
274
275 /**
276  * tls_ctx_free() - free TLS ULP context
277  * @sk:  socket to with @ctx is attached
278  * @ctx: TLS context structure
279  *
280  * Free TLS context. If @sk is %NULL caller guarantees that the socket
281  * to which @ctx was attached has no outstanding references.
282  */
283 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
284 {
285         if (!ctx)
286                 return;
287
288         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
289         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
290         mutex_destroy(&ctx->tx_lock);
291
292         if (sk)
293                 kfree_rcu(ctx, rcu);
294         else
295                 kfree(ctx);
296 }
297
298 static void tls_sk_proto_cleanup(struct sock *sk,
299                                  struct tls_context *ctx, long timeo)
300 {
301         if (unlikely(sk->sk_write_pending) &&
302             !wait_on_pending_writer(sk, &timeo))
303                 tls_handle_open_record(sk, 0);
304
305         /* We need these for tls_sw_fallback handling of other packets */
306         if (ctx->tx_conf == TLS_SW) {
307                 kfree(ctx->tx.rec_seq);
308                 kfree(ctx->tx.iv);
309                 tls_sw_release_resources_tx(sk);
310                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
311         } else if (ctx->tx_conf == TLS_HW) {
312                 tls_device_free_resources_tx(sk);
313                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
314         }
315
316         if (ctx->rx_conf == TLS_SW) {
317                 tls_sw_release_resources_rx(sk);
318                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
319         } else if (ctx->rx_conf == TLS_HW) {
320                 tls_device_offload_cleanup_rx(sk);
321                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
322         }
323 }
324
325 static void tls_sk_proto_close(struct sock *sk, long timeout)
326 {
327         struct inet_connection_sock *icsk = inet_csk(sk);
328         struct tls_context *ctx = tls_get_ctx(sk);
329         long timeo = sock_sndtimeo(sk, 0);
330         bool free_ctx;
331
332         if (ctx->tx_conf == TLS_SW)
333                 tls_sw_cancel_work_tx(ctx);
334
335         lock_sock(sk);
336         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
337
338         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
339                 tls_sk_proto_cleanup(sk, ctx, timeo);
340
341         write_lock_bh(&sk->sk_callback_lock);
342         if (free_ctx)
343                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
344         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
345         if (sk->sk_write_space == tls_write_space)
346                 sk->sk_write_space = ctx->sk_write_space;
347         write_unlock_bh(&sk->sk_callback_lock);
348         release_sock(sk);
349         if (ctx->tx_conf == TLS_SW)
350                 tls_sw_free_ctx_tx(ctx);
351         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
352                 tls_sw_strparser_done(ctx);
353         if (ctx->rx_conf == TLS_SW)
354                 tls_sw_free_ctx_rx(ctx);
355         ctx->sk_proto->close(sk, timeout);
356
357         if (free_ctx)
358                 tls_ctx_free(sk, ctx);
359 }
360
361 static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
362                             struct poll_table_struct *wait)
363 {
364         struct tls_sw_context_rx *ctx;
365         struct tls_context *tls_ctx;
366         struct sock *sk = sock->sk;
367         struct sk_psock *psock;
368         __poll_t mask = 0;
369         u8 shutdown;
370         int state;
371
372         mask = tcp_poll(file, sock, wait);
373
374         state = inet_sk_state_load(sk);
375         shutdown = READ_ONCE(sk->sk_shutdown);
376         if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
377                 return mask;
378
379         tls_ctx = tls_get_ctx(sk);
380         ctx = tls_sw_ctx_rx(tls_ctx);
381         psock = sk_psock_get(sk);
382
383         if (skb_queue_empty_lockless(&ctx->rx_list) &&
384             !tls_strp_msg_ready(ctx) &&
385             sk_psock_queue_empty(psock))
386                 mask &= ~(EPOLLIN | EPOLLRDNORM);
387
388         if (psock)
389                 sk_psock_put(sk, psock);
390
391         return mask;
392 }
393
394 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
395                                   int __user *optlen, int tx)
396 {
397         int rc = 0;
398         struct tls_context *ctx = tls_get_ctx(sk);
399         struct tls_crypto_info *crypto_info;
400         struct cipher_context *cctx;
401         int len;
402
403         if (get_user(len, optlen))
404                 return -EFAULT;
405
406         if (!optval || (len < sizeof(*crypto_info))) {
407                 rc = -EINVAL;
408                 goto out;
409         }
410
411         if (!ctx) {
412                 rc = -EBUSY;
413                 goto out;
414         }
415
416         /* get user crypto info */
417         if (tx) {
418                 crypto_info = &ctx->crypto_send.info;
419                 cctx = &ctx->tx;
420         } else {
421                 crypto_info = &ctx->crypto_recv.info;
422                 cctx = &ctx->rx;
423         }
424
425         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
426                 rc = -EBUSY;
427                 goto out;
428         }
429
430         if (len == sizeof(*crypto_info)) {
431                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
432                         rc = -EFAULT;
433                 goto out;
434         }
435
436         switch (crypto_info->cipher_type) {
437         case TLS_CIPHER_AES_GCM_128: {
438                 struct tls12_crypto_info_aes_gcm_128 *
439                   crypto_info_aes_gcm_128 =
440                   container_of(crypto_info,
441                                struct tls12_crypto_info_aes_gcm_128,
442                                info);
443
444                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
445                         rc = -EINVAL;
446                         goto out;
447                 }
448                 memcpy(crypto_info_aes_gcm_128->iv,
449                        cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
450                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
451                 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
452                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
453                 if (copy_to_user(optval,
454                                  crypto_info_aes_gcm_128,
455                                  sizeof(*crypto_info_aes_gcm_128)))
456                         rc = -EFAULT;
457                 break;
458         }
459         case TLS_CIPHER_AES_GCM_256: {
460                 struct tls12_crypto_info_aes_gcm_256 *
461                   crypto_info_aes_gcm_256 =
462                   container_of(crypto_info,
463                                struct tls12_crypto_info_aes_gcm_256,
464                                info);
465
466                 if (len != sizeof(*crypto_info_aes_gcm_256)) {
467                         rc = -EINVAL;
468                         goto out;
469                 }
470                 memcpy(crypto_info_aes_gcm_256->iv,
471                        cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
472                        TLS_CIPHER_AES_GCM_256_IV_SIZE);
473                 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
474                        TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
475                 if (copy_to_user(optval,
476                                  crypto_info_aes_gcm_256,
477                                  sizeof(*crypto_info_aes_gcm_256)))
478                         rc = -EFAULT;
479                 break;
480         }
481         case TLS_CIPHER_AES_CCM_128: {
482                 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
483                         container_of(crypto_info,
484                                 struct tls12_crypto_info_aes_ccm_128, info);
485
486                 if (len != sizeof(*aes_ccm_128)) {
487                         rc = -EINVAL;
488                         goto out;
489                 }
490                 memcpy(aes_ccm_128->iv,
491                        cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
492                        TLS_CIPHER_AES_CCM_128_IV_SIZE);
493                 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
494                        TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
495                 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
496                         rc = -EFAULT;
497                 break;
498         }
499         case TLS_CIPHER_CHACHA20_POLY1305: {
500                 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
501                         container_of(crypto_info,
502                                 struct tls12_crypto_info_chacha20_poly1305,
503                                 info);
504
505                 if (len != sizeof(*chacha20_poly1305)) {
506                         rc = -EINVAL;
507                         goto out;
508                 }
509                 memcpy(chacha20_poly1305->iv,
510                        cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
511                        TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
512                 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
513                        TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
514                 if (copy_to_user(optval, chacha20_poly1305,
515                                 sizeof(*chacha20_poly1305)))
516                         rc = -EFAULT;
517                 break;
518         }
519         case TLS_CIPHER_SM4_GCM: {
520                 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
521                         container_of(crypto_info,
522                                 struct tls12_crypto_info_sm4_gcm, info);
523
524                 if (len != sizeof(*sm4_gcm_info)) {
525                         rc = -EINVAL;
526                         goto out;
527                 }
528                 memcpy(sm4_gcm_info->iv,
529                        cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
530                        TLS_CIPHER_SM4_GCM_IV_SIZE);
531                 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
532                        TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
533                 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
534                         rc = -EFAULT;
535                 break;
536         }
537         case TLS_CIPHER_SM4_CCM: {
538                 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
539                         container_of(crypto_info,
540                                 struct tls12_crypto_info_sm4_ccm, info);
541
542                 if (len != sizeof(*sm4_ccm_info)) {
543                         rc = -EINVAL;
544                         goto out;
545                 }
546                 memcpy(sm4_ccm_info->iv,
547                        cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
548                        TLS_CIPHER_SM4_CCM_IV_SIZE);
549                 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
550                        TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
551                 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
552                         rc = -EFAULT;
553                 break;
554         }
555         case TLS_CIPHER_ARIA_GCM_128: {
556                 struct tls12_crypto_info_aria_gcm_128 *
557                   crypto_info_aria_gcm_128 =
558                   container_of(crypto_info,
559                                struct tls12_crypto_info_aria_gcm_128,
560                                info);
561
562                 if (len != sizeof(*crypto_info_aria_gcm_128)) {
563                         rc = -EINVAL;
564                         goto out;
565                 }
566                 memcpy(crypto_info_aria_gcm_128->iv,
567                        cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE,
568                        TLS_CIPHER_ARIA_GCM_128_IV_SIZE);
569                 memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq,
570                        TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE);
571                 if (copy_to_user(optval,
572                                  crypto_info_aria_gcm_128,
573                                  sizeof(*crypto_info_aria_gcm_128)))
574                         rc = -EFAULT;
575                 break;
576         }
577         case TLS_CIPHER_ARIA_GCM_256: {
578                 struct tls12_crypto_info_aria_gcm_256 *
579                   crypto_info_aria_gcm_256 =
580                   container_of(crypto_info,
581                                struct tls12_crypto_info_aria_gcm_256,
582                                info);
583
584                 if (len != sizeof(*crypto_info_aria_gcm_256)) {
585                         rc = -EINVAL;
586                         goto out;
587                 }
588                 memcpy(crypto_info_aria_gcm_256->iv,
589                        cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE,
590                        TLS_CIPHER_ARIA_GCM_256_IV_SIZE);
591                 memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq,
592                        TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE);
593                 if (copy_to_user(optval,
594                                  crypto_info_aria_gcm_256,
595                                  sizeof(*crypto_info_aria_gcm_256)))
596                         rc = -EFAULT;
597                 break;
598         }
599         default:
600                 rc = -EINVAL;
601         }
602
603 out:
604         return rc;
605 }
606
607 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
608                                    int __user *optlen)
609 {
610         struct tls_context *ctx = tls_get_ctx(sk);
611         unsigned int value;
612         int len;
613
614         if (get_user(len, optlen))
615                 return -EFAULT;
616
617         if (len != sizeof(value))
618                 return -EINVAL;
619
620         value = ctx->zerocopy_sendfile;
621         if (copy_to_user(optval, &value, sizeof(value)))
622                 return -EFAULT;
623
624         return 0;
625 }
626
627 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
628                                     int __user *optlen)
629 {
630         struct tls_context *ctx = tls_get_ctx(sk);
631         int value, len;
632
633         if (ctx->prot_info.version != TLS_1_3_VERSION)
634                 return -EINVAL;
635
636         if (get_user(len, optlen))
637                 return -EFAULT;
638         if (len < sizeof(value))
639                 return -EINVAL;
640
641         value = -EINVAL;
642         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
643                 value = ctx->rx_no_pad;
644         if (value < 0)
645                 return value;
646
647         if (put_user(sizeof(value), optlen))
648                 return -EFAULT;
649         if (copy_to_user(optval, &value, sizeof(value)))
650                 return -EFAULT;
651
652         return 0;
653 }
654
655 static int do_tls_getsockopt(struct sock *sk, int optname,
656                              char __user *optval, int __user *optlen)
657 {
658         int rc = 0;
659
660         lock_sock(sk);
661
662         switch (optname) {
663         case TLS_TX:
664         case TLS_RX:
665                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
666                                             optname == TLS_TX);
667                 break;
668         case TLS_TX_ZEROCOPY_RO:
669                 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
670                 break;
671         case TLS_RX_EXPECT_NO_PAD:
672                 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
673                 break;
674         default:
675                 rc = -ENOPROTOOPT;
676                 break;
677         }
678
679         release_sock(sk);
680
681         return rc;
682 }
683
684 static int tls_getsockopt(struct sock *sk, int level, int optname,
685                           char __user *optval, int __user *optlen)
686 {
687         struct tls_context *ctx = tls_get_ctx(sk);
688
689         if (level != SOL_TLS)
690                 return ctx->sk_proto->getsockopt(sk, level,
691                                                  optname, optval, optlen);
692
693         return do_tls_getsockopt(sk, optname, optval, optlen);
694 }
695
696 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
697                                   unsigned int optlen, int tx)
698 {
699         struct tls_crypto_info *crypto_info;
700         struct tls_crypto_info *alt_crypto_info;
701         struct tls_context *ctx = tls_get_ctx(sk);
702         size_t optsize;
703         int rc = 0;
704         int conf;
705
706         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
707                 return -EINVAL;
708
709         if (tx) {
710                 crypto_info = &ctx->crypto_send.info;
711                 alt_crypto_info = &ctx->crypto_recv.info;
712         } else {
713                 crypto_info = &ctx->crypto_recv.info;
714                 alt_crypto_info = &ctx->crypto_send.info;
715         }
716
717         /* Currently we don't support set crypto info more than one time */
718         if (TLS_CRYPTO_INFO_READY(crypto_info))
719                 return -EBUSY;
720
721         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
722         if (rc) {
723                 rc = -EFAULT;
724                 goto err_crypto_info;
725         }
726
727         /* check version */
728         if (crypto_info->version != TLS_1_2_VERSION &&
729             crypto_info->version != TLS_1_3_VERSION) {
730                 rc = -EINVAL;
731                 goto err_crypto_info;
732         }
733
734         /* Ensure that TLS version and ciphers are same in both directions */
735         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
736                 if (alt_crypto_info->version != crypto_info->version ||
737                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
738                         rc = -EINVAL;
739                         goto err_crypto_info;
740                 }
741         }
742
743         switch (crypto_info->cipher_type) {
744         case TLS_CIPHER_AES_GCM_128:
745                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
746                 break;
747         case TLS_CIPHER_AES_GCM_256: {
748                 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
749                 break;
750         }
751         case TLS_CIPHER_AES_CCM_128:
752                 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
753                 break;
754         case TLS_CIPHER_CHACHA20_POLY1305:
755                 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
756                 break;
757         case TLS_CIPHER_SM4_GCM:
758                 optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
759                 break;
760         case TLS_CIPHER_SM4_CCM:
761                 optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
762                 break;
763         case TLS_CIPHER_ARIA_GCM_128:
764                 if (crypto_info->version != TLS_1_2_VERSION) {
765                         rc = -EINVAL;
766                         goto err_crypto_info;
767                 }
768                 optsize = sizeof(struct tls12_crypto_info_aria_gcm_128);
769                 break;
770         case TLS_CIPHER_ARIA_GCM_256:
771                 if (crypto_info->version != TLS_1_2_VERSION) {
772                         rc = -EINVAL;
773                         goto err_crypto_info;
774                 }
775                 optsize = sizeof(struct tls12_crypto_info_aria_gcm_256);
776                 break;
777         default:
778                 rc = -EINVAL;
779                 goto err_crypto_info;
780         }
781
782         if (optlen != optsize) {
783                 rc = -EINVAL;
784                 goto err_crypto_info;
785         }
786
787         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
788                                       sizeof(*crypto_info),
789                                       optlen - sizeof(*crypto_info));
790         if (rc) {
791                 rc = -EFAULT;
792                 goto err_crypto_info;
793         }
794
795         if (tx) {
796                 rc = tls_set_device_offload(sk, ctx);
797                 conf = TLS_HW;
798                 if (!rc) {
799                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
800                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
801                 } else {
802                         rc = tls_set_sw_offload(sk, ctx, 1);
803                         if (rc)
804                                 goto err_crypto_info;
805                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
806                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
807                         conf = TLS_SW;
808                 }
809         } else {
810                 rc = tls_set_device_offload_rx(sk, ctx);
811                 conf = TLS_HW;
812                 if (!rc) {
813                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
814                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
815                 } else {
816                         rc = tls_set_sw_offload(sk, ctx, 0);
817                         if (rc)
818                                 goto err_crypto_info;
819                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
820                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
821                         conf = TLS_SW;
822                 }
823                 tls_sw_strparser_arm(sk, ctx);
824         }
825
826         if (tx)
827                 ctx->tx_conf = conf;
828         else
829                 ctx->rx_conf = conf;
830         update_sk_prot(sk, ctx);
831         if (tx) {
832                 ctx->sk_write_space = sk->sk_write_space;
833                 sk->sk_write_space = tls_write_space;
834         } else {
835                 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
836
837                 tls_strp_check_rcv(&rx_ctx->strp);
838         }
839         return 0;
840
841 err_crypto_info:
842         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
843         return rc;
844 }
845
846 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
847                                    unsigned int optlen)
848 {
849         struct tls_context *ctx = tls_get_ctx(sk);
850         unsigned int value;
851
852         if (sockptr_is_null(optval) || optlen != sizeof(value))
853                 return -EINVAL;
854
855         if (copy_from_sockptr(&value, optval, sizeof(value)))
856                 return -EFAULT;
857
858         if (value > 1)
859                 return -EINVAL;
860
861         ctx->zerocopy_sendfile = value;
862
863         return 0;
864 }
865
866 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
867                                     unsigned int optlen)
868 {
869         struct tls_context *ctx = tls_get_ctx(sk);
870         u32 val;
871         int rc;
872
873         if (ctx->prot_info.version != TLS_1_3_VERSION ||
874             sockptr_is_null(optval) || optlen < sizeof(val))
875                 return -EINVAL;
876
877         rc = copy_from_sockptr(&val, optval, sizeof(val));
878         if (rc)
879                 return -EFAULT;
880         if (val > 1)
881                 return -EINVAL;
882         rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
883         if (rc < 1)
884                 return rc == 0 ? -EINVAL : rc;
885
886         lock_sock(sk);
887         rc = -EINVAL;
888         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
889                 ctx->rx_no_pad = val;
890                 tls_update_rx_zc_capable(ctx);
891                 rc = 0;
892         }
893         release_sock(sk);
894
895         return rc;
896 }
897
898 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
899                              unsigned int optlen)
900 {
901         int rc = 0;
902
903         switch (optname) {
904         case TLS_TX:
905         case TLS_RX:
906                 lock_sock(sk);
907                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
908                                             optname == TLS_TX);
909                 release_sock(sk);
910                 break;
911         case TLS_TX_ZEROCOPY_RO:
912                 lock_sock(sk);
913                 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
914                 release_sock(sk);
915                 break;
916         case TLS_RX_EXPECT_NO_PAD:
917                 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
918                 break;
919         default:
920                 rc = -ENOPROTOOPT;
921                 break;
922         }
923         return rc;
924 }
925
926 static int tls_setsockopt(struct sock *sk, int level, int optname,
927                           sockptr_t optval, unsigned int optlen)
928 {
929         struct tls_context *ctx = tls_get_ctx(sk);
930
931         if (level != SOL_TLS)
932                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
933                                                  optlen);
934
935         return do_tls_setsockopt(sk, optname, optval, optlen);
936 }
937
938 struct tls_context *tls_ctx_create(struct sock *sk)
939 {
940         struct inet_connection_sock *icsk = inet_csk(sk);
941         struct tls_context *ctx;
942
943         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
944         if (!ctx)
945                 return NULL;
946
947         mutex_init(&ctx->tx_lock);
948         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
949         ctx->sk_proto = READ_ONCE(sk->sk_prot);
950         ctx->sk = sk;
951         return ctx;
952 }
953
954 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
955                             const struct proto_ops *base)
956 {
957         ops[TLS_BASE][TLS_BASE] = *base;
958
959         ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
960         ops[TLS_SW  ][TLS_BASE].splice_eof      = tls_sw_splice_eof;
961         ops[TLS_SW  ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked;
962
963         ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
964         ops[TLS_BASE][TLS_SW  ].splice_read     = tls_sw_splice_read;
965         ops[TLS_BASE][TLS_SW  ].poll            = tls_sk_poll;
966
967         ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
968         ops[TLS_SW  ][TLS_SW  ].splice_read     = tls_sw_splice_read;
969         ops[TLS_SW  ][TLS_SW  ].poll            = tls_sk_poll;
970
971 #ifdef CONFIG_TLS_DEVICE
972         ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
973         ops[TLS_HW  ][TLS_BASE].sendpage_locked = NULL;
974
975         ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
976         ops[TLS_HW  ][TLS_SW  ].sendpage_locked = NULL;
977
978         ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
979
980         ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
981
982         ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
983         ops[TLS_HW  ][TLS_HW  ].sendpage_locked = NULL;
984 #endif
985 #ifdef CONFIG_TLS_TOE
986         ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
987 #endif
988 }
989
990 static void tls_build_proto(struct sock *sk)
991 {
992         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
993         struct proto *prot = READ_ONCE(sk->sk_prot);
994
995         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
996         if (ip_ver == TLSV6 &&
997             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
998                 mutex_lock(&tcpv6_prot_mutex);
999                 if (likely(prot != saved_tcpv6_prot)) {
1000                         build_protos(tls_prots[TLSV6], prot);
1001                         build_proto_ops(tls_proto_ops[TLSV6],
1002                                         sk->sk_socket->ops);
1003                         smp_store_release(&saved_tcpv6_prot, prot);
1004                 }
1005                 mutex_unlock(&tcpv6_prot_mutex);
1006         }
1007
1008         if (ip_ver == TLSV4 &&
1009             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
1010                 mutex_lock(&tcpv4_prot_mutex);
1011                 if (likely(prot != saved_tcpv4_prot)) {
1012                         build_protos(tls_prots[TLSV4], prot);
1013                         build_proto_ops(tls_proto_ops[TLSV4],
1014                                         sk->sk_socket->ops);
1015                         smp_store_release(&saved_tcpv4_prot, prot);
1016                 }
1017                 mutex_unlock(&tcpv4_prot_mutex);
1018         }
1019 }
1020
1021 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
1022                          const struct proto *base)
1023 {
1024         prot[TLS_BASE][TLS_BASE] = *base;
1025         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
1026         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
1027         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
1028
1029         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1030         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
1031         prot[TLS_SW][TLS_BASE].splice_eof       = tls_sw_splice_eof;
1032         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
1033
1034         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
1035         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
1036         prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
1037         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
1038
1039         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
1040         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
1041         prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
1042         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
1043
1044 #ifdef CONFIG_TLS_DEVICE
1045         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1046         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
1047         prot[TLS_HW][TLS_BASE].splice_eof       = tls_device_splice_eof;
1048         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
1049
1050         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
1051         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
1052         prot[TLS_HW][TLS_SW].splice_eof         = tls_device_splice_eof;
1053         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
1054
1055         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
1056
1057         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
1058
1059         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
1060 #endif
1061 #ifdef CONFIG_TLS_TOE
1062         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
1063         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
1064         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
1065 #endif
1066 }
1067
1068 static int tls_init(struct sock *sk)
1069 {
1070         struct tls_context *ctx;
1071         int rc = 0;
1072
1073         tls_build_proto(sk);
1074
1075 #ifdef CONFIG_TLS_TOE
1076         if (tls_toe_bypass(sk))
1077                 return 0;
1078 #endif
1079
1080         /* The TLS ulp is currently supported only for TCP sockets
1081          * in ESTABLISHED state.
1082          * Supporting sockets in LISTEN state will require us
1083          * to modify the accept implementation to clone rather then
1084          * share the ulp context.
1085          */
1086         if (sk->sk_state != TCP_ESTABLISHED)
1087                 return -ENOTCONN;
1088
1089         /* allocate tls context */
1090         write_lock_bh(&sk->sk_callback_lock);
1091         ctx = tls_ctx_create(sk);
1092         if (!ctx) {
1093                 rc = -ENOMEM;
1094                 goto out;
1095         }
1096
1097         ctx->tx_conf = TLS_BASE;
1098         ctx->rx_conf = TLS_BASE;
1099         update_sk_prot(sk, ctx);
1100 out:
1101         write_unlock_bh(&sk->sk_callback_lock);
1102         return rc;
1103 }
1104
1105 static void tls_update(struct sock *sk, struct proto *p,
1106                        void (*write_space)(struct sock *sk))
1107 {
1108         struct tls_context *ctx;
1109
1110         WARN_ON_ONCE(sk->sk_prot == p);
1111
1112         ctx = tls_get_ctx(sk);
1113         if (likely(ctx)) {
1114                 ctx->sk_write_space = write_space;
1115                 ctx->sk_proto = p;
1116         } else {
1117                 /* Pairs with lockless read in sk_clone_lock(). */
1118                 WRITE_ONCE(sk->sk_prot, p);
1119                 sk->sk_write_space = write_space;
1120         }
1121 }
1122
1123 static u16 tls_user_config(struct tls_context *ctx, bool tx)
1124 {
1125         u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1126
1127         switch (config) {
1128         case TLS_BASE:
1129                 return TLS_CONF_BASE;
1130         case TLS_SW:
1131                 return TLS_CONF_SW;
1132         case TLS_HW:
1133                 return TLS_CONF_HW;
1134         case TLS_HW_RECORD:
1135                 return TLS_CONF_HW_RECORD;
1136         }
1137         return 0;
1138 }
1139
1140 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1141 {
1142         u16 version, cipher_type;
1143         struct tls_context *ctx;
1144         struct nlattr *start;
1145         int err;
1146
1147         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1148         if (!start)
1149                 return -EMSGSIZE;
1150
1151         rcu_read_lock();
1152         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1153         if (!ctx) {
1154                 err = 0;
1155                 goto nla_failure;
1156         }
1157         version = ctx->prot_info.version;
1158         if (version) {
1159                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1160                 if (err)
1161                         goto nla_failure;
1162         }
1163         cipher_type = ctx->prot_info.cipher_type;
1164         if (cipher_type) {
1165                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1166                 if (err)
1167                         goto nla_failure;
1168         }
1169         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1170         if (err)
1171                 goto nla_failure;
1172
1173         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1174         if (err)
1175                 goto nla_failure;
1176
1177         if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1178                 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1179                 if (err)
1180                         goto nla_failure;
1181         }
1182         if (ctx->rx_no_pad) {
1183                 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1184                 if (err)
1185                         goto nla_failure;
1186         }
1187
1188         rcu_read_unlock();
1189         nla_nest_end(skb, start);
1190         return 0;
1191
1192 nla_failure:
1193         rcu_read_unlock();
1194         nla_nest_cancel(skb, start);
1195         return err;
1196 }
1197
1198 static size_t tls_get_info_size(const struct sock *sk)
1199 {
1200         size_t size = 0;
1201
1202         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
1203                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
1204                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
1205                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
1206                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
1207                 nla_total_size(0) +             /* TLS_INFO_ZC_RO_TX */
1208                 nla_total_size(0) +             /* TLS_INFO_RX_NO_PAD */
1209                 0;
1210
1211         return size;
1212 }
1213
1214 static int __net_init tls_init_net(struct net *net)
1215 {
1216         int err;
1217
1218         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1219         if (!net->mib.tls_statistics)
1220                 return -ENOMEM;
1221
1222         err = tls_proc_init(net);
1223         if (err)
1224                 goto err_free_stats;
1225
1226         return 0;
1227 err_free_stats:
1228         free_percpu(net->mib.tls_statistics);
1229         return err;
1230 }
1231
1232 static void __net_exit tls_exit_net(struct net *net)
1233 {
1234         tls_proc_fini(net);
1235         free_percpu(net->mib.tls_statistics);
1236 }
1237
1238 static struct pernet_operations tls_proc_ops = {
1239         .init = tls_init_net,
1240         .exit = tls_exit_net,
1241 };
1242
1243 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1244         .name                   = "tls",
1245         .owner                  = THIS_MODULE,
1246         .init                   = tls_init,
1247         .update                 = tls_update,
1248         .get_info               = tls_get_info,
1249         .get_info_size          = tls_get_info_size,
1250 };
1251
1252 static int __init tls_register(void)
1253 {
1254         int err;
1255
1256         err = register_pernet_subsys(&tls_proc_ops);
1257         if (err)
1258                 return err;
1259
1260         err = tls_strp_dev_init();
1261         if (err)
1262                 goto err_pernet;
1263
1264         err = tls_device_init();
1265         if (err)
1266                 goto err_strp;
1267
1268         tcp_register_ulp(&tcp_tls_ulp_ops);
1269
1270         return 0;
1271 err_strp:
1272         tls_strp_dev_exit();
1273 err_pernet:
1274         unregister_pernet_subsys(&tls_proc_ops);
1275         return err;
1276 }
1277
1278 static void __exit tls_unregister(void)
1279 {
1280         tcp_unregister_ulp(&tcp_tls_ulp_ops);
1281         tls_strp_dev_exit();
1282         tls_device_cleanup();
1283         unregister_pernet_subsys(&tls_proc_ops);
1284 }
1285
1286 module_init(tls_register);
1287 module_exit(tls_unregister);