523622dc74f8b969113b0435b39f5d0f3d070304
[platform/kernel/linux-rpi.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51         TLSV4,
52         TLSV6,
53         TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static LIST_HEAD(device_list);
59 static DEFINE_MUTEX(device_mutex);
60 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
61 static struct proto_ops tls_sw_proto_ops;
62
63 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
64 {
65         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
66
67         sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
68 }
69
70 int wait_on_pending_writer(struct sock *sk, long *timeo)
71 {
72         int rc = 0;
73         DEFINE_WAIT_FUNC(wait, woken_wake_function);
74
75         add_wait_queue(sk_sleep(sk), &wait);
76         while (1) {
77                 if (!*timeo) {
78                         rc = -EAGAIN;
79                         break;
80                 }
81
82                 if (signal_pending(current)) {
83                         rc = sock_intr_errno(*timeo);
84                         break;
85                 }
86
87                 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
88                         break;
89         }
90         remove_wait_queue(sk_sleep(sk), &wait);
91         return rc;
92 }
93
94 int tls_push_sg(struct sock *sk,
95                 struct tls_context *ctx,
96                 struct scatterlist *sg,
97                 u16 first_offset,
98                 int flags)
99 {
100         int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
101         int ret = 0;
102         struct page *p;
103         size_t size;
104         int offset = first_offset;
105
106         size = sg->length - offset;
107         offset += sg->offset;
108
109         ctx->in_tcp_sendpages = true;
110         while (1) {
111                 if (sg_is_last(sg))
112                         sendpage_flags = flags;
113
114                 /* is sending application-limited? */
115                 tcp_rate_check_app_limited(sk);
116                 p = sg_page(sg);
117 retry:
118                 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
119
120                 if (ret != size) {
121                         if (ret > 0) {
122                                 offset += ret;
123                                 size -= ret;
124                                 goto retry;
125                         }
126
127                         offset -= sg->offset;
128                         ctx->partially_sent_offset = offset;
129                         ctx->partially_sent_record = (void *)sg;
130                         ctx->in_tcp_sendpages = false;
131                         return ret;
132                 }
133
134                 put_page(p);
135                 sk_mem_uncharge(sk, sg->length);
136                 sg = sg_next(sg);
137                 if (!sg)
138                         break;
139
140                 offset = sg->offset;
141                 size = sg->length;
142         }
143
144         clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
145         ctx->in_tcp_sendpages = false;
146         ctx->sk_write_space(sk);
147
148         return 0;
149 }
150
151 static int tls_handle_open_record(struct sock *sk, int flags)
152 {
153         struct tls_context *ctx = tls_get_ctx(sk);
154
155         if (tls_is_pending_open_record(ctx))
156                 return ctx->push_pending_record(sk, flags);
157
158         return 0;
159 }
160
161 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
162                       unsigned char *record_type)
163 {
164         struct cmsghdr *cmsg;
165         int rc = -EINVAL;
166
167         for_each_cmsghdr(cmsg, msg) {
168                 if (!CMSG_OK(msg, cmsg))
169                         return -EINVAL;
170                 if (cmsg->cmsg_level != SOL_TLS)
171                         continue;
172
173                 switch (cmsg->cmsg_type) {
174                 case TLS_SET_RECORD_TYPE:
175                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
176                                 return -EINVAL;
177
178                         if (msg->msg_flags & MSG_MORE)
179                                 return -EINVAL;
180
181                         rc = tls_handle_open_record(sk, msg->msg_flags);
182                         if (rc)
183                                 return rc;
184
185                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
186                         rc = 0;
187                         break;
188                 default:
189                         return -EINVAL;
190                 }
191         }
192
193         return rc;
194 }
195
196 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
197                                    int flags, long *timeo)
198 {
199         struct scatterlist *sg;
200         u16 offset;
201
202         if (!tls_is_partially_sent_record(ctx))
203                 return ctx->push_pending_record(sk, flags);
204
205         sg = ctx->partially_sent_record;
206         offset = ctx->partially_sent_offset;
207
208         ctx->partially_sent_record = NULL;
209         return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211
212 static void tls_write_space(struct sock *sk)
213 {
214         struct tls_context *ctx = tls_get_ctx(sk);
215
216         /* If in_tcp_sendpages call lower protocol write space handler
217          * to ensure we wake up any waiting operations there. For example
218          * if do_tcp_sendpages where to call sk_wait_event.
219          */
220         if (ctx->in_tcp_sendpages) {
221                 ctx->sk_write_space(sk);
222                 return;
223         }
224
225         if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
226                 gfp_t sk_allocation = sk->sk_allocation;
227                 int rc;
228                 long timeo = 0;
229
230                 sk->sk_allocation = GFP_ATOMIC;
231                 rc = tls_push_pending_closed_record(sk, ctx,
232                                                     MSG_DONTWAIT |
233                                                     MSG_NOSIGNAL,
234                                                     &timeo);
235                 sk->sk_allocation = sk_allocation;
236
237                 if (rc < 0)
238                         return;
239         }
240
241         ctx->sk_write_space(sk);
242 }
243
244 static void tls_ctx_free(struct tls_context *ctx)
245 {
246         if (!ctx)
247                 return;
248
249         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
250         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
251         kfree(ctx);
252 }
253
254 static void tls_sk_proto_close(struct sock *sk, long timeout)
255 {
256         struct tls_context *ctx = tls_get_ctx(sk);
257         long timeo = sock_sndtimeo(sk, 0);
258         void (*sk_proto_close)(struct sock *sk, long timeout);
259         bool free_ctx = false;
260
261         lock_sock(sk);
262         sk_proto_close = ctx->sk_proto_close;
263
264         if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
265             (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
266                 free_ctx = true;
267                 goto skip_tx_cleanup;
268         }
269
270         if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
271                 tls_handle_open_record(sk, 0);
272
273         if (ctx->partially_sent_record) {
274                 struct scatterlist *sg = ctx->partially_sent_record;
275
276                 while (1) {
277                         put_page(sg_page(sg));
278                         sk_mem_uncharge(sk, sg->length);
279
280                         if (sg_is_last(sg))
281                                 break;
282                         sg++;
283                 }
284         }
285
286         /* We need these for tls_sw_fallback handling of other packets */
287         if (ctx->tx_conf == TLS_SW) {
288                 kfree(ctx->tx.rec_seq);
289                 kfree(ctx->tx.iv);
290                 tls_sw_free_resources_tx(sk);
291         }
292
293         if (ctx->rx_conf == TLS_SW) {
294                 kfree(ctx->rx.rec_seq);
295                 kfree(ctx->rx.iv);
296                 tls_sw_free_resources_rx(sk);
297         }
298
299 #ifdef CONFIG_TLS_DEVICE
300         if (ctx->rx_conf == TLS_HW)
301                 tls_device_offload_cleanup_rx(sk);
302
303         if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
304 #else
305         {
306 #endif
307                 tls_ctx_free(ctx);
308                 ctx = NULL;
309         }
310
311 skip_tx_cleanup:
312         release_sock(sk);
313         sk_proto_close(sk, timeout);
314         /* free ctx for TLS_HW_RECORD, used by tcp_set_state
315          * for sk->sk_prot->unhash [tls_hw_unhash]
316          */
317         if (free_ctx)
318                 tls_ctx_free(ctx);
319 }
320
321 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
322                                 int __user *optlen)
323 {
324         int rc = 0;
325         struct tls_context *ctx = tls_get_ctx(sk);
326         struct tls_crypto_info *crypto_info;
327         int len;
328
329         if (get_user(len, optlen))
330                 return -EFAULT;
331
332         if (!optval || (len < sizeof(*crypto_info))) {
333                 rc = -EINVAL;
334                 goto out;
335         }
336
337         if (!ctx) {
338                 rc = -EBUSY;
339                 goto out;
340         }
341
342         /* get user crypto info */
343         crypto_info = &ctx->crypto_send.info;
344
345         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
346                 rc = -EBUSY;
347                 goto out;
348         }
349
350         if (len == sizeof(*crypto_info)) {
351                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
352                         rc = -EFAULT;
353                 goto out;
354         }
355
356         switch (crypto_info->cipher_type) {
357         case TLS_CIPHER_AES_GCM_128: {
358                 struct tls12_crypto_info_aes_gcm_128 *
359                   crypto_info_aes_gcm_128 =
360                   container_of(crypto_info,
361                                struct tls12_crypto_info_aes_gcm_128,
362                                info);
363
364                 if (len != sizeof(*crypto_info_aes_gcm_128)) {
365                         rc = -EINVAL;
366                         goto out;
367                 }
368                 lock_sock(sk);
369                 memcpy(crypto_info_aes_gcm_128->iv,
370                        ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
371                        TLS_CIPHER_AES_GCM_128_IV_SIZE);
372                 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
373                        TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
374                 release_sock(sk);
375                 if (copy_to_user(optval,
376                                  crypto_info_aes_gcm_128,
377                                  sizeof(*crypto_info_aes_gcm_128)))
378                         rc = -EFAULT;
379                 break;
380         }
381         default:
382                 rc = -EINVAL;
383         }
384
385 out:
386         return rc;
387 }
388
389 static int do_tls_getsockopt(struct sock *sk, int optname,
390                              char __user *optval, int __user *optlen)
391 {
392         int rc = 0;
393
394         switch (optname) {
395         case TLS_TX:
396                 rc = do_tls_getsockopt_tx(sk, optval, optlen);
397                 break;
398         default:
399                 rc = -ENOPROTOOPT;
400                 break;
401         }
402         return rc;
403 }
404
405 static int tls_getsockopt(struct sock *sk, int level, int optname,
406                           char __user *optval, int __user *optlen)
407 {
408         struct tls_context *ctx = tls_get_ctx(sk);
409
410         if (level != SOL_TLS)
411                 return ctx->getsockopt(sk, level, optname, optval, optlen);
412
413         return do_tls_getsockopt(sk, optname, optval, optlen);
414 }
415
416 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
417                                   unsigned int optlen, int tx)
418 {
419         struct tls_crypto_info *crypto_info;
420         struct tls_context *ctx = tls_get_ctx(sk);
421         int rc = 0;
422         int conf;
423
424         if (!optval || (optlen < sizeof(*crypto_info))) {
425                 rc = -EINVAL;
426                 goto out;
427         }
428
429         if (tx)
430                 crypto_info = &ctx->crypto_send.info;
431         else
432                 crypto_info = &ctx->crypto_recv.info;
433
434         /* Currently we don't support set crypto info more than one time */
435         if (TLS_CRYPTO_INFO_READY(crypto_info)) {
436                 rc = -EBUSY;
437                 goto out;
438         }
439
440         rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
441         if (rc) {
442                 rc = -EFAULT;
443                 goto err_crypto_info;
444         }
445
446         /* check version */
447         if (crypto_info->version != TLS_1_2_VERSION) {
448                 rc = -ENOTSUPP;
449                 goto err_crypto_info;
450         }
451
452         switch (crypto_info->cipher_type) {
453         case TLS_CIPHER_AES_GCM_128: {
454                 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
455                         rc = -EINVAL;
456                         goto err_crypto_info;
457                 }
458                 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
459                                     optlen - sizeof(*crypto_info));
460                 if (rc) {
461                         rc = -EFAULT;
462                         goto err_crypto_info;
463                 }
464                 break;
465         }
466         default:
467                 rc = -EINVAL;
468                 goto err_crypto_info;
469         }
470
471         if (tx) {
472 #ifdef CONFIG_TLS_DEVICE
473                 rc = tls_set_device_offload(sk, ctx);
474                 conf = TLS_HW;
475                 if (rc) {
476 #else
477                 {
478 #endif
479                         rc = tls_set_sw_offload(sk, ctx, 1);
480                         conf = TLS_SW;
481                 }
482         } else {
483 #ifdef CONFIG_TLS_DEVICE
484                 rc = tls_set_device_offload_rx(sk, ctx);
485                 conf = TLS_HW;
486                 if (rc) {
487 #else
488                 {
489 #endif
490                         rc = tls_set_sw_offload(sk, ctx, 0);
491                         conf = TLS_SW;
492                 }
493         }
494
495         if (rc)
496                 goto err_crypto_info;
497
498         if (tx)
499                 ctx->tx_conf = conf;
500         else
501                 ctx->rx_conf = conf;
502         update_sk_prot(sk, ctx);
503         if (tx) {
504                 ctx->sk_write_space = sk->sk_write_space;
505                 sk->sk_write_space = tls_write_space;
506         } else {
507                 sk->sk_socket->ops = &tls_sw_proto_ops;
508         }
509         goto out;
510
511 err_crypto_info:
512         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
513 out:
514         return rc;
515 }
516
517 static int do_tls_setsockopt(struct sock *sk, int optname,
518                              char __user *optval, unsigned int optlen)
519 {
520         int rc = 0;
521
522         switch (optname) {
523         case TLS_TX:
524         case TLS_RX:
525                 lock_sock(sk);
526                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
527                                             optname == TLS_TX);
528                 release_sock(sk);
529                 break;
530         default:
531                 rc = -ENOPROTOOPT;
532                 break;
533         }
534         return rc;
535 }
536
537 static int tls_setsockopt(struct sock *sk, int level, int optname,
538                           char __user *optval, unsigned int optlen)
539 {
540         struct tls_context *ctx = tls_get_ctx(sk);
541
542         if (level != SOL_TLS)
543                 return ctx->setsockopt(sk, level, optname, optval, optlen);
544
545         return do_tls_setsockopt(sk, optname, optval, optlen);
546 }
547
548 static struct tls_context *create_ctx(struct sock *sk)
549 {
550         struct inet_connection_sock *icsk = inet_csk(sk);
551         struct tls_context *ctx;
552
553         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
554         if (!ctx)
555                 return NULL;
556
557         icsk->icsk_ulp_data = ctx;
558         return ctx;
559 }
560
561 static int tls_hw_prot(struct sock *sk)
562 {
563         struct tls_context *ctx;
564         struct tls_device *dev;
565         int rc = 0;
566
567         mutex_lock(&device_mutex);
568         list_for_each_entry(dev, &device_list, dev_list) {
569                 if (dev->feature && dev->feature(dev)) {
570                         ctx = create_ctx(sk);
571                         if (!ctx)
572                                 goto out;
573
574                         ctx->hash = sk->sk_prot->hash;
575                         ctx->unhash = sk->sk_prot->unhash;
576                         ctx->sk_proto_close = sk->sk_prot->close;
577                         ctx->rx_conf = TLS_HW_RECORD;
578                         ctx->tx_conf = TLS_HW_RECORD;
579                         update_sk_prot(sk, ctx);
580                         rc = 1;
581                         break;
582                 }
583         }
584 out:
585         mutex_unlock(&device_mutex);
586         return rc;
587 }
588
589 static void tls_hw_unhash(struct sock *sk)
590 {
591         struct tls_context *ctx = tls_get_ctx(sk);
592         struct tls_device *dev;
593
594         mutex_lock(&device_mutex);
595         list_for_each_entry(dev, &device_list, dev_list) {
596                 if (dev->unhash)
597                         dev->unhash(dev, sk);
598         }
599         mutex_unlock(&device_mutex);
600         ctx->unhash(sk);
601 }
602
603 static int tls_hw_hash(struct sock *sk)
604 {
605         struct tls_context *ctx = tls_get_ctx(sk);
606         struct tls_device *dev;
607         int err;
608
609         err = ctx->hash(sk);
610         mutex_lock(&device_mutex);
611         list_for_each_entry(dev, &device_list, dev_list) {
612                 if (dev->hash)
613                         err |= dev->hash(dev, sk);
614         }
615         mutex_unlock(&device_mutex);
616
617         if (err)
618                 tls_hw_unhash(sk);
619         return err;
620 }
621
622 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
623                          struct proto *base)
624 {
625         prot[TLS_BASE][TLS_BASE] = *base;
626         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
627         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
628         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
629
630         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
631         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
632         prot[TLS_SW][TLS_BASE].sendpage         = tls_sw_sendpage;
633
634         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
635         prot[TLS_BASE][TLS_SW].recvmsg          = tls_sw_recvmsg;
636         prot[TLS_BASE][TLS_SW].close            = tls_sk_proto_close;
637
638         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
639         prot[TLS_SW][TLS_SW].recvmsg    = tls_sw_recvmsg;
640         prot[TLS_SW][TLS_SW].close      = tls_sk_proto_close;
641
642 #ifdef CONFIG_TLS_DEVICE
643         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
644         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
645         prot[TLS_HW][TLS_BASE].sendpage         = tls_device_sendpage;
646
647         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
648         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
649         prot[TLS_HW][TLS_SW].sendpage           = tls_device_sendpage;
650
651         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
652
653         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
654
655         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
656 #endif
657
658         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
659         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_hw_hash;
660         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_hw_unhash;
661         prot[TLS_HW_RECORD][TLS_HW_RECORD].close        = tls_sk_proto_close;
662 }
663
664 static int tls_init(struct sock *sk)
665 {
666         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
667         struct tls_context *ctx;
668         int rc = 0;
669
670         if (tls_hw_prot(sk))
671                 goto out;
672
673         /* The TLS ulp is currently supported only for TCP sockets
674          * in ESTABLISHED state.
675          * Supporting sockets in LISTEN state will require us
676          * to modify the accept implementation to clone rather then
677          * share the ulp context.
678          */
679         if (sk->sk_state != TCP_ESTABLISHED)
680                 return -ENOTSUPP;
681
682         /* allocate tls context */
683         ctx = create_ctx(sk);
684         if (!ctx) {
685                 rc = -ENOMEM;
686                 goto out;
687         }
688         ctx->setsockopt = sk->sk_prot->setsockopt;
689         ctx->getsockopt = sk->sk_prot->getsockopt;
690         ctx->sk_proto_close = sk->sk_prot->close;
691
692         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
693         if (ip_ver == TLSV6 &&
694             unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
695                 mutex_lock(&tcpv6_prot_mutex);
696                 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
697                         build_protos(tls_prots[TLSV6], sk->sk_prot);
698                         smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
699                 }
700                 mutex_unlock(&tcpv6_prot_mutex);
701         }
702
703         ctx->tx_conf = TLS_BASE;
704         ctx->rx_conf = TLS_BASE;
705         update_sk_prot(sk, ctx);
706 out:
707         return rc;
708 }
709
710 void tls_register_device(struct tls_device *device)
711 {
712         mutex_lock(&device_mutex);
713         list_add_tail(&device->dev_list, &device_list);
714         mutex_unlock(&device_mutex);
715 }
716 EXPORT_SYMBOL(tls_register_device);
717
718 void tls_unregister_device(struct tls_device *device)
719 {
720         mutex_lock(&device_mutex);
721         list_del(&device->dev_list);
722         mutex_unlock(&device_mutex);
723 }
724 EXPORT_SYMBOL(tls_unregister_device);
725
726 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
727         .name                   = "tls",
728         .uid                    = TCP_ULP_TLS,
729         .user_visible           = true,
730         .owner                  = THIS_MODULE,
731         .init                   = tls_init,
732 };
733
734 static int __init tls_register(void)
735 {
736         build_protos(tls_prots[TLSV4], &tcp_prot);
737
738         tls_sw_proto_ops = inet_stream_ops;
739         tls_sw_proto_ops.poll = tls_sw_poll;
740         tls_sw_proto_ops.splice_read = tls_sw_splice_read;
741
742 #ifdef CONFIG_TLS_DEVICE
743         tls_device_init();
744 #endif
745         tcp_register_ulp(&tcp_tls_ulp_ops);
746
747         return 0;
748 }
749
750 static void __exit tls_unregister(void)
751 {
752         tcp_unregister_ulp(&tcp_tls_ulp_ops);
753 #ifdef CONFIG_TLS_DEVICE
754         tls_device_cleanup();
755 #endif
756 }
757
758 module_init(tls_register);
759 module_exit(tls_unregister);