ipv6: init the accept_queue's spinlocks in inet6_create
[platform/kernel/linux-starfive.git] / net / tls / tls_main.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 #include <linux/inet_diag.h>
43
44 #include <net/snmp.h>
45 #include <net/tls.h>
46 #include <net/tls_toe.h>
47
48 #include "tls.h"
49
50 MODULE_AUTHOR("Mellanox Technologies");
51 MODULE_DESCRIPTION("Transport Layer Security Support");
52 MODULE_LICENSE("Dual BSD/GPL");
53 MODULE_ALIAS_TCP_ULP("tls");
54
55 enum {
56         TLSV4,
57         TLSV6,
58         TLS_NUM_PROTS,
59 };
60
61 #define CHECK_CIPHER_DESC(cipher,ci)                            \
62         static_assert(cipher ## _IV_SIZE <= MAX_IV_SIZE);               \
63         static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE); \
64         static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE);             \
65         static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE);       \
66         static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE);     \
67         static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE);   \
68         static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
69
70 #define __CIPHER_DESC(ci) \
71         .iv_offset = offsetof(struct ci, iv), \
72         .key_offset = offsetof(struct ci, key), \
73         .salt_offset = offsetof(struct ci, salt), \
74         .rec_seq_offset = offsetof(struct ci, rec_seq), \
75         .crypto_info = sizeof(struct ci)
76
77 #define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = {       \
78         .nonce = cipher ## _IV_SIZE, \
79         .iv = cipher ## _IV_SIZE, \
80         .key = cipher ## _KEY_SIZE, \
81         .salt = cipher ## _SALT_SIZE, \
82         .tag = cipher ## _TAG_SIZE, \
83         .rec_seq = cipher ## _REC_SEQ_SIZE, \
84         .cipher_name = algname, \
85         .offloadable = _offloadable, \
86         __CIPHER_DESC(ci), \
87 }
88
89 #define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
90         .nonce = 0, \
91         .iv = cipher ## _IV_SIZE, \
92         .key = cipher ## _KEY_SIZE, \
93         .salt = cipher ## _SALT_SIZE, \
94         .tag = cipher ## _TAG_SIZE, \
95         .rec_seq = cipher ## _REC_SEQ_SIZE, \
96         .cipher_name = algname, \
97         .offloadable = _offloadable, \
98         __CIPHER_DESC(ci), \
99 }
100
101 const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
102         CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
103         CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
104         CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
105         CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
106         CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
107         CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
108         CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
109         CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
110 };
111
112 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
113 CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
114 CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
115 CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
116 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
117 CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
118 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
119 CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
120
121 static const struct proto *saved_tcpv6_prot;
122 static DEFINE_MUTEX(tcpv6_prot_mutex);
123 static const struct proto *saved_tcpv4_prot;
124 static DEFINE_MUTEX(tcpv4_prot_mutex);
125 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
126 static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
128                          const struct proto *base);
129
130 void update_sk_prot(struct sock *sk, struct tls_context *ctx)
131 {
132         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
133
134         WRITE_ONCE(sk->sk_prot,
135                    &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
136         WRITE_ONCE(sk->sk_socket->ops,
137                    &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
138 }
139
140 int wait_on_pending_writer(struct sock *sk, long *timeo)
141 {
142         DEFINE_WAIT_FUNC(wait, woken_wake_function);
143         int ret, rc = 0;
144
145         add_wait_queue(sk_sleep(sk), &wait);
146         while (1) {
147                 if (!*timeo) {
148                         rc = -EAGAIN;
149                         break;
150                 }
151
152                 if (signal_pending(current)) {
153                         rc = sock_intr_errno(*timeo);
154                         break;
155                 }
156
157                 ret = sk_wait_event(sk, timeo,
158                                     !READ_ONCE(sk->sk_write_pending), &wait);
159                 if (ret) {
160                         if (ret < 0)
161                                 rc = ret;
162                         break;
163                 }
164         }
165         remove_wait_queue(sk_sleep(sk), &wait);
166         return rc;
167 }
168
169 int tls_push_sg(struct sock *sk,
170                 struct tls_context *ctx,
171                 struct scatterlist *sg,
172                 u16 first_offset,
173                 int flags)
174 {
175         struct bio_vec bvec;
176         struct msghdr msg = {
177                 .msg_flags = MSG_SPLICE_PAGES | flags,
178         };
179         int ret = 0;
180         struct page *p;
181         size_t size;
182         int offset = first_offset;
183
184         size = sg->length - offset;
185         offset += sg->offset;
186
187         ctx->splicing_pages = true;
188         while (1) {
189                 /* is sending application-limited? */
190                 tcp_rate_check_app_limited(sk);
191                 p = sg_page(sg);
192 retry:
193                 bvec_set_page(&bvec, p, size, offset);
194                 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
195
196                 ret = tcp_sendmsg_locked(sk, &msg, size);
197
198                 if (ret != size) {
199                         if (ret > 0) {
200                                 offset += ret;
201                                 size -= ret;
202                                 goto retry;
203                         }
204
205                         offset -= sg->offset;
206                         ctx->partially_sent_offset = offset;
207                         ctx->partially_sent_record = (void *)sg;
208                         ctx->splicing_pages = false;
209                         return ret;
210                 }
211
212                 put_page(p);
213                 sk_mem_uncharge(sk, sg->length);
214                 sg = sg_next(sg);
215                 if (!sg)
216                         break;
217
218                 offset = sg->offset;
219                 size = sg->length;
220         }
221
222         ctx->splicing_pages = false;
223
224         return 0;
225 }
226
227 static int tls_handle_open_record(struct sock *sk, int flags)
228 {
229         struct tls_context *ctx = tls_get_ctx(sk);
230
231         if (tls_is_pending_open_record(ctx))
232                 return ctx->push_pending_record(sk, flags);
233
234         return 0;
235 }
236
237 int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
238                      unsigned char *record_type)
239 {
240         struct cmsghdr *cmsg;
241         int rc = -EINVAL;
242
243         for_each_cmsghdr(cmsg, msg) {
244                 if (!CMSG_OK(msg, cmsg))
245                         return -EINVAL;
246                 if (cmsg->cmsg_level != SOL_TLS)
247                         continue;
248
249                 switch (cmsg->cmsg_type) {
250                 case TLS_SET_RECORD_TYPE:
251                         if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
252                                 return -EINVAL;
253
254                         if (msg->msg_flags & MSG_MORE)
255                                 return -EINVAL;
256
257                         rc = tls_handle_open_record(sk, msg->msg_flags);
258                         if (rc)
259                                 return rc;
260
261                         *record_type = *(unsigned char *)CMSG_DATA(cmsg);
262                         rc = 0;
263                         break;
264                 default:
265                         return -EINVAL;
266                 }
267         }
268
269         return rc;
270 }
271
272 int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
273                             int flags)
274 {
275         struct scatterlist *sg;
276         u16 offset;
277
278         sg = ctx->partially_sent_record;
279         offset = ctx->partially_sent_offset;
280
281         ctx->partially_sent_record = NULL;
282         return tls_push_sg(sk, ctx, sg, offset, flags);
283 }
284
285 void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
286 {
287         struct scatterlist *sg;
288
289         for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
290                 put_page(sg_page(sg));
291                 sk_mem_uncharge(sk, sg->length);
292         }
293         ctx->partially_sent_record = NULL;
294 }
295
296 static void tls_write_space(struct sock *sk)
297 {
298         struct tls_context *ctx = tls_get_ctx(sk);
299
300         /* If splicing_pages call lower protocol write space handler
301          * to ensure we wake up any waiting operations there. For example
302          * if splicing pages where to call sk_wait_event.
303          */
304         if (ctx->splicing_pages) {
305                 ctx->sk_write_space(sk);
306                 return;
307         }
308
309 #ifdef CONFIG_TLS_DEVICE
310         if (ctx->tx_conf == TLS_HW)
311                 tls_device_write_space(sk, ctx);
312         else
313 #endif
314                 tls_sw_write_space(sk, ctx);
315
316         ctx->sk_write_space(sk);
317 }
318
319 /**
320  * tls_ctx_free() - free TLS ULP context
321  * @sk:  socket to with @ctx is attached
322  * @ctx: TLS context structure
323  *
324  * Free TLS context. If @sk is %NULL caller guarantees that the socket
325  * to which @ctx was attached has no outstanding references.
326  */
327 void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
328 {
329         if (!ctx)
330                 return;
331
332         memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
333         memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
334         mutex_destroy(&ctx->tx_lock);
335
336         if (sk)
337                 kfree_rcu(ctx, rcu);
338         else
339                 kfree(ctx);
340 }
341
342 static void tls_sk_proto_cleanup(struct sock *sk,
343                                  struct tls_context *ctx, long timeo)
344 {
345         if (unlikely(sk->sk_write_pending) &&
346             !wait_on_pending_writer(sk, &timeo))
347                 tls_handle_open_record(sk, 0);
348
349         /* We need these for tls_sw_fallback handling of other packets */
350         if (ctx->tx_conf == TLS_SW) {
351                 kfree(ctx->tx.rec_seq);
352                 kfree(ctx->tx.iv);
353                 tls_sw_release_resources_tx(sk);
354                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
355         } else if (ctx->tx_conf == TLS_HW) {
356                 tls_device_free_resources_tx(sk);
357                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
358         }
359
360         if (ctx->rx_conf == TLS_SW) {
361                 tls_sw_release_resources_rx(sk);
362                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
363         } else if (ctx->rx_conf == TLS_HW) {
364                 tls_device_offload_cleanup_rx(sk);
365                 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
366         }
367 }
368
369 static void tls_sk_proto_close(struct sock *sk, long timeout)
370 {
371         struct inet_connection_sock *icsk = inet_csk(sk);
372         struct tls_context *ctx = tls_get_ctx(sk);
373         long timeo = sock_sndtimeo(sk, 0);
374         bool free_ctx;
375
376         if (ctx->tx_conf == TLS_SW)
377                 tls_sw_cancel_work_tx(ctx);
378
379         lock_sock(sk);
380         free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
381
382         if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
383                 tls_sk_proto_cleanup(sk, ctx, timeo);
384
385         write_lock_bh(&sk->sk_callback_lock);
386         if (free_ctx)
387                 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
388         WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
389         if (sk->sk_write_space == tls_write_space)
390                 sk->sk_write_space = ctx->sk_write_space;
391         write_unlock_bh(&sk->sk_callback_lock);
392         release_sock(sk);
393         if (ctx->tx_conf == TLS_SW)
394                 tls_sw_free_ctx_tx(ctx);
395         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
396                 tls_sw_strparser_done(ctx);
397         if (ctx->rx_conf == TLS_SW)
398                 tls_sw_free_ctx_rx(ctx);
399         ctx->sk_proto->close(sk, timeout);
400
401         if (free_ctx)
402                 tls_ctx_free(sk, ctx);
403 }
404
405 static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
406                             struct poll_table_struct *wait)
407 {
408         struct tls_sw_context_rx *ctx;
409         struct tls_context *tls_ctx;
410         struct sock *sk = sock->sk;
411         struct sk_psock *psock;
412         __poll_t mask = 0;
413         u8 shutdown;
414         int state;
415
416         mask = tcp_poll(file, sock, wait);
417
418         state = inet_sk_state_load(sk);
419         shutdown = READ_ONCE(sk->sk_shutdown);
420         if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
421                 return mask;
422
423         tls_ctx = tls_get_ctx(sk);
424         ctx = tls_sw_ctx_rx(tls_ctx);
425         psock = sk_psock_get(sk);
426
427         if (skb_queue_empty_lockless(&ctx->rx_list) &&
428             !tls_strp_msg_ready(ctx) &&
429             sk_psock_queue_empty(psock))
430                 mask &= ~(EPOLLIN | EPOLLRDNORM);
431
432         if (psock)
433                 sk_psock_put(sk, psock);
434
435         return mask;
436 }
437
438 static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
439                                   int __user *optlen, int tx)
440 {
441         int rc = 0;
442         const struct tls_cipher_desc *cipher_desc;
443         struct tls_context *ctx = tls_get_ctx(sk);
444         struct tls_crypto_info *crypto_info;
445         struct cipher_context *cctx;
446         int len;
447
448         if (get_user(len, optlen))
449                 return -EFAULT;
450
451         if (!optval || (len < sizeof(*crypto_info))) {
452                 rc = -EINVAL;
453                 goto out;
454         }
455
456         if (!ctx) {
457                 rc = -EBUSY;
458                 goto out;
459         }
460
461         /* get user crypto info */
462         if (tx) {
463                 crypto_info = &ctx->crypto_send.info;
464                 cctx = &ctx->tx;
465         } else {
466                 crypto_info = &ctx->crypto_recv.info;
467                 cctx = &ctx->rx;
468         }
469
470         if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
471                 rc = -EBUSY;
472                 goto out;
473         }
474
475         if (len == sizeof(*crypto_info)) {
476                 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
477                         rc = -EFAULT;
478                 goto out;
479         }
480
481         cipher_desc = get_cipher_desc(crypto_info->cipher_type);
482         if (!cipher_desc || len != cipher_desc->crypto_info) {
483                 rc = -EINVAL;
484                 goto out;
485         }
486
487         memcpy(crypto_info_iv(crypto_info, cipher_desc),
488                cctx->iv + cipher_desc->salt, cipher_desc->iv);
489         memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
490                cctx->rec_seq, cipher_desc->rec_seq);
491
492         if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
493                 rc = -EFAULT;
494
495 out:
496         return rc;
497 }
498
499 static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
500                                    int __user *optlen)
501 {
502         struct tls_context *ctx = tls_get_ctx(sk);
503         unsigned int value;
504         int len;
505
506         if (get_user(len, optlen))
507                 return -EFAULT;
508
509         if (len != sizeof(value))
510                 return -EINVAL;
511
512         value = ctx->zerocopy_sendfile;
513         if (copy_to_user(optval, &value, sizeof(value)))
514                 return -EFAULT;
515
516         return 0;
517 }
518
519 static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
520                                     int __user *optlen)
521 {
522         struct tls_context *ctx = tls_get_ctx(sk);
523         int value, len;
524
525         if (ctx->prot_info.version != TLS_1_3_VERSION)
526                 return -EINVAL;
527
528         if (get_user(len, optlen))
529                 return -EFAULT;
530         if (len < sizeof(value))
531                 return -EINVAL;
532
533         value = -EINVAL;
534         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
535                 value = ctx->rx_no_pad;
536         if (value < 0)
537                 return value;
538
539         if (put_user(sizeof(value), optlen))
540                 return -EFAULT;
541         if (copy_to_user(optval, &value, sizeof(value)))
542                 return -EFAULT;
543
544         return 0;
545 }
546
547 static int do_tls_getsockopt(struct sock *sk, int optname,
548                              char __user *optval, int __user *optlen)
549 {
550         int rc = 0;
551
552         lock_sock(sk);
553
554         switch (optname) {
555         case TLS_TX:
556         case TLS_RX:
557                 rc = do_tls_getsockopt_conf(sk, optval, optlen,
558                                             optname == TLS_TX);
559                 break;
560         case TLS_TX_ZEROCOPY_RO:
561                 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
562                 break;
563         case TLS_RX_EXPECT_NO_PAD:
564                 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
565                 break;
566         default:
567                 rc = -ENOPROTOOPT;
568                 break;
569         }
570
571         release_sock(sk);
572
573         return rc;
574 }
575
576 static int tls_getsockopt(struct sock *sk, int level, int optname,
577                           char __user *optval, int __user *optlen)
578 {
579         struct tls_context *ctx = tls_get_ctx(sk);
580
581         if (level != SOL_TLS)
582                 return ctx->sk_proto->getsockopt(sk, level,
583                                                  optname, optval, optlen);
584
585         return do_tls_getsockopt(sk, optname, optval, optlen);
586 }
587
588 static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
589                                   unsigned int optlen, int tx)
590 {
591         struct tls_crypto_info *crypto_info;
592         struct tls_crypto_info *alt_crypto_info;
593         struct tls_context *ctx = tls_get_ctx(sk);
594         const struct tls_cipher_desc *cipher_desc;
595         int rc = 0;
596         int conf;
597
598         if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
599                 return -EINVAL;
600
601         if (tx) {
602                 crypto_info = &ctx->crypto_send.info;
603                 alt_crypto_info = &ctx->crypto_recv.info;
604         } else {
605                 crypto_info = &ctx->crypto_recv.info;
606                 alt_crypto_info = &ctx->crypto_send.info;
607         }
608
609         /* Currently we don't support set crypto info more than one time */
610         if (TLS_CRYPTO_INFO_READY(crypto_info))
611                 return -EBUSY;
612
613         rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
614         if (rc) {
615                 rc = -EFAULT;
616                 goto err_crypto_info;
617         }
618
619         /* check version */
620         if (crypto_info->version != TLS_1_2_VERSION &&
621             crypto_info->version != TLS_1_3_VERSION) {
622                 rc = -EINVAL;
623                 goto err_crypto_info;
624         }
625
626         /* Ensure that TLS version and ciphers are same in both directions */
627         if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
628                 if (alt_crypto_info->version != crypto_info->version ||
629                     alt_crypto_info->cipher_type != crypto_info->cipher_type) {
630                         rc = -EINVAL;
631                         goto err_crypto_info;
632                 }
633         }
634
635         cipher_desc = get_cipher_desc(crypto_info->cipher_type);
636         if (!cipher_desc) {
637                 rc = -EINVAL;
638                 goto err_crypto_info;
639         }
640
641         switch (crypto_info->cipher_type) {
642         case TLS_CIPHER_ARIA_GCM_128:
643         case TLS_CIPHER_ARIA_GCM_256:
644                 if (crypto_info->version != TLS_1_2_VERSION) {
645                         rc = -EINVAL;
646                         goto err_crypto_info;
647                 }
648                 break;
649         }
650
651         if (optlen != cipher_desc->crypto_info) {
652                 rc = -EINVAL;
653                 goto err_crypto_info;
654         }
655
656         rc = copy_from_sockptr_offset(crypto_info + 1, optval,
657                                       sizeof(*crypto_info),
658                                       optlen - sizeof(*crypto_info));
659         if (rc) {
660                 rc = -EFAULT;
661                 goto err_crypto_info;
662         }
663
664         if (tx) {
665                 rc = tls_set_device_offload(sk, ctx);
666                 conf = TLS_HW;
667                 if (!rc) {
668                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
669                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
670                 } else {
671                         rc = tls_set_sw_offload(sk, ctx, 1);
672                         if (rc)
673                                 goto err_crypto_info;
674                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
675                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
676                         conf = TLS_SW;
677                 }
678         } else {
679                 rc = tls_set_device_offload_rx(sk, ctx);
680                 conf = TLS_HW;
681                 if (!rc) {
682                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
683                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
684                 } else {
685                         rc = tls_set_sw_offload(sk, ctx, 0);
686                         if (rc)
687                                 goto err_crypto_info;
688                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
689                         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
690                         conf = TLS_SW;
691                 }
692                 tls_sw_strparser_arm(sk, ctx);
693         }
694
695         if (tx)
696                 ctx->tx_conf = conf;
697         else
698                 ctx->rx_conf = conf;
699         update_sk_prot(sk, ctx);
700         if (tx) {
701                 ctx->sk_write_space = sk->sk_write_space;
702                 sk->sk_write_space = tls_write_space;
703         } else {
704                 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
705
706                 tls_strp_check_rcv(&rx_ctx->strp);
707         }
708         return 0;
709
710 err_crypto_info:
711         memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
712         return rc;
713 }
714
715 static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
716                                    unsigned int optlen)
717 {
718         struct tls_context *ctx = tls_get_ctx(sk);
719         unsigned int value;
720
721         if (sockptr_is_null(optval) || optlen != sizeof(value))
722                 return -EINVAL;
723
724         if (copy_from_sockptr(&value, optval, sizeof(value)))
725                 return -EFAULT;
726
727         if (value > 1)
728                 return -EINVAL;
729
730         ctx->zerocopy_sendfile = value;
731
732         return 0;
733 }
734
735 static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
736                                     unsigned int optlen)
737 {
738         struct tls_context *ctx = tls_get_ctx(sk);
739         u32 val;
740         int rc;
741
742         if (ctx->prot_info.version != TLS_1_3_VERSION ||
743             sockptr_is_null(optval) || optlen < sizeof(val))
744                 return -EINVAL;
745
746         rc = copy_from_sockptr(&val, optval, sizeof(val));
747         if (rc)
748                 return -EFAULT;
749         if (val > 1)
750                 return -EINVAL;
751         rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
752         if (rc < 1)
753                 return rc == 0 ? -EINVAL : rc;
754
755         lock_sock(sk);
756         rc = -EINVAL;
757         if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
758                 ctx->rx_no_pad = val;
759                 tls_update_rx_zc_capable(ctx);
760                 rc = 0;
761         }
762         release_sock(sk);
763
764         return rc;
765 }
766
767 static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
768                              unsigned int optlen)
769 {
770         int rc = 0;
771
772         switch (optname) {
773         case TLS_TX:
774         case TLS_RX:
775                 lock_sock(sk);
776                 rc = do_tls_setsockopt_conf(sk, optval, optlen,
777                                             optname == TLS_TX);
778                 release_sock(sk);
779                 break;
780         case TLS_TX_ZEROCOPY_RO:
781                 lock_sock(sk);
782                 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
783                 release_sock(sk);
784                 break;
785         case TLS_RX_EXPECT_NO_PAD:
786                 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
787                 break;
788         default:
789                 rc = -ENOPROTOOPT;
790                 break;
791         }
792         return rc;
793 }
794
795 static int tls_setsockopt(struct sock *sk, int level, int optname,
796                           sockptr_t optval, unsigned int optlen)
797 {
798         struct tls_context *ctx = tls_get_ctx(sk);
799
800         if (level != SOL_TLS)
801                 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
802                                                  optlen);
803
804         return do_tls_setsockopt(sk, optname, optval, optlen);
805 }
806
807 struct tls_context *tls_ctx_create(struct sock *sk)
808 {
809         struct inet_connection_sock *icsk = inet_csk(sk);
810         struct tls_context *ctx;
811
812         ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
813         if (!ctx)
814                 return NULL;
815
816         mutex_init(&ctx->tx_lock);
817         rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
818         ctx->sk_proto = READ_ONCE(sk->sk_prot);
819         ctx->sk = sk;
820         return ctx;
821 }
822
823 static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
824                             const struct proto_ops *base)
825 {
826         ops[TLS_BASE][TLS_BASE] = *base;
827
828         ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
829         ops[TLS_SW  ][TLS_BASE].splice_eof      = tls_sw_splice_eof;
830
831         ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
832         ops[TLS_BASE][TLS_SW  ].splice_read     = tls_sw_splice_read;
833         ops[TLS_BASE][TLS_SW  ].poll            = tls_sk_poll;
834         ops[TLS_BASE][TLS_SW  ].read_sock       = tls_sw_read_sock;
835
836         ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
837         ops[TLS_SW  ][TLS_SW  ].splice_read     = tls_sw_splice_read;
838         ops[TLS_SW  ][TLS_SW  ].poll            = tls_sk_poll;
839         ops[TLS_SW  ][TLS_SW  ].read_sock       = tls_sw_read_sock;
840
841 #ifdef CONFIG_TLS_DEVICE
842         ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
843
844         ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
845
846         ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
847
848         ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
849
850         ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
851 #endif
852 #ifdef CONFIG_TLS_TOE
853         ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
854 #endif
855 }
856
857 static void tls_build_proto(struct sock *sk)
858 {
859         int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
860         struct proto *prot = READ_ONCE(sk->sk_prot);
861
862         /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
863         if (ip_ver == TLSV6 &&
864             unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
865                 mutex_lock(&tcpv6_prot_mutex);
866                 if (likely(prot != saved_tcpv6_prot)) {
867                         build_protos(tls_prots[TLSV6], prot);
868                         build_proto_ops(tls_proto_ops[TLSV6],
869                                         sk->sk_socket->ops);
870                         smp_store_release(&saved_tcpv6_prot, prot);
871                 }
872                 mutex_unlock(&tcpv6_prot_mutex);
873         }
874
875         if (ip_ver == TLSV4 &&
876             unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
877                 mutex_lock(&tcpv4_prot_mutex);
878                 if (likely(prot != saved_tcpv4_prot)) {
879                         build_protos(tls_prots[TLSV4], prot);
880                         build_proto_ops(tls_proto_ops[TLSV4],
881                                         sk->sk_socket->ops);
882                         smp_store_release(&saved_tcpv4_prot, prot);
883                 }
884                 mutex_unlock(&tcpv4_prot_mutex);
885         }
886 }
887
888 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
889                          const struct proto *base)
890 {
891         prot[TLS_BASE][TLS_BASE] = *base;
892         prot[TLS_BASE][TLS_BASE].setsockopt     = tls_setsockopt;
893         prot[TLS_BASE][TLS_BASE].getsockopt     = tls_getsockopt;
894         prot[TLS_BASE][TLS_BASE].close          = tls_sk_proto_close;
895
896         prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
897         prot[TLS_SW][TLS_BASE].sendmsg          = tls_sw_sendmsg;
898         prot[TLS_SW][TLS_BASE].splice_eof       = tls_sw_splice_eof;
899
900         prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
901         prot[TLS_BASE][TLS_SW].recvmsg            = tls_sw_recvmsg;
902         prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
903         prot[TLS_BASE][TLS_SW].close              = tls_sk_proto_close;
904
905         prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
906         prot[TLS_SW][TLS_SW].recvmsg            = tls_sw_recvmsg;
907         prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
908         prot[TLS_SW][TLS_SW].close              = tls_sk_proto_close;
909
910 #ifdef CONFIG_TLS_DEVICE
911         prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
912         prot[TLS_HW][TLS_BASE].sendmsg          = tls_device_sendmsg;
913         prot[TLS_HW][TLS_BASE].splice_eof       = tls_device_splice_eof;
914
915         prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
916         prot[TLS_HW][TLS_SW].sendmsg            = tls_device_sendmsg;
917         prot[TLS_HW][TLS_SW].splice_eof         = tls_device_splice_eof;
918
919         prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
920
921         prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
922
923         prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
924 #endif
925 #ifdef CONFIG_TLS_TOE
926         prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
927         prot[TLS_HW_RECORD][TLS_HW_RECORD].hash         = tls_toe_hash;
928         prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash       = tls_toe_unhash;
929 #endif
930 }
931
932 static int tls_init(struct sock *sk)
933 {
934         struct tls_context *ctx;
935         int rc = 0;
936
937         tls_build_proto(sk);
938
939 #ifdef CONFIG_TLS_TOE
940         if (tls_toe_bypass(sk))
941                 return 0;
942 #endif
943
944         /* The TLS ulp is currently supported only for TCP sockets
945          * in ESTABLISHED state.
946          * Supporting sockets in LISTEN state will require us
947          * to modify the accept implementation to clone rather then
948          * share the ulp context.
949          */
950         if (sk->sk_state != TCP_ESTABLISHED)
951                 return -ENOTCONN;
952
953         /* allocate tls context */
954         write_lock_bh(&sk->sk_callback_lock);
955         ctx = tls_ctx_create(sk);
956         if (!ctx) {
957                 rc = -ENOMEM;
958                 goto out;
959         }
960
961         ctx->tx_conf = TLS_BASE;
962         ctx->rx_conf = TLS_BASE;
963         update_sk_prot(sk, ctx);
964 out:
965         write_unlock_bh(&sk->sk_callback_lock);
966         return rc;
967 }
968
969 static void tls_update(struct sock *sk, struct proto *p,
970                        void (*write_space)(struct sock *sk))
971 {
972         struct tls_context *ctx;
973
974         WARN_ON_ONCE(sk->sk_prot == p);
975
976         ctx = tls_get_ctx(sk);
977         if (likely(ctx)) {
978                 ctx->sk_write_space = write_space;
979                 ctx->sk_proto = p;
980         } else {
981                 /* Pairs with lockless read in sk_clone_lock(). */
982                 WRITE_ONCE(sk->sk_prot, p);
983                 sk->sk_write_space = write_space;
984         }
985 }
986
987 static u16 tls_user_config(struct tls_context *ctx, bool tx)
988 {
989         u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
990
991         switch (config) {
992         case TLS_BASE:
993                 return TLS_CONF_BASE;
994         case TLS_SW:
995                 return TLS_CONF_SW;
996         case TLS_HW:
997                 return TLS_CONF_HW;
998         case TLS_HW_RECORD:
999                 return TLS_CONF_HW_RECORD;
1000         }
1001         return 0;
1002 }
1003
1004 static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1005 {
1006         u16 version, cipher_type;
1007         struct tls_context *ctx;
1008         struct nlattr *start;
1009         int err;
1010
1011         start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1012         if (!start)
1013                 return -EMSGSIZE;
1014
1015         rcu_read_lock();
1016         ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1017         if (!ctx) {
1018                 err = 0;
1019                 goto nla_failure;
1020         }
1021         version = ctx->prot_info.version;
1022         if (version) {
1023                 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1024                 if (err)
1025                         goto nla_failure;
1026         }
1027         cipher_type = ctx->prot_info.cipher_type;
1028         if (cipher_type) {
1029                 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1030                 if (err)
1031                         goto nla_failure;
1032         }
1033         err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1034         if (err)
1035                 goto nla_failure;
1036
1037         err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1038         if (err)
1039                 goto nla_failure;
1040
1041         if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1042                 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1043                 if (err)
1044                         goto nla_failure;
1045         }
1046         if (ctx->rx_no_pad) {
1047                 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1048                 if (err)
1049                         goto nla_failure;
1050         }
1051
1052         rcu_read_unlock();
1053         nla_nest_end(skb, start);
1054         return 0;
1055
1056 nla_failure:
1057         rcu_read_unlock();
1058         nla_nest_cancel(skb, start);
1059         return err;
1060 }
1061
1062 static size_t tls_get_info_size(const struct sock *sk)
1063 {
1064         size_t size = 0;
1065
1066         size += nla_total_size(0) +             /* INET_ULP_INFO_TLS */
1067                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_VERSION */
1068                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_CIPHER */
1069                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_RXCONF */
1070                 nla_total_size(sizeof(u16)) +   /* TLS_INFO_TXCONF */
1071                 nla_total_size(0) +             /* TLS_INFO_ZC_RO_TX */
1072                 nla_total_size(0) +             /* TLS_INFO_RX_NO_PAD */
1073                 0;
1074
1075         return size;
1076 }
1077
1078 static int __net_init tls_init_net(struct net *net)
1079 {
1080         int err;
1081
1082         net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1083         if (!net->mib.tls_statistics)
1084                 return -ENOMEM;
1085
1086         err = tls_proc_init(net);
1087         if (err)
1088                 goto err_free_stats;
1089
1090         return 0;
1091 err_free_stats:
1092         free_percpu(net->mib.tls_statistics);
1093         return err;
1094 }
1095
1096 static void __net_exit tls_exit_net(struct net *net)
1097 {
1098         tls_proc_fini(net);
1099         free_percpu(net->mib.tls_statistics);
1100 }
1101
1102 static struct pernet_operations tls_proc_ops = {
1103         .init = tls_init_net,
1104         .exit = tls_exit_net,
1105 };
1106
1107 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1108         .name                   = "tls",
1109         .owner                  = THIS_MODULE,
1110         .init                   = tls_init,
1111         .update                 = tls_update,
1112         .get_info               = tls_get_info,
1113         .get_info_size          = tls_get_info_size,
1114 };
1115
1116 static int __init tls_register(void)
1117 {
1118         int err;
1119
1120         err = register_pernet_subsys(&tls_proc_ops);
1121         if (err)
1122                 return err;
1123
1124         err = tls_strp_dev_init();
1125         if (err)
1126                 goto err_pernet;
1127
1128         err = tls_device_init();
1129         if (err)
1130                 goto err_strp;
1131
1132         tcp_register_ulp(&tcp_tls_ulp_ops);
1133
1134         return 0;
1135 err_strp:
1136         tls_strp_dev_exit();
1137 err_pernet:
1138         unregister_pernet_subsys(&tls_proc_ops);
1139         return err;
1140 }
1141
1142 static void __exit tls_unregister(void)
1143 {
1144         tcp_unregister_ulp(&tcp_tls_ulp_ops);
1145         tls_strp_dev_exit();
1146         tls_device_cleanup();
1147         unregister_pernet_subsys(&tls_proc_ops);
1148 }
1149
1150 module_init(tls_register);
1151 module_exit(tls_unregister);