tls: Skip tls_append_frag on zero copy size
[platform/kernel/linux-rpi.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 #include "trace.h"
42
43 /* device_offload_lock is used to synchronize tls_dev_add
44  * against NETDEV_DOWN notifications.
45  */
46 static DECLARE_RWSEM(device_offload_lock);
47
48 static void tls_device_gc_task(struct work_struct *work);
49
50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
51 static LIST_HEAD(tls_device_gc_list);
52 static LIST_HEAD(tls_device_list);
53 static LIST_HEAD(tls_device_down_list);
54 static DEFINE_SPINLOCK(tls_device_lock);
55
56 static void tls_device_free_ctx(struct tls_context *ctx)
57 {
58         if (ctx->tx_conf == TLS_HW) {
59                 kfree(tls_offload_ctx_tx(ctx));
60                 kfree(ctx->tx.rec_seq);
61                 kfree(ctx->tx.iv);
62         }
63
64         if (ctx->rx_conf == TLS_HW)
65                 kfree(tls_offload_ctx_rx(ctx));
66
67         tls_ctx_free(NULL, ctx);
68 }
69
70 static void tls_device_gc_task(struct work_struct *work)
71 {
72         struct tls_context *ctx, *tmp;
73         unsigned long flags;
74         LIST_HEAD(gc_list);
75
76         spin_lock_irqsave(&tls_device_lock, flags);
77         list_splice_init(&tls_device_gc_list, &gc_list);
78         spin_unlock_irqrestore(&tls_device_lock, flags);
79
80         list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
81                 struct net_device *netdev = ctx->netdev;
82
83                 if (netdev && ctx->tx_conf == TLS_HW) {
84                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
85                                                         TLS_OFFLOAD_CTX_DIR_TX);
86                         dev_put(netdev);
87                         ctx->netdev = NULL;
88                 }
89
90                 list_del(&ctx->list);
91                 tls_device_free_ctx(ctx);
92         }
93 }
94
95 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
96 {
97         unsigned long flags;
98
99         spin_lock_irqsave(&tls_device_lock, flags);
100         list_move_tail(&ctx->list, &tls_device_gc_list);
101
102         /* schedule_work inside the spinlock
103          * to make sure tls_device_down waits for that work.
104          */
105         schedule_work(&tls_device_gc_work);
106
107         spin_unlock_irqrestore(&tls_device_lock, flags);
108 }
109
110 /* We assume that the socket is already connected */
111 static struct net_device *get_netdev_for_sock(struct sock *sk)
112 {
113         struct dst_entry *dst = sk_dst_get(sk);
114         struct net_device *netdev = NULL;
115
116         if (likely(dst)) {
117                 netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
118                 dev_hold(netdev);
119         }
120
121         dst_release(dst);
122
123         return netdev;
124 }
125
126 static void destroy_record(struct tls_record_info *record)
127 {
128         int i;
129
130         for (i = 0; i < record->num_frags; i++)
131                 __skb_frag_unref(&record->frags[i], false);
132         kfree(record);
133 }
134
135 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
136 {
137         struct tls_record_info *info, *temp;
138
139         list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
140                 list_del(&info->list);
141                 destroy_record(info);
142         }
143
144         offload_ctx->retransmit_hint = NULL;
145 }
146
147 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
148 {
149         struct tls_context *tls_ctx = tls_get_ctx(sk);
150         struct tls_record_info *info, *temp;
151         struct tls_offload_context_tx *ctx;
152         u64 deleted_records = 0;
153         unsigned long flags;
154
155         if (!tls_ctx)
156                 return;
157
158         ctx = tls_offload_ctx_tx(tls_ctx);
159
160         spin_lock_irqsave(&ctx->lock, flags);
161         info = ctx->retransmit_hint;
162         if (info && !before(acked_seq, info->end_seq))
163                 ctx->retransmit_hint = NULL;
164
165         list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
166                 if (before(acked_seq, info->end_seq))
167                         break;
168                 list_del(&info->list);
169
170                 destroy_record(info);
171                 deleted_records++;
172         }
173
174         ctx->unacked_record_sn += deleted_records;
175         spin_unlock_irqrestore(&ctx->lock, flags);
176 }
177
178 /* At this point, there should be no references on this
179  * socket and no in-flight SKBs associated with this
180  * socket, so it is safe to free all the resources.
181  */
182 void tls_device_sk_destruct(struct sock *sk)
183 {
184         struct tls_context *tls_ctx = tls_get_ctx(sk);
185         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
186
187         tls_ctx->sk_destruct(sk);
188
189         if (tls_ctx->tx_conf == TLS_HW) {
190                 if (ctx->open_record)
191                         destroy_record(ctx->open_record);
192                 delete_all_records(ctx);
193                 crypto_free_aead(ctx->aead_send);
194                 clean_acked_data_disable(inet_csk(sk));
195         }
196
197         if (refcount_dec_and_test(&tls_ctx->refcount))
198                 tls_device_queue_ctx_destruction(tls_ctx);
199 }
200 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
201
202 void tls_device_free_resources_tx(struct sock *sk)
203 {
204         struct tls_context *tls_ctx = tls_get_ctx(sk);
205
206         tls_free_partial_record(sk, tls_ctx);
207 }
208
209 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
210 {
211         struct tls_context *tls_ctx = tls_get_ctx(sk);
212
213         trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
214         WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
215 }
216 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
217
218 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
219                                  u32 seq)
220 {
221         struct net_device *netdev;
222         struct sk_buff *skb;
223         int err = 0;
224         u8 *rcd_sn;
225
226         skb = tcp_write_queue_tail(sk);
227         if (skb)
228                 TCP_SKB_CB(skb)->eor = 1;
229
230         rcd_sn = tls_ctx->tx.rec_seq;
231
232         trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
233         down_read(&device_offload_lock);
234         netdev = tls_ctx->netdev;
235         if (netdev)
236                 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
237                                                          rcd_sn,
238                                                          TLS_OFFLOAD_CTX_DIR_TX);
239         up_read(&device_offload_lock);
240         if (err)
241                 return;
242
243         clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
244 }
245
246 static void tls_append_frag(struct tls_record_info *record,
247                             struct page_frag *pfrag,
248                             int size)
249 {
250         skb_frag_t *frag;
251
252         frag = &record->frags[record->num_frags - 1];
253         if (skb_frag_page(frag) == pfrag->page &&
254             skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
255                 skb_frag_size_add(frag, size);
256         } else {
257                 ++frag;
258                 __skb_frag_set_page(frag, pfrag->page);
259                 skb_frag_off_set(frag, pfrag->offset);
260                 skb_frag_size_set(frag, size);
261                 ++record->num_frags;
262                 get_page(pfrag->page);
263         }
264
265         pfrag->offset += size;
266         record->len += size;
267 }
268
269 static int tls_push_record(struct sock *sk,
270                            struct tls_context *ctx,
271                            struct tls_offload_context_tx *offload_ctx,
272                            struct tls_record_info *record,
273                            int flags)
274 {
275         struct tls_prot_info *prot = &ctx->prot_info;
276         struct tcp_sock *tp = tcp_sk(sk);
277         skb_frag_t *frag;
278         int i;
279
280         record->end_seq = tp->write_seq + record->len;
281         list_add_tail_rcu(&record->list, &offload_ctx->records_list);
282         offload_ctx->open_record = NULL;
283
284         if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
285                 tls_device_resync_tx(sk, ctx, tp->write_seq);
286
287         tls_advance_record_sn(sk, prot, &ctx->tx);
288
289         for (i = 0; i < record->num_frags; i++) {
290                 frag = &record->frags[i];
291                 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
292                 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
293                             skb_frag_size(frag), skb_frag_off(frag));
294                 sk_mem_charge(sk, skb_frag_size(frag));
295                 get_page(skb_frag_page(frag));
296         }
297         sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
298
299         /* all ready, send */
300         return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
301 }
302
303 static int tls_device_record_close(struct sock *sk,
304                                    struct tls_context *ctx,
305                                    struct tls_record_info *record,
306                                    struct page_frag *pfrag,
307                                    unsigned char record_type)
308 {
309         struct tls_prot_info *prot = &ctx->prot_info;
310         int ret;
311
312         /* append tag
313          * device will fill in the tag, we just need to append a placeholder
314          * use socket memory to improve coalescing (re-using a single buffer
315          * increases frag count)
316          * if we can't allocate memory now, steal some back from data
317          */
318         if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
319                                         sk->sk_allocation))) {
320                 ret = 0;
321                 tls_append_frag(record, pfrag, prot->tag_size);
322         } else {
323                 ret = prot->tag_size;
324                 if (record->len <= prot->overhead_size)
325                         return -ENOMEM;
326         }
327
328         /* fill prepend */
329         tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
330                          record->len - prot->overhead_size,
331                          record_type);
332         return ret;
333 }
334
335 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
336                                  struct page_frag *pfrag,
337                                  size_t prepend_size)
338 {
339         struct tls_record_info *record;
340         skb_frag_t *frag;
341
342         record = kmalloc(sizeof(*record), GFP_KERNEL);
343         if (!record)
344                 return -ENOMEM;
345
346         frag = &record->frags[0];
347         __skb_frag_set_page(frag, pfrag->page);
348         skb_frag_off_set(frag, pfrag->offset);
349         skb_frag_size_set(frag, prepend_size);
350
351         get_page(pfrag->page);
352         pfrag->offset += prepend_size;
353
354         record->num_frags = 1;
355         record->len = prepend_size;
356         offload_ctx->open_record = record;
357         return 0;
358 }
359
360 static int tls_do_allocation(struct sock *sk,
361                              struct tls_offload_context_tx *offload_ctx,
362                              struct page_frag *pfrag,
363                              size_t prepend_size)
364 {
365         int ret;
366
367         if (!offload_ctx->open_record) {
368                 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
369                                                    sk->sk_allocation))) {
370                         READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
371                         sk_stream_moderate_sndbuf(sk);
372                         return -ENOMEM;
373                 }
374
375                 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
376                 if (ret)
377                         return ret;
378
379                 if (pfrag->size > pfrag->offset)
380                         return 0;
381         }
382
383         if (!sk_page_frag_refill(sk, pfrag))
384                 return -ENOMEM;
385
386         return 0;
387 }
388
389 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
390 {
391         size_t pre_copy, nocache;
392
393         pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
394         if (pre_copy) {
395                 pre_copy = min(pre_copy, bytes);
396                 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
397                         return -EFAULT;
398                 bytes -= pre_copy;
399                 addr += pre_copy;
400         }
401
402         nocache = round_down(bytes, SMP_CACHE_BYTES);
403         if (copy_from_iter_nocache(addr, nocache, i) != nocache)
404                 return -EFAULT;
405         bytes -= nocache;
406         addr += nocache;
407
408         if (bytes && copy_from_iter(addr, bytes, i) != bytes)
409                 return -EFAULT;
410
411         return 0;
412 }
413
414 static int tls_push_data(struct sock *sk,
415                          struct iov_iter *msg_iter,
416                          size_t size, int flags,
417                          unsigned char record_type)
418 {
419         struct tls_context *tls_ctx = tls_get_ctx(sk);
420         struct tls_prot_info *prot = &tls_ctx->prot_info;
421         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
422         struct tls_record_info *record;
423         int tls_push_record_flags;
424         struct page_frag *pfrag;
425         size_t orig_size = size;
426         u32 max_open_record_len;
427         bool more = false;
428         bool done = false;
429         int copy, rc = 0;
430         long timeo;
431
432         if (flags &
433             ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
434                 return -EOPNOTSUPP;
435
436         if (unlikely(sk->sk_err))
437                 return -sk->sk_err;
438
439         flags |= MSG_SENDPAGE_DECRYPTED;
440         tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
441
442         timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
443         if (tls_is_partially_sent_record(tls_ctx)) {
444                 rc = tls_push_partial_record(sk, tls_ctx, flags);
445                 if (rc < 0)
446                         return rc;
447         }
448
449         pfrag = sk_page_frag(sk);
450
451         /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
452          * we need to leave room for an authentication tag.
453          */
454         max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
455                               prot->prepend_size;
456         do {
457                 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
458                 if (unlikely(rc)) {
459                         rc = sk_stream_wait_memory(sk, &timeo);
460                         if (!rc)
461                                 continue;
462
463                         record = ctx->open_record;
464                         if (!record)
465                                 break;
466 handle_error:
467                         if (record_type != TLS_RECORD_TYPE_DATA) {
468                                 /* avoid sending partial
469                                  * record with type !=
470                                  * application_data
471                                  */
472                                 size = orig_size;
473                                 destroy_record(record);
474                                 ctx->open_record = NULL;
475                         } else if (record->len > prot->prepend_size) {
476                                 goto last_record;
477                         }
478
479                         break;
480                 }
481
482                 record = ctx->open_record;
483                 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
484                 copy = min_t(size_t, copy, (max_open_record_len - record->len));
485
486                 if (copy) {
487                         rc = tls_device_copy_data(page_address(pfrag->page) +
488                                                   pfrag->offset, copy, msg_iter);
489                         if (rc)
490                                 goto handle_error;
491                         tls_append_frag(record, pfrag, copy);
492                 }
493
494                 size -= copy;
495                 if (!size) {
496 last_record:
497                         tls_push_record_flags = flags;
498                         if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
499                                 more = true;
500                                 break;
501                         }
502
503                         done = true;
504                 }
505
506                 if (done || record->len >= max_open_record_len ||
507                     (record->num_frags >= MAX_SKB_FRAGS - 1)) {
508                         rc = tls_device_record_close(sk, tls_ctx, record,
509                                                      pfrag, record_type);
510                         if (rc) {
511                                 if (rc > 0) {
512                                         size += rc;
513                                 } else {
514                                         size = orig_size;
515                                         destroy_record(record);
516                                         ctx->open_record = NULL;
517                                         break;
518                                 }
519                         }
520
521                         rc = tls_push_record(sk,
522                                              tls_ctx,
523                                              ctx,
524                                              record,
525                                              tls_push_record_flags);
526                         if (rc < 0)
527                                 break;
528                 }
529         } while (!done);
530
531         tls_ctx->pending_open_record_frags = more;
532
533         if (orig_size - size > 0)
534                 rc = orig_size - size;
535
536         return rc;
537 }
538
539 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
540 {
541         unsigned char record_type = TLS_RECORD_TYPE_DATA;
542         struct tls_context *tls_ctx = tls_get_ctx(sk);
543         int rc;
544
545         mutex_lock(&tls_ctx->tx_lock);
546         lock_sock(sk);
547
548         if (unlikely(msg->msg_controllen)) {
549                 rc = tls_proccess_cmsg(sk, msg, &record_type);
550                 if (rc)
551                         goto out;
552         }
553
554         rc = tls_push_data(sk, &msg->msg_iter, size,
555                            msg->msg_flags, record_type);
556
557 out:
558         release_sock(sk);
559         mutex_unlock(&tls_ctx->tx_lock);
560         return rc;
561 }
562
563 int tls_device_sendpage(struct sock *sk, struct page *page,
564                         int offset, size_t size, int flags)
565 {
566         struct tls_context *tls_ctx = tls_get_ctx(sk);
567         struct iov_iter msg_iter;
568         char *kaddr;
569         struct kvec iov;
570         int rc;
571
572         if (flags & MSG_SENDPAGE_NOTLAST)
573                 flags |= MSG_MORE;
574
575         mutex_lock(&tls_ctx->tx_lock);
576         lock_sock(sk);
577
578         if (flags & MSG_OOB) {
579                 rc = -EOPNOTSUPP;
580                 goto out;
581         }
582
583         kaddr = kmap(page);
584         iov.iov_base = kaddr + offset;
585         iov.iov_len = size;
586         iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
587         rc = tls_push_data(sk, &msg_iter, size,
588                            flags, TLS_RECORD_TYPE_DATA);
589         kunmap(page);
590
591 out:
592         release_sock(sk);
593         mutex_unlock(&tls_ctx->tx_lock);
594         return rc;
595 }
596
597 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
598                                        u32 seq, u64 *p_record_sn)
599 {
600         u64 record_sn = context->hint_record_sn;
601         struct tls_record_info *info, *last;
602
603         info = context->retransmit_hint;
604         if (!info ||
605             before(seq, info->end_seq - info->len)) {
606                 /* if retransmit_hint is irrelevant start
607                  * from the beginning of the list
608                  */
609                 info = list_first_entry_or_null(&context->records_list,
610                                                 struct tls_record_info, list);
611                 if (!info)
612                         return NULL;
613                 /* send the start_marker record if seq number is before the
614                  * tls offload start marker sequence number. This record is
615                  * required to handle TCP packets which are before TLS offload
616                  * started.
617                  *  And if it's not start marker, look if this seq number
618                  * belongs to the list.
619                  */
620                 if (likely(!tls_record_is_start_marker(info))) {
621                         /* we have the first record, get the last record to see
622                          * if this seq number belongs to the list.
623                          */
624                         last = list_last_entry(&context->records_list,
625                                                struct tls_record_info, list);
626
627                         if (!between(seq, tls_record_start_seq(info),
628                                      last->end_seq))
629                                 return NULL;
630                 }
631                 record_sn = context->unacked_record_sn;
632         }
633
634         /* We just need the _rcu for the READ_ONCE() */
635         rcu_read_lock();
636         list_for_each_entry_from_rcu(info, &context->records_list, list) {
637                 if (before(seq, info->end_seq)) {
638                         if (!context->retransmit_hint ||
639                             after(info->end_seq,
640                                   context->retransmit_hint->end_seq)) {
641                                 context->hint_record_sn = record_sn;
642                                 context->retransmit_hint = info;
643                         }
644                         *p_record_sn = record_sn;
645                         goto exit_rcu_unlock;
646                 }
647                 record_sn++;
648         }
649         info = NULL;
650
651 exit_rcu_unlock:
652         rcu_read_unlock();
653         return info;
654 }
655 EXPORT_SYMBOL(tls_get_record);
656
657 static int tls_device_push_pending_record(struct sock *sk, int flags)
658 {
659         struct iov_iter msg_iter;
660
661         iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
662         return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
663 }
664
665 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
666 {
667         if (tls_is_partially_sent_record(ctx)) {
668                 gfp_t sk_allocation = sk->sk_allocation;
669
670                 WARN_ON_ONCE(sk->sk_write_pending);
671
672                 sk->sk_allocation = GFP_ATOMIC;
673                 tls_push_partial_record(sk, ctx,
674                                         MSG_DONTWAIT | MSG_NOSIGNAL |
675                                         MSG_SENDPAGE_DECRYPTED);
676                 sk->sk_allocation = sk_allocation;
677         }
678 }
679
680 static void tls_device_resync_rx(struct tls_context *tls_ctx,
681                                  struct sock *sk, u32 seq, u8 *rcd_sn)
682 {
683         struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
684         struct net_device *netdev;
685
686         trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
687         rcu_read_lock();
688         netdev = READ_ONCE(tls_ctx->netdev);
689         if (netdev)
690                 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
691                                                    TLS_OFFLOAD_CTX_DIR_RX);
692         rcu_read_unlock();
693         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
694 }
695
696 static bool
697 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
698                            s64 resync_req, u32 *seq, u16 *rcd_delta)
699 {
700         u32 is_async = resync_req & RESYNC_REQ_ASYNC;
701         u32 req_seq = resync_req >> 32;
702         u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
703         u16 i;
704
705         *rcd_delta = 0;
706
707         if (is_async) {
708                 /* shouldn't get to wraparound:
709                  * too long in async stage, something bad happened
710                  */
711                 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
712                         return false;
713
714                 /* asynchronous stage: log all headers seq such that
715                  * req_seq <= seq <= end_seq, and wait for real resync request
716                  */
717                 if (before(*seq, req_seq))
718                         return false;
719                 if (!after(*seq, req_end) &&
720                     resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
721                         resync_async->log[resync_async->loglen++] = *seq;
722
723                 resync_async->rcd_delta++;
724
725                 return false;
726         }
727
728         /* synchronous stage: check against the logged entries and
729          * proceed to check the next entries if no match was found
730          */
731         for (i = 0; i < resync_async->loglen; i++)
732                 if (req_seq == resync_async->log[i] &&
733                     atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
734                         *rcd_delta = resync_async->rcd_delta - i;
735                         *seq = req_seq;
736                         resync_async->loglen = 0;
737                         resync_async->rcd_delta = 0;
738                         return true;
739                 }
740
741         resync_async->loglen = 0;
742         resync_async->rcd_delta = 0;
743
744         if (req_seq == *seq &&
745             atomic64_try_cmpxchg(&resync_async->req,
746                                  &resync_req, 0))
747                 return true;
748
749         return false;
750 }
751
752 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
753 {
754         struct tls_context *tls_ctx = tls_get_ctx(sk);
755         struct tls_offload_context_rx *rx_ctx;
756         u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
757         u32 sock_data, is_req_pending;
758         struct tls_prot_info *prot;
759         s64 resync_req;
760         u16 rcd_delta;
761         u32 req_seq;
762
763         if (tls_ctx->rx_conf != TLS_HW)
764                 return;
765         if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
766                 return;
767
768         prot = &tls_ctx->prot_info;
769         rx_ctx = tls_offload_ctx_rx(tls_ctx);
770         memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
771
772         switch (rx_ctx->resync_type) {
773         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
774                 resync_req = atomic64_read(&rx_ctx->resync_req);
775                 req_seq = resync_req >> 32;
776                 seq += TLS_HEADER_SIZE - 1;
777                 is_req_pending = resync_req;
778
779                 if (likely(!is_req_pending) || req_seq != seq ||
780                     !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
781                         return;
782                 break;
783         case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
784                 if (likely(!rx_ctx->resync_nh_do_now))
785                         return;
786
787                 /* head of next rec is already in, note that the sock_inq will
788                  * include the currently parsed message when called from parser
789                  */
790                 sock_data = tcp_inq(sk);
791                 if (sock_data > rcd_len) {
792                         trace_tls_device_rx_resync_nh_delay(sk, sock_data,
793                                                             rcd_len);
794                         return;
795                 }
796
797                 rx_ctx->resync_nh_do_now = 0;
798                 seq += rcd_len;
799                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
800                 break;
801         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
802                 resync_req = atomic64_read(&rx_ctx->resync_async->req);
803                 is_req_pending = resync_req;
804                 if (likely(!is_req_pending))
805                         return;
806
807                 if (!tls_device_rx_resync_async(rx_ctx->resync_async,
808                                                 resync_req, &seq, &rcd_delta))
809                         return;
810                 tls_bigint_subtract(rcd_sn, rcd_delta);
811                 break;
812         }
813
814         tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
815 }
816
817 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
818                                            struct tls_offload_context_rx *ctx,
819                                            struct sock *sk, struct sk_buff *skb)
820 {
821         struct strp_msg *rxm;
822
823         /* device will request resyncs by itself based on stream scan */
824         if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
825                 return;
826         /* already scheduled */
827         if (ctx->resync_nh_do_now)
828                 return;
829         /* seen decrypted fragments since last fully-failed record */
830         if (ctx->resync_nh_reset) {
831                 ctx->resync_nh_reset = 0;
832                 ctx->resync_nh.decrypted_failed = 1;
833                 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
834                 return;
835         }
836
837         if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
838                 return;
839
840         /* doing resync, bump the next target in case it fails */
841         if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
842                 ctx->resync_nh.decrypted_tgt *= 2;
843         else
844                 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
845
846         rxm = strp_msg(skb);
847
848         /* head of next rec is already in, parser will sync for us */
849         if (tcp_inq(sk) > rxm->full_len) {
850                 trace_tls_device_rx_resync_nh_schedule(sk);
851                 ctx->resync_nh_do_now = 1;
852         } else {
853                 struct tls_prot_info *prot = &tls_ctx->prot_info;
854                 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
855
856                 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
857                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
858
859                 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
860                                      rcd_sn);
861         }
862 }
863
864 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
865 {
866         struct strp_msg *rxm = strp_msg(skb);
867         int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
868         struct sk_buff *skb_iter, *unused;
869         struct scatterlist sg[1];
870         char *orig_buf, *buf;
871
872         orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
873                            TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
874         if (!orig_buf)
875                 return -ENOMEM;
876         buf = orig_buf;
877
878         nsg = skb_cow_data(skb, 0, &unused);
879         if (unlikely(nsg < 0)) {
880                 err = nsg;
881                 goto free_buf;
882         }
883
884         sg_init_table(sg, 1);
885         sg_set_buf(&sg[0], buf,
886                    rxm->full_len + TLS_HEADER_SIZE +
887                    TLS_CIPHER_AES_GCM_128_IV_SIZE);
888         err = skb_copy_bits(skb, offset, buf,
889                             TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
890         if (err)
891                 goto free_buf;
892
893         /* We are interested only in the decrypted data not the auth */
894         err = decrypt_skb(sk, skb, sg);
895         if (err != -EBADMSG)
896                 goto free_buf;
897         else
898                 err = 0;
899
900         data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
901
902         if (skb_pagelen(skb) > offset) {
903                 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
904
905                 if (skb->decrypted) {
906                         err = skb_store_bits(skb, offset, buf, copy);
907                         if (err)
908                                 goto free_buf;
909                 }
910
911                 offset += copy;
912                 buf += copy;
913         }
914
915         pos = skb_pagelen(skb);
916         skb_walk_frags(skb, skb_iter) {
917                 int frag_pos;
918
919                 /* Practically all frags must belong to msg if reencrypt
920                  * is needed with current strparser and coalescing logic,
921                  * but strparser may "get optimized", so let's be safe.
922                  */
923                 if (pos + skb_iter->len <= offset)
924                         goto done_with_frag;
925                 if (pos >= data_len + rxm->offset)
926                         break;
927
928                 frag_pos = offset - pos;
929                 copy = min_t(int, skb_iter->len - frag_pos,
930                              data_len + rxm->offset - offset);
931
932                 if (skb_iter->decrypted) {
933                         err = skb_store_bits(skb_iter, frag_pos, buf, copy);
934                         if (err)
935                                 goto free_buf;
936                 }
937
938                 offset += copy;
939                 buf += copy;
940 done_with_frag:
941                 pos += skb_iter->len;
942         }
943
944 free_buf:
945         kfree(orig_buf);
946         return err;
947 }
948
949 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
950                          struct sk_buff *skb, struct strp_msg *rxm)
951 {
952         struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
953         int is_decrypted = skb->decrypted;
954         int is_encrypted = !is_decrypted;
955         struct sk_buff *skb_iter;
956
957         /* Check if all the data is decrypted already */
958         skb_walk_frags(skb, skb_iter) {
959                 is_decrypted &= skb_iter->decrypted;
960                 is_encrypted &= !skb_iter->decrypted;
961         }
962
963         trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
964                                    tls_ctx->rx.rec_seq, rxm->full_len,
965                                    is_encrypted, is_decrypted);
966
967         ctx->sw.decrypted |= is_decrypted;
968
969         if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
970                 if (likely(is_encrypted || is_decrypted))
971                         return 0;
972
973                 /* After tls_device_down disables the offload, the next SKB will
974                  * likely have initial fragments decrypted, and final ones not
975                  * decrypted. We need to reencrypt that single SKB.
976                  */
977                 return tls_device_reencrypt(sk, skb);
978         }
979
980         /* Return immediately if the record is either entirely plaintext or
981          * entirely ciphertext. Otherwise handle reencrypt partially decrypted
982          * record.
983          */
984         if (is_decrypted) {
985                 ctx->resync_nh_reset = 1;
986                 return 0;
987         }
988         if (is_encrypted) {
989                 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
990                 return 0;
991         }
992
993         ctx->resync_nh_reset = 1;
994         return tls_device_reencrypt(sk, skb);
995 }
996
997 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
998                               struct net_device *netdev)
999 {
1000         if (sk->sk_destruct != tls_device_sk_destruct) {
1001                 refcount_set(&ctx->refcount, 1);
1002                 dev_hold(netdev);
1003                 ctx->netdev = netdev;
1004                 spin_lock_irq(&tls_device_lock);
1005                 list_add_tail(&ctx->list, &tls_device_list);
1006                 spin_unlock_irq(&tls_device_lock);
1007
1008                 ctx->sk_destruct = sk->sk_destruct;
1009                 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1010         }
1011 }
1012
1013 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1014 {
1015         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
1016         struct tls_context *tls_ctx = tls_get_ctx(sk);
1017         struct tls_prot_info *prot = &tls_ctx->prot_info;
1018         struct tls_record_info *start_marker_record;
1019         struct tls_offload_context_tx *offload_ctx;
1020         struct tls_crypto_info *crypto_info;
1021         struct net_device *netdev;
1022         char *iv, *rec_seq;
1023         struct sk_buff *skb;
1024         __be64 rcd_sn;
1025         int rc;
1026
1027         if (!ctx)
1028                 return -EINVAL;
1029
1030         if (ctx->priv_ctx_tx)
1031                 return -EEXIST;
1032
1033         start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1034         if (!start_marker_record)
1035                 return -ENOMEM;
1036
1037         offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1038         if (!offload_ctx) {
1039                 rc = -ENOMEM;
1040                 goto free_marker_record;
1041         }
1042
1043         crypto_info = &ctx->crypto_send.info;
1044         if (crypto_info->version != TLS_1_2_VERSION) {
1045                 rc = -EOPNOTSUPP;
1046                 goto free_offload_ctx;
1047         }
1048
1049         switch (crypto_info->cipher_type) {
1050         case TLS_CIPHER_AES_GCM_128:
1051                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1052                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1053                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1054                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1055                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1056                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
1057                 rec_seq =
1058                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1059                 break;
1060         default:
1061                 rc = -EINVAL;
1062                 goto free_offload_ctx;
1063         }
1064
1065         /* Sanity-check the rec_seq_size for stack allocations */
1066         if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
1067                 rc = -EINVAL;
1068                 goto free_offload_ctx;
1069         }
1070
1071         prot->version = crypto_info->version;
1072         prot->cipher_type = crypto_info->cipher_type;
1073         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
1074         prot->tag_size = tag_size;
1075         prot->overhead_size = prot->prepend_size + prot->tag_size;
1076         prot->iv_size = iv_size;
1077         prot->salt_size = salt_size;
1078         ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1079                              GFP_KERNEL);
1080         if (!ctx->tx.iv) {
1081                 rc = -ENOMEM;
1082                 goto free_offload_ctx;
1083         }
1084
1085         memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1086
1087         prot->rec_seq_size = rec_seq_size;
1088         ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1089         if (!ctx->tx.rec_seq) {
1090                 rc = -ENOMEM;
1091                 goto free_iv;
1092         }
1093
1094         rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1095         if (rc)
1096                 goto free_rec_seq;
1097
1098         /* start at rec_seq - 1 to account for the start marker record */
1099         memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1100         offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1101
1102         start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1103         start_marker_record->len = 0;
1104         start_marker_record->num_frags = 0;
1105
1106         INIT_LIST_HEAD(&offload_ctx->records_list);
1107         list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1108         spin_lock_init(&offload_ctx->lock);
1109         sg_init_table(offload_ctx->sg_tx_data,
1110                       ARRAY_SIZE(offload_ctx->sg_tx_data));
1111
1112         clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1113         ctx->push_pending_record = tls_device_push_pending_record;
1114
1115         /* TLS offload is greatly simplified if we don't send
1116          * SKBs where only part of the payload needs to be encrypted.
1117          * So mark the last skb in the write queue as end of record.
1118          */
1119         skb = tcp_write_queue_tail(sk);
1120         if (skb)
1121                 TCP_SKB_CB(skb)->eor = 1;
1122
1123         netdev = get_netdev_for_sock(sk);
1124         if (!netdev) {
1125                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1126                 rc = -EINVAL;
1127                 goto disable_cad;
1128         }
1129
1130         if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1131                 rc = -EOPNOTSUPP;
1132                 goto release_netdev;
1133         }
1134
1135         /* Avoid offloading if the device is down
1136          * We don't want to offload new flows after
1137          * the NETDEV_DOWN event
1138          *
1139          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1140          * handler thus protecting from the device going down before
1141          * ctx was added to tls_device_list.
1142          */
1143         down_read(&device_offload_lock);
1144         if (!(netdev->flags & IFF_UP)) {
1145                 rc = -EINVAL;
1146                 goto release_lock;
1147         }
1148
1149         ctx->priv_ctx_tx = offload_ctx;
1150         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1151                                              &ctx->crypto_send.info,
1152                                              tcp_sk(sk)->write_seq);
1153         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1154                                      tcp_sk(sk)->write_seq, rec_seq, rc);
1155         if (rc)
1156                 goto release_lock;
1157
1158         tls_device_attach(ctx, sk, netdev);
1159         up_read(&device_offload_lock);
1160
1161         /* following this assignment tls_is_sk_tx_device_offloaded
1162          * will return true and the context might be accessed
1163          * by the netdev's xmit function.
1164          */
1165         smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1166         dev_put(netdev);
1167
1168         return 0;
1169
1170 release_lock:
1171         up_read(&device_offload_lock);
1172 release_netdev:
1173         dev_put(netdev);
1174 disable_cad:
1175         clean_acked_data_disable(inet_csk(sk));
1176         crypto_free_aead(offload_ctx->aead_send);
1177 free_rec_seq:
1178         kfree(ctx->tx.rec_seq);
1179 free_iv:
1180         kfree(ctx->tx.iv);
1181 free_offload_ctx:
1182         kfree(offload_ctx);
1183         ctx->priv_ctx_tx = NULL;
1184 free_marker_record:
1185         kfree(start_marker_record);
1186         return rc;
1187 }
1188
1189 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1190 {
1191         struct tls12_crypto_info_aes_gcm_128 *info;
1192         struct tls_offload_context_rx *context;
1193         struct net_device *netdev;
1194         int rc = 0;
1195
1196         if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1197                 return -EOPNOTSUPP;
1198
1199         netdev = get_netdev_for_sock(sk);
1200         if (!netdev) {
1201                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1202                 return -EINVAL;
1203         }
1204
1205         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1206                 rc = -EOPNOTSUPP;
1207                 goto release_netdev;
1208         }
1209
1210         /* Avoid offloading if the device is down
1211          * We don't want to offload new flows after
1212          * the NETDEV_DOWN event
1213          *
1214          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1215          * handler thus protecting from the device going down before
1216          * ctx was added to tls_device_list.
1217          */
1218         down_read(&device_offload_lock);
1219         if (!(netdev->flags & IFF_UP)) {
1220                 rc = -EINVAL;
1221                 goto release_lock;
1222         }
1223
1224         context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1225         if (!context) {
1226                 rc = -ENOMEM;
1227                 goto release_lock;
1228         }
1229         context->resync_nh_reset = 1;
1230
1231         ctx->priv_ctx_rx = context;
1232         rc = tls_set_sw_offload(sk, ctx, 0);
1233         if (rc)
1234                 goto release_ctx;
1235
1236         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1237                                              &ctx->crypto_recv.info,
1238                                              tcp_sk(sk)->copied_seq);
1239         info = (void *)&ctx->crypto_recv.info;
1240         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1241                                      tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1242         if (rc)
1243                 goto free_sw_resources;
1244
1245         tls_device_attach(ctx, sk, netdev);
1246         up_read(&device_offload_lock);
1247
1248         dev_put(netdev);
1249
1250         return 0;
1251
1252 free_sw_resources:
1253         up_read(&device_offload_lock);
1254         tls_sw_free_resources_rx(sk);
1255         down_read(&device_offload_lock);
1256 release_ctx:
1257         ctx->priv_ctx_rx = NULL;
1258 release_lock:
1259         up_read(&device_offload_lock);
1260 release_netdev:
1261         dev_put(netdev);
1262         return rc;
1263 }
1264
1265 void tls_device_offload_cleanup_rx(struct sock *sk)
1266 {
1267         struct tls_context *tls_ctx = tls_get_ctx(sk);
1268         struct net_device *netdev;
1269
1270         down_read(&device_offload_lock);
1271         netdev = tls_ctx->netdev;
1272         if (!netdev)
1273                 goto out;
1274
1275         netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1276                                         TLS_OFFLOAD_CTX_DIR_RX);
1277
1278         if (tls_ctx->tx_conf != TLS_HW) {
1279                 dev_put(netdev);
1280                 tls_ctx->netdev = NULL;
1281         } else {
1282                 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1283         }
1284 out:
1285         up_read(&device_offload_lock);
1286         tls_sw_release_resources_rx(sk);
1287 }
1288
1289 static int tls_device_down(struct net_device *netdev)
1290 {
1291         struct tls_context *ctx, *tmp;
1292         unsigned long flags;
1293         LIST_HEAD(list);
1294
1295         /* Request a write lock to block new offload attempts */
1296         down_write(&device_offload_lock);
1297
1298         spin_lock_irqsave(&tls_device_lock, flags);
1299         list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1300                 if (ctx->netdev != netdev ||
1301                     !refcount_inc_not_zero(&ctx->refcount))
1302                         continue;
1303
1304                 list_move(&ctx->list, &list);
1305         }
1306         spin_unlock_irqrestore(&tls_device_lock, flags);
1307
1308         list_for_each_entry_safe(ctx, tmp, &list, list) {
1309                 /* Stop offloaded TX and switch to the fallback.
1310                  * tls_is_sk_tx_device_offloaded will return false.
1311                  */
1312                 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1313
1314                 /* Stop the RX and TX resync.
1315                  * tls_dev_resync must not be called after tls_dev_del.
1316                  */
1317                 WRITE_ONCE(ctx->netdev, NULL);
1318
1319                 /* Start skipping the RX resync logic completely. */
1320                 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1321
1322                 /* Sync with inflight packets. After this point:
1323                  * TX: no non-encrypted packets will be passed to the driver.
1324                  * RX: resync requests from the driver will be ignored.
1325                  */
1326                 synchronize_net();
1327
1328                 /* Release the offload context on the driver side. */
1329                 if (ctx->tx_conf == TLS_HW)
1330                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1331                                                         TLS_OFFLOAD_CTX_DIR_TX);
1332                 if (ctx->rx_conf == TLS_HW &&
1333                     !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1334                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1335                                                         TLS_OFFLOAD_CTX_DIR_RX);
1336
1337                 dev_put(netdev);
1338
1339                 /* Move the context to a separate list for two reasons:
1340                  * 1. When the context is deallocated, list_del is called.
1341                  * 2. It's no longer an offloaded context, so we don't want to
1342                  *    run offload-specific code on this context.
1343                  */
1344                 spin_lock_irqsave(&tls_device_lock, flags);
1345                 list_move_tail(&ctx->list, &tls_device_down_list);
1346                 spin_unlock_irqrestore(&tls_device_lock, flags);
1347
1348                 /* Device contexts for RX and TX will be freed in on sk_destruct
1349                  * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1350                  */
1351         }
1352
1353         up_write(&device_offload_lock);
1354
1355         flush_work(&tls_device_gc_work);
1356
1357         return NOTIFY_DONE;
1358 }
1359
1360 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1361                          void *ptr)
1362 {
1363         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1364
1365         if (!dev->tlsdev_ops &&
1366             !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1367                 return NOTIFY_DONE;
1368
1369         switch (event) {
1370         case NETDEV_REGISTER:
1371         case NETDEV_FEAT_CHANGE:
1372                 if (netif_is_bond_master(dev))
1373                         return NOTIFY_DONE;
1374                 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1375                     !dev->tlsdev_ops->tls_dev_resync)
1376                         return NOTIFY_BAD;
1377
1378                 if  (dev->tlsdev_ops &&
1379                      dev->tlsdev_ops->tls_dev_add &&
1380                      dev->tlsdev_ops->tls_dev_del)
1381                         return NOTIFY_DONE;
1382                 else
1383                         return NOTIFY_BAD;
1384         case NETDEV_DOWN:
1385                 return tls_device_down(dev);
1386         }
1387         return NOTIFY_DONE;
1388 }
1389
1390 static struct notifier_block tls_dev_notifier = {
1391         .notifier_call  = tls_dev_event,
1392 };
1393
1394 void __init tls_device_init(void)
1395 {
1396         register_netdevice_notifier(&tls_dev_notifier);
1397 }
1398
1399 void __exit tls_device_cleanup(void)
1400 {
1401         unregister_netdevice_notifier(&tls_dev_notifier);
1402         flush_work(&tls_device_gc_work);
1403         clean_acked_data_flush();
1404 }