Merge tag 'ceph-for-5.14-rc1' of git://github.com/ceph/ceph-client
[platform/kernel/linux-starfive.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 #include "trace.h"
42
43 /* device_offload_lock is used to synchronize tls_dev_add
44  * against NETDEV_DOWN notifications.
45  */
46 static DECLARE_RWSEM(device_offload_lock);
47
48 static void tls_device_gc_task(struct work_struct *work);
49
50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
51 static LIST_HEAD(tls_device_gc_list);
52 static LIST_HEAD(tls_device_list);
53 static LIST_HEAD(tls_device_down_list);
54 static DEFINE_SPINLOCK(tls_device_lock);
55
56 static void tls_device_free_ctx(struct tls_context *ctx)
57 {
58         if (ctx->tx_conf == TLS_HW) {
59                 kfree(tls_offload_ctx_tx(ctx));
60                 kfree(ctx->tx.rec_seq);
61                 kfree(ctx->tx.iv);
62         }
63
64         if (ctx->rx_conf == TLS_HW)
65                 kfree(tls_offload_ctx_rx(ctx));
66
67         tls_ctx_free(NULL, ctx);
68 }
69
70 static void tls_device_gc_task(struct work_struct *work)
71 {
72         struct tls_context *ctx, *tmp;
73         unsigned long flags;
74         LIST_HEAD(gc_list);
75
76         spin_lock_irqsave(&tls_device_lock, flags);
77         list_splice_init(&tls_device_gc_list, &gc_list);
78         spin_unlock_irqrestore(&tls_device_lock, flags);
79
80         list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
81                 struct net_device *netdev = ctx->netdev;
82
83                 if (netdev && ctx->tx_conf == TLS_HW) {
84                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
85                                                         TLS_OFFLOAD_CTX_DIR_TX);
86                         dev_put(netdev);
87                         ctx->netdev = NULL;
88                 }
89
90                 list_del(&ctx->list);
91                 tls_device_free_ctx(ctx);
92         }
93 }
94
95 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
96 {
97         unsigned long flags;
98
99         spin_lock_irqsave(&tls_device_lock, flags);
100         list_move_tail(&ctx->list, &tls_device_gc_list);
101
102         /* schedule_work inside the spinlock
103          * to make sure tls_device_down waits for that work.
104          */
105         schedule_work(&tls_device_gc_work);
106
107         spin_unlock_irqrestore(&tls_device_lock, flags);
108 }
109
110 /* We assume that the socket is already connected */
111 static struct net_device *get_netdev_for_sock(struct sock *sk)
112 {
113         struct dst_entry *dst = sk_dst_get(sk);
114         struct net_device *netdev = NULL;
115
116         if (likely(dst)) {
117                 netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
118                 dev_hold(netdev);
119         }
120
121         dst_release(dst);
122
123         return netdev;
124 }
125
126 static void destroy_record(struct tls_record_info *record)
127 {
128         int i;
129
130         for (i = 0; i < record->num_frags; i++)
131                 __skb_frag_unref(&record->frags[i], false);
132         kfree(record);
133 }
134
135 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
136 {
137         struct tls_record_info *info, *temp;
138
139         list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
140                 list_del(&info->list);
141                 destroy_record(info);
142         }
143
144         offload_ctx->retransmit_hint = NULL;
145 }
146
147 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
148 {
149         struct tls_context *tls_ctx = tls_get_ctx(sk);
150         struct tls_record_info *info, *temp;
151         struct tls_offload_context_tx *ctx;
152         u64 deleted_records = 0;
153         unsigned long flags;
154
155         if (!tls_ctx)
156                 return;
157
158         ctx = tls_offload_ctx_tx(tls_ctx);
159
160         spin_lock_irqsave(&ctx->lock, flags);
161         info = ctx->retransmit_hint;
162         if (info && !before(acked_seq, info->end_seq))
163                 ctx->retransmit_hint = NULL;
164
165         list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
166                 if (before(acked_seq, info->end_seq))
167                         break;
168                 list_del(&info->list);
169
170                 destroy_record(info);
171                 deleted_records++;
172         }
173
174         ctx->unacked_record_sn += deleted_records;
175         spin_unlock_irqrestore(&ctx->lock, flags);
176 }
177
178 /* At this point, there should be no references on this
179  * socket and no in-flight SKBs associated with this
180  * socket, so it is safe to free all the resources.
181  */
182 void tls_device_sk_destruct(struct sock *sk)
183 {
184         struct tls_context *tls_ctx = tls_get_ctx(sk);
185         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
186
187         tls_ctx->sk_destruct(sk);
188
189         if (tls_ctx->tx_conf == TLS_HW) {
190                 if (ctx->open_record)
191                         destroy_record(ctx->open_record);
192                 delete_all_records(ctx);
193                 crypto_free_aead(ctx->aead_send);
194                 clean_acked_data_disable(inet_csk(sk));
195         }
196
197         if (refcount_dec_and_test(&tls_ctx->refcount))
198                 tls_device_queue_ctx_destruction(tls_ctx);
199 }
200 EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
201
202 void tls_device_free_resources_tx(struct sock *sk)
203 {
204         struct tls_context *tls_ctx = tls_get_ctx(sk);
205
206         tls_free_partial_record(sk, tls_ctx);
207 }
208
209 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
210 {
211         struct tls_context *tls_ctx = tls_get_ctx(sk);
212
213         trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
214         WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
215 }
216 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
217
218 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
219                                  u32 seq)
220 {
221         struct net_device *netdev;
222         struct sk_buff *skb;
223         int err = 0;
224         u8 *rcd_sn;
225
226         skb = tcp_write_queue_tail(sk);
227         if (skb)
228                 TCP_SKB_CB(skb)->eor = 1;
229
230         rcd_sn = tls_ctx->tx.rec_seq;
231
232         trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
233         down_read(&device_offload_lock);
234         netdev = tls_ctx->netdev;
235         if (netdev)
236                 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
237                                                          rcd_sn,
238                                                          TLS_OFFLOAD_CTX_DIR_TX);
239         up_read(&device_offload_lock);
240         if (err)
241                 return;
242
243         clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
244 }
245
246 static void tls_append_frag(struct tls_record_info *record,
247                             struct page_frag *pfrag,
248                             int size)
249 {
250         skb_frag_t *frag;
251
252         frag = &record->frags[record->num_frags - 1];
253         if (skb_frag_page(frag) == pfrag->page &&
254             skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
255                 skb_frag_size_add(frag, size);
256         } else {
257                 ++frag;
258                 __skb_frag_set_page(frag, pfrag->page);
259                 skb_frag_off_set(frag, pfrag->offset);
260                 skb_frag_size_set(frag, size);
261                 ++record->num_frags;
262                 get_page(pfrag->page);
263         }
264
265         pfrag->offset += size;
266         record->len += size;
267 }
268
269 static int tls_push_record(struct sock *sk,
270                            struct tls_context *ctx,
271                            struct tls_offload_context_tx *offload_ctx,
272                            struct tls_record_info *record,
273                            int flags)
274 {
275         struct tls_prot_info *prot = &ctx->prot_info;
276         struct tcp_sock *tp = tcp_sk(sk);
277         skb_frag_t *frag;
278         int i;
279
280         record->end_seq = tp->write_seq + record->len;
281         list_add_tail_rcu(&record->list, &offload_ctx->records_list);
282         offload_ctx->open_record = NULL;
283
284         if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
285                 tls_device_resync_tx(sk, ctx, tp->write_seq);
286
287         tls_advance_record_sn(sk, prot, &ctx->tx);
288
289         for (i = 0; i < record->num_frags; i++) {
290                 frag = &record->frags[i];
291                 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
292                 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
293                             skb_frag_size(frag), skb_frag_off(frag));
294                 sk_mem_charge(sk, skb_frag_size(frag));
295                 get_page(skb_frag_page(frag));
296         }
297         sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
298
299         /* all ready, send */
300         return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
301 }
302
303 static int tls_device_record_close(struct sock *sk,
304                                    struct tls_context *ctx,
305                                    struct tls_record_info *record,
306                                    struct page_frag *pfrag,
307                                    unsigned char record_type)
308 {
309         struct tls_prot_info *prot = &ctx->prot_info;
310         int ret;
311
312         /* append tag
313          * device will fill in the tag, we just need to append a placeholder
314          * use socket memory to improve coalescing (re-using a single buffer
315          * increases frag count)
316          * if we can't allocate memory now, steal some back from data
317          */
318         if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
319                                         sk->sk_allocation))) {
320                 ret = 0;
321                 tls_append_frag(record, pfrag, prot->tag_size);
322         } else {
323                 ret = prot->tag_size;
324                 if (record->len <= prot->overhead_size)
325                         return -ENOMEM;
326         }
327
328         /* fill prepend */
329         tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
330                          record->len - prot->overhead_size,
331                          record_type);
332         return ret;
333 }
334
335 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
336                                  struct page_frag *pfrag,
337                                  size_t prepend_size)
338 {
339         struct tls_record_info *record;
340         skb_frag_t *frag;
341
342         record = kmalloc(sizeof(*record), GFP_KERNEL);
343         if (!record)
344                 return -ENOMEM;
345
346         frag = &record->frags[0];
347         __skb_frag_set_page(frag, pfrag->page);
348         skb_frag_off_set(frag, pfrag->offset);
349         skb_frag_size_set(frag, prepend_size);
350
351         get_page(pfrag->page);
352         pfrag->offset += prepend_size;
353
354         record->num_frags = 1;
355         record->len = prepend_size;
356         offload_ctx->open_record = record;
357         return 0;
358 }
359
360 static int tls_do_allocation(struct sock *sk,
361                              struct tls_offload_context_tx *offload_ctx,
362                              struct page_frag *pfrag,
363                              size_t prepend_size)
364 {
365         int ret;
366
367         if (!offload_ctx->open_record) {
368                 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
369                                                    sk->sk_allocation))) {
370                         READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
371                         sk_stream_moderate_sndbuf(sk);
372                         return -ENOMEM;
373                 }
374
375                 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
376                 if (ret)
377                         return ret;
378
379                 if (pfrag->size > pfrag->offset)
380                         return 0;
381         }
382
383         if (!sk_page_frag_refill(sk, pfrag))
384                 return -ENOMEM;
385
386         return 0;
387 }
388
389 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
390 {
391         size_t pre_copy, nocache;
392
393         pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
394         if (pre_copy) {
395                 pre_copy = min(pre_copy, bytes);
396                 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
397                         return -EFAULT;
398                 bytes -= pre_copy;
399                 addr += pre_copy;
400         }
401
402         nocache = round_down(bytes, SMP_CACHE_BYTES);
403         if (copy_from_iter_nocache(addr, nocache, i) != nocache)
404                 return -EFAULT;
405         bytes -= nocache;
406         addr += nocache;
407
408         if (bytes && copy_from_iter(addr, bytes, i) != bytes)
409                 return -EFAULT;
410
411         return 0;
412 }
413
414 static int tls_push_data(struct sock *sk,
415                          struct iov_iter *msg_iter,
416                          size_t size, int flags,
417                          unsigned char record_type)
418 {
419         struct tls_context *tls_ctx = tls_get_ctx(sk);
420         struct tls_prot_info *prot = &tls_ctx->prot_info;
421         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
422         struct tls_record_info *record;
423         int tls_push_record_flags;
424         struct page_frag *pfrag;
425         size_t orig_size = size;
426         u32 max_open_record_len;
427         bool more = false;
428         bool done = false;
429         int copy, rc = 0;
430         long timeo;
431
432         if (flags &
433             ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
434                 return -EOPNOTSUPP;
435
436         if (unlikely(sk->sk_err))
437                 return -sk->sk_err;
438
439         flags |= MSG_SENDPAGE_DECRYPTED;
440         tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
441
442         timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
443         if (tls_is_partially_sent_record(tls_ctx)) {
444                 rc = tls_push_partial_record(sk, tls_ctx, flags);
445                 if (rc < 0)
446                         return rc;
447         }
448
449         pfrag = sk_page_frag(sk);
450
451         /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
452          * we need to leave room for an authentication tag.
453          */
454         max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
455                               prot->prepend_size;
456         do {
457                 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
458                 if (unlikely(rc)) {
459                         rc = sk_stream_wait_memory(sk, &timeo);
460                         if (!rc)
461                                 continue;
462
463                         record = ctx->open_record;
464                         if (!record)
465                                 break;
466 handle_error:
467                         if (record_type != TLS_RECORD_TYPE_DATA) {
468                                 /* avoid sending partial
469                                  * record with type !=
470                                  * application_data
471                                  */
472                                 size = orig_size;
473                                 destroy_record(record);
474                                 ctx->open_record = NULL;
475                         } else if (record->len > prot->prepend_size) {
476                                 goto last_record;
477                         }
478
479                         break;
480                 }
481
482                 record = ctx->open_record;
483                 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
484                 copy = min_t(size_t, copy, (max_open_record_len - record->len));
485
486                 rc = tls_device_copy_data(page_address(pfrag->page) +
487                                           pfrag->offset, copy, msg_iter);
488                 if (rc)
489                         goto handle_error;
490                 tls_append_frag(record, pfrag, copy);
491
492                 size -= copy;
493                 if (!size) {
494 last_record:
495                         tls_push_record_flags = flags;
496                         if (flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE)) {
497                                 more = true;
498                                 break;
499                         }
500
501                         done = true;
502                 }
503
504                 if (done || record->len >= max_open_record_len ||
505                     (record->num_frags >= MAX_SKB_FRAGS - 1)) {
506                         rc = tls_device_record_close(sk, tls_ctx, record,
507                                                      pfrag, record_type);
508                         if (rc) {
509                                 if (rc > 0) {
510                                         size += rc;
511                                 } else {
512                                         size = orig_size;
513                                         destroy_record(record);
514                                         ctx->open_record = NULL;
515                                         break;
516                                 }
517                         }
518
519                         rc = tls_push_record(sk,
520                                              tls_ctx,
521                                              ctx,
522                                              record,
523                                              tls_push_record_flags);
524                         if (rc < 0)
525                                 break;
526                 }
527         } while (!done);
528
529         tls_ctx->pending_open_record_frags = more;
530
531         if (orig_size - size > 0)
532                 rc = orig_size - size;
533
534         return rc;
535 }
536
537 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
538 {
539         unsigned char record_type = TLS_RECORD_TYPE_DATA;
540         struct tls_context *tls_ctx = tls_get_ctx(sk);
541         int rc;
542
543         mutex_lock(&tls_ctx->tx_lock);
544         lock_sock(sk);
545
546         if (unlikely(msg->msg_controllen)) {
547                 rc = tls_proccess_cmsg(sk, msg, &record_type);
548                 if (rc)
549                         goto out;
550         }
551
552         rc = tls_push_data(sk, &msg->msg_iter, size,
553                            msg->msg_flags, record_type);
554
555 out:
556         release_sock(sk);
557         mutex_unlock(&tls_ctx->tx_lock);
558         return rc;
559 }
560
561 int tls_device_sendpage(struct sock *sk, struct page *page,
562                         int offset, size_t size, int flags)
563 {
564         struct tls_context *tls_ctx = tls_get_ctx(sk);
565         struct iov_iter msg_iter;
566         char *kaddr;
567         struct kvec iov;
568         int rc;
569
570         if (flags & MSG_SENDPAGE_NOTLAST)
571                 flags |= MSG_MORE;
572
573         mutex_lock(&tls_ctx->tx_lock);
574         lock_sock(sk);
575
576         if (flags & MSG_OOB) {
577                 rc = -EOPNOTSUPP;
578                 goto out;
579         }
580
581         kaddr = kmap(page);
582         iov.iov_base = kaddr + offset;
583         iov.iov_len = size;
584         iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
585         rc = tls_push_data(sk, &msg_iter, size,
586                            flags, TLS_RECORD_TYPE_DATA);
587         kunmap(page);
588
589 out:
590         release_sock(sk);
591         mutex_unlock(&tls_ctx->tx_lock);
592         return rc;
593 }
594
595 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
596                                        u32 seq, u64 *p_record_sn)
597 {
598         u64 record_sn = context->hint_record_sn;
599         struct tls_record_info *info, *last;
600
601         info = context->retransmit_hint;
602         if (!info ||
603             before(seq, info->end_seq - info->len)) {
604                 /* if retransmit_hint is irrelevant start
605                  * from the beginning of the list
606                  */
607                 info = list_first_entry_or_null(&context->records_list,
608                                                 struct tls_record_info, list);
609                 if (!info)
610                         return NULL;
611                 /* send the start_marker record if seq number is before the
612                  * tls offload start marker sequence number. This record is
613                  * required to handle TCP packets which are before TLS offload
614                  * started.
615                  *  And if it's not start marker, look if this seq number
616                  * belongs to the list.
617                  */
618                 if (likely(!tls_record_is_start_marker(info))) {
619                         /* we have the first record, get the last record to see
620                          * if this seq number belongs to the list.
621                          */
622                         last = list_last_entry(&context->records_list,
623                                                struct tls_record_info, list);
624
625                         if (!between(seq, tls_record_start_seq(info),
626                                      last->end_seq))
627                                 return NULL;
628                 }
629                 record_sn = context->unacked_record_sn;
630         }
631
632         /* We just need the _rcu for the READ_ONCE() */
633         rcu_read_lock();
634         list_for_each_entry_from_rcu(info, &context->records_list, list) {
635                 if (before(seq, info->end_seq)) {
636                         if (!context->retransmit_hint ||
637                             after(info->end_seq,
638                                   context->retransmit_hint->end_seq)) {
639                                 context->hint_record_sn = record_sn;
640                                 context->retransmit_hint = info;
641                         }
642                         *p_record_sn = record_sn;
643                         goto exit_rcu_unlock;
644                 }
645                 record_sn++;
646         }
647         info = NULL;
648
649 exit_rcu_unlock:
650         rcu_read_unlock();
651         return info;
652 }
653 EXPORT_SYMBOL(tls_get_record);
654
655 static int tls_device_push_pending_record(struct sock *sk, int flags)
656 {
657         struct iov_iter msg_iter;
658
659         iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
660         return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
661 }
662
663 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
664 {
665         if (tls_is_partially_sent_record(ctx)) {
666                 gfp_t sk_allocation = sk->sk_allocation;
667
668                 WARN_ON_ONCE(sk->sk_write_pending);
669
670                 sk->sk_allocation = GFP_ATOMIC;
671                 tls_push_partial_record(sk, ctx,
672                                         MSG_DONTWAIT | MSG_NOSIGNAL |
673                                         MSG_SENDPAGE_DECRYPTED);
674                 sk->sk_allocation = sk_allocation;
675         }
676 }
677
678 static void tls_device_resync_rx(struct tls_context *tls_ctx,
679                                  struct sock *sk, u32 seq, u8 *rcd_sn)
680 {
681         struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
682         struct net_device *netdev;
683
684         trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
685         rcu_read_lock();
686         netdev = READ_ONCE(tls_ctx->netdev);
687         if (netdev)
688                 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
689                                                    TLS_OFFLOAD_CTX_DIR_RX);
690         rcu_read_unlock();
691         TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
692 }
693
694 static bool
695 tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
696                            s64 resync_req, u32 *seq, u16 *rcd_delta)
697 {
698         u32 is_async = resync_req & RESYNC_REQ_ASYNC;
699         u32 req_seq = resync_req >> 32;
700         u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
701         u16 i;
702
703         *rcd_delta = 0;
704
705         if (is_async) {
706                 /* shouldn't get to wraparound:
707                  * too long in async stage, something bad happened
708                  */
709                 if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
710                         return false;
711
712                 /* asynchronous stage: log all headers seq such that
713                  * req_seq <= seq <= end_seq, and wait for real resync request
714                  */
715                 if (before(*seq, req_seq))
716                         return false;
717                 if (!after(*seq, req_end) &&
718                     resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
719                         resync_async->log[resync_async->loglen++] = *seq;
720
721                 resync_async->rcd_delta++;
722
723                 return false;
724         }
725
726         /* synchronous stage: check against the logged entries and
727          * proceed to check the next entries if no match was found
728          */
729         for (i = 0; i < resync_async->loglen; i++)
730                 if (req_seq == resync_async->log[i] &&
731                     atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
732                         *rcd_delta = resync_async->rcd_delta - i;
733                         *seq = req_seq;
734                         resync_async->loglen = 0;
735                         resync_async->rcd_delta = 0;
736                         return true;
737                 }
738
739         resync_async->loglen = 0;
740         resync_async->rcd_delta = 0;
741
742         if (req_seq == *seq &&
743             atomic64_try_cmpxchg(&resync_async->req,
744                                  &resync_req, 0))
745                 return true;
746
747         return false;
748 }
749
750 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
751 {
752         struct tls_context *tls_ctx = tls_get_ctx(sk);
753         struct tls_offload_context_rx *rx_ctx;
754         u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
755         u32 sock_data, is_req_pending;
756         struct tls_prot_info *prot;
757         s64 resync_req;
758         u16 rcd_delta;
759         u32 req_seq;
760
761         if (tls_ctx->rx_conf != TLS_HW)
762                 return;
763         if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
764                 return;
765
766         prot = &tls_ctx->prot_info;
767         rx_ctx = tls_offload_ctx_rx(tls_ctx);
768         memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
769
770         switch (rx_ctx->resync_type) {
771         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
772                 resync_req = atomic64_read(&rx_ctx->resync_req);
773                 req_seq = resync_req >> 32;
774                 seq += TLS_HEADER_SIZE - 1;
775                 is_req_pending = resync_req;
776
777                 if (likely(!is_req_pending) || req_seq != seq ||
778                     !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
779                         return;
780                 break;
781         case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
782                 if (likely(!rx_ctx->resync_nh_do_now))
783                         return;
784
785                 /* head of next rec is already in, note that the sock_inq will
786                  * include the currently parsed message when called from parser
787                  */
788                 sock_data = tcp_inq(sk);
789                 if (sock_data > rcd_len) {
790                         trace_tls_device_rx_resync_nh_delay(sk, sock_data,
791                                                             rcd_len);
792                         return;
793                 }
794
795                 rx_ctx->resync_nh_do_now = 0;
796                 seq += rcd_len;
797                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
798                 break;
799         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
800                 resync_req = atomic64_read(&rx_ctx->resync_async->req);
801                 is_req_pending = resync_req;
802                 if (likely(!is_req_pending))
803                         return;
804
805                 if (!tls_device_rx_resync_async(rx_ctx->resync_async,
806                                                 resync_req, &seq, &rcd_delta))
807                         return;
808                 tls_bigint_subtract(rcd_sn, rcd_delta);
809                 break;
810         }
811
812         tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
813 }
814
815 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
816                                            struct tls_offload_context_rx *ctx,
817                                            struct sock *sk, struct sk_buff *skb)
818 {
819         struct strp_msg *rxm;
820
821         /* device will request resyncs by itself based on stream scan */
822         if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
823                 return;
824         /* already scheduled */
825         if (ctx->resync_nh_do_now)
826                 return;
827         /* seen decrypted fragments since last fully-failed record */
828         if (ctx->resync_nh_reset) {
829                 ctx->resync_nh_reset = 0;
830                 ctx->resync_nh.decrypted_failed = 1;
831                 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
832                 return;
833         }
834
835         if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
836                 return;
837
838         /* doing resync, bump the next target in case it fails */
839         if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
840                 ctx->resync_nh.decrypted_tgt *= 2;
841         else
842                 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
843
844         rxm = strp_msg(skb);
845
846         /* head of next rec is already in, parser will sync for us */
847         if (tcp_inq(sk) > rxm->full_len) {
848                 trace_tls_device_rx_resync_nh_schedule(sk);
849                 ctx->resync_nh_do_now = 1;
850         } else {
851                 struct tls_prot_info *prot = &tls_ctx->prot_info;
852                 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
853
854                 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
855                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
856
857                 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
858                                      rcd_sn);
859         }
860 }
861
862 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
863 {
864         struct strp_msg *rxm = strp_msg(skb);
865         int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
866         struct sk_buff *skb_iter, *unused;
867         struct scatterlist sg[1];
868         char *orig_buf, *buf;
869
870         orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
871                            TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
872         if (!orig_buf)
873                 return -ENOMEM;
874         buf = orig_buf;
875
876         nsg = skb_cow_data(skb, 0, &unused);
877         if (unlikely(nsg < 0)) {
878                 err = nsg;
879                 goto free_buf;
880         }
881
882         sg_init_table(sg, 1);
883         sg_set_buf(&sg[0], buf,
884                    rxm->full_len + TLS_HEADER_SIZE +
885                    TLS_CIPHER_AES_GCM_128_IV_SIZE);
886         err = skb_copy_bits(skb, offset, buf,
887                             TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
888         if (err)
889                 goto free_buf;
890
891         /* We are interested only in the decrypted data not the auth */
892         err = decrypt_skb(sk, skb, sg);
893         if (err != -EBADMSG)
894                 goto free_buf;
895         else
896                 err = 0;
897
898         data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
899
900         if (skb_pagelen(skb) > offset) {
901                 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
902
903                 if (skb->decrypted) {
904                         err = skb_store_bits(skb, offset, buf, copy);
905                         if (err)
906                                 goto free_buf;
907                 }
908
909                 offset += copy;
910                 buf += copy;
911         }
912
913         pos = skb_pagelen(skb);
914         skb_walk_frags(skb, skb_iter) {
915                 int frag_pos;
916
917                 /* Practically all frags must belong to msg if reencrypt
918                  * is needed with current strparser and coalescing logic,
919                  * but strparser may "get optimized", so let's be safe.
920                  */
921                 if (pos + skb_iter->len <= offset)
922                         goto done_with_frag;
923                 if (pos >= data_len + rxm->offset)
924                         break;
925
926                 frag_pos = offset - pos;
927                 copy = min_t(int, skb_iter->len - frag_pos,
928                              data_len + rxm->offset - offset);
929
930                 if (skb_iter->decrypted) {
931                         err = skb_store_bits(skb_iter, frag_pos, buf, copy);
932                         if (err)
933                                 goto free_buf;
934                 }
935
936                 offset += copy;
937                 buf += copy;
938 done_with_frag:
939                 pos += skb_iter->len;
940         }
941
942 free_buf:
943         kfree(orig_buf);
944         return err;
945 }
946
947 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
948                          struct sk_buff *skb, struct strp_msg *rxm)
949 {
950         struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
951         int is_decrypted = skb->decrypted;
952         int is_encrypted = !is_decrypted;
953         struct sk_buff *skb_iter;
954
955         /* Check if all the data is decrypted already */
956         skb_walk_frags(skb, skb_iter) {
957                 is_decrypted &= skb_iter->decrypted;
958                 is_encrypted &= !skb_iter->decrypted;
959         }
960
961         trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
962                                    tls_ctx->rx.rec_seq, rxm->full_len,
963                                    is_encrypted, is_decrypted);
964
965         ctx->sw.decrypted |= is_decrypted;
966
967         if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
968                 if (likely(is_encrypted || is_decrypted))
969                         return 0;
970
971                 /* After tls_device_down disables the offload, the next SKB will
972                  * likely have initial fragments decrypted, and final ones not
973                  * decrypted. We need to reencrypt that single SKB.
974                  */
975                 return tls_device_reencrypt(sk, skb);
976         }
977
978         /* Return immediately if the record is either entirely plaintext or
979          * entirely ciphertext. Otherwise handle reencrypt partially decrypted
980          * record.
981          */
982         if (is_decrypted) {
983                 ctx->resync_nh_reset = 1;
984                 return 0;
985         }
986         if (is_encrypted) {
987                 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
988                 return 0;
989         }
990
991         ctx->resync_nh_reset = 1;
992         return tls_device_reencrypt(sk, skb);
993 }
994
995 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
996                               struct net_device *netdev)
997 {
998         if (sk->sk_destruct != tls_device_sk_destruct) {
999                 refcount_set(&ctx->refcount, 1);
1000                 dev_hold(netdev);
1001                 ctx->netdev = netdev;
1002                 spin_lock_irq(&tls_device_lock);
1003                 list_add_tail(&ctx->list, &tls_device_list);
1004                 spin_unlock_irq(&tls_device_lock);
1005
1006                 ctx->sk_destruct = sk->sk_destruct;
1007                 smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1008         }
1009 }
1010
1011 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1012 {
1013         u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
1014         struct tls_context *tls_ctx = tls_get_ctx(sk);
1015         struct tls_prot_info *prot = &tls_ctx->prot_info;
1016         struct tls_record_info *start_marker_record;
1017         struct tls_offload_context_tx *offload_ctx;
1018         struct tls_crypto_info *crypto_info;
1019         struct net_device *netdev;
1020         char *iv, *rec_seq;
1021         struct sk_buff *skb;
1022         __be64 rcd_sn;
1023         int rc;
1024
1025         if (!ctx)
1026                 return -EINVAL;
1027
1028         if (ctx->priv_ctx_tx)
1029                 return -EEXIST;
1030
1031         start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1032         if (!start_marker_record)
1033                 return -ENOMEM;
1034
1035         offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1036         if (!offload_ctx) {
1037                 rc = -ENOMEM;
1038                 goto free_marker_record;
1039         }
1040
1041         crypto_info = &ctx->crypto_send.info;
1042         if (crypto_info->version != TLS_1_2_VERSION) {
1043                 rc = -EOPNOTSUPP;
1044                 goto free_offload_ctx;
1045         }
1046
1047         switch (crypto_info->cipher_type) {
1048         case TLS_CIPHER_AES_GCM_128:
1049                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1050                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1051                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1052                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1053                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1054                 salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
1055                 rec_seq =
1056                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1057                 break;
1058         default:
1059                 rc = -EINVAL;
1060                 goto free_offload_ctx;
1061         }
1062
1063         /* Sanity-check the rec_seq_size for stack allocations */
1064         if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
1065                 rc = -EINVAL;
1066                 goto free_offload_ctx;
1067         }
1068
1069         prot->version = crypto_info->version;
1070         prot->cipher_type = crypto_info->cipher_type;
1071         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
1072         prot->tag_size = tag_size;
1073         prot->overhead_size = prot->prepend_size + prot->tag_size;
1074         prot->iv_size = iv_size;
1075         prot->salt_size = salt_size;
1076         ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1077                              GFP_KERNEL);
1078         if (!ctx->tx.iv) {
1079                 rc = -ENOMEM;
1080                 goto free_offload_ctx;
1081         }
1082
1083         memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1084
1085         prot->rec_seq_size = rec_seq_size;
1086         ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1087         if (!ctx->tx.rec_seq) {
1088                 rc = -ENOMEM;
1089                 goto free_iv;
1090         }
1091
1092         rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1093         if (rc)
1094                 goto free_rec_seq;
1095
1096         /* start at rec_seq - 1 to account for the start marker record */
1097         memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1098         offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1099
1100         start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1101         start_marker_record->len = 0;
1102         start_marker_record->num_frags = 0;
1103
1104         INIT_LIST_HEAD(&offload_ctx->records_list);
1105         list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1106         spin_lock_init(&offload_ctx->lock);
1107         sg_init_table(offload_ctx->sg_tx_data,
1108                       ARRAY_SIZE(offload_ctx->sg_tx_data));
1109
1110         clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1111         ctx->push_pending_record = tls_device_push_pending_record;
1112
1113         /* TLS offload is greatly simplified if we don't send
1114          * SKBs where only part of the payload needs to be encrypted.
1115          * So mark the last skb in the write queue as end of record.
1116          */
1117         skb = tcp_write_queue_tail(sk);
1118         if (skb)
1119                 TCP_SKB_CB(skb)->eor = 1;
1120
1121         netdev = get_netdev_for_sock(sk);
1122         if (!netdev) {
1123                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1124                 rc = -EINVAL;
1125                 goto disable_cad;
1126         }
1127
1128         if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1129                 rc = -EOPNOTSUPP;
1130                 goto release_netdev;
1131         }
1132
1133         /* Avoid offloading if the device is down
1134          * We don't want to offload new flows after
1135          * the NETDEV_DOWN event
1136          *
1137          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1138          * handler thus protecting from the device going down before
1139          * ctx was added to tls_device_list.
1140          */
1141         down_read(&device_offload_lock);
1142         if (!(netdev->flags & IFF_UP)) {
1143                 rc = -EINVAL;
1144                 goto release_lock;
1145         }
1146
1147         ctx->priv_ctx_tx = offload_ctx;
1148         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1149                                              &ctx->crypto_send.info,
1150                                              tcp_sk(sk)->write_seq);
1151         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1152                                      tcp_sk(sk)->write_seq, rec_seq, rc);
1153         if (rc)
1154                 goto release_lock;
1155
1156         tls_device_attach(ctx, sk, netdev);
1157         up_read(&device_offload_lock);
1158
1159         /* following this assignment tls_is_sk_tx_device_offloaded
1160          * will return true and the context might be accessed
1161          * by the netdev's xmit function.
1162          */
1163         smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1164         dev_put(netdev);
1165
1166         return 0;
1167
1168 release_lock:
1169         up_read(&device_offload_lock);
1170 release_netdev:
1171         dev_put(netdev);
1172 disable_cad:
1173         clean_acked_data_disable(inet_csk(sk));
1174         crypto_free_aead(offload_ctx->aead_send);
1175 free_rec_seq:
1176         kfree(ctx->tx.rec_seq);
1177 free_iv:
1178         kfree(ctx->tx.iv);
1179 free_offload_ctx:
1180         kfree(offload_ctx);
1181         ctx->priv_ctx_tx = NULL;
1182 free_marker_record:
1183         kfree(start_marker_record);
1184         return rc;
1185 }
1186
1187 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1188 {
1189         struct tls12_crypto_info_aes_gcm_128 *info;
1190         struct tls_offload_context_rx *context;
1191         struct net_device *netdev;
1192         int rc = 0;
1193
1194         if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1195                 return -EOPNOTSUPP;
1196
1197         netdev = get_netdev_for_sock(sk);
1198         if (!netdev) {
1199                 pr_err_ratelimited("%s: netdev not found\n", __func__);
1200                 return -EINVAL;
1201         }
1202
1203         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1204                 rc = -EOPNOTSUPP;
1205                 goto release_netdev;
1206         }
1207
1208         /* Avoid offloading if the device is down
1209          * We don't want to offload new flows after
1210          * the NETDEV_DOWN event
1211          *
1212          * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1213          * handler thus protecting from the device going down before
1214          * ctx was added to tls_device_list.
1215          */
1216         down_read(&device_offload_lock);
1217         if (!(netdev->flags & IFF_UP)) {
1218                 rc = -EINVAL;
1219                 goto release_lock;
1220         }
1221
1222         context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1223         if (!context) {
1224                 rc = -ENOMEM;
1225                 goto release_lock;
1226         }
1227         context->resync_nh_reset = 1;
1228
1229         ctx->priv_ctx_rx = context;
1230         rc = tls_set_sw_offload(sk, ctx, 0);
1231         if (rc)
1232                 goto release_ctx;
1233
1234         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1235                                              &ctx->crypto_recv.info,
1236                                              tcp_sk(sk)->copied_seq);
1237         info = (void *)&ctx->crypto_recv.info;
1238         trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1239                                      tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1240         if (rc)
1241                 goto free_sw_resources;
1242
1243         tls_device_attach(ctx, sk, netdev);
1244         up_read(&device_offload_lock);
1245
1246         dev_put(netdev);
1247
1248         return 0;
1249
1250 free_sw_resources:
1251         up_read(&device_offload_lock);
1252         tls_sw_free_resources_rx(sk);
1253         down_read(&device_offload_lock);
1254 release_ctx:
1255         ctx->priv_ctx_rx = NULL;
1256 release_lock:
1257         up_read(&device_offload_lock);
1258 release_netdev:
1259         dev_put(netdev);
1260         return rc;
1261 }
1262
1263 void tls_device_offload_cleanup_rx(struct sock *sk)
1264 {
1265         struct tls_context *tls_ctx = tls_get_ctx(sk);
1266         struct net_device *netdev;
1267
1268         down_read(&device_offload_lock);
1269         netdev = tls_ctx->netdev;
1270         if (!netdev)
1271                 goto out;
1272
1273         netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1274                                         TLS_OFFLOAD_CTX_DIR_RX);
1275
1276         if (tls_ctx->tx_conf != TLS_HW) {
1277                 dev_put(netdev);
1278                 tls_ctx->netdev = NULL;
1279         } else {
1280                 set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1281         }
1282 out:
1283         up_read(&device_offload_lock);
1284         tls_sw_release_resources_rx(sk);
1285 }
1286
1287 static int tls_device_down(struct net_device *netdev)
1288 {
1289         struct tls_context *ctx, *tmp;
1290         unsigned long flags;
1291         LIST_HEAD(list);
1292
1293         /* Request a write lock to block new offload attempts */
1294         down_write(&device_offload_lock);
1295
1296         spin_lock_irqsave(&tls_device_lock, flags);
1297         list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1298                 if (ctx->netdev != netdev ||
1299                     !refcount_inc_not_zero(&ctx->refcount))
1300                         continue;
1301
1302                 list_move(&ctx->list, &list);
1303         }
1304         spin_unlock_irqrestore(&tls_device_lock, flags);
1305
1306         list_for_each_entry_safe(ctx, tmp, &list, list) {
1307                 /* Stop offloaded TX and switch to the fallback.
1308                  * tls_is_sk_tx_device_offloaded will return false.
1309                  */
1310                 WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1311
1312                 /* Stop the RX and TX resync.
1313                  * tls_dev_resync must not be called after tls_dev_del.
1314                  */
1315                 WRITE_ONCE(ctx->netdev, NULL);
1316
1317                 /* Start skipping the RX resync logic completely. */
1318                 set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1319
1320                 /* Sync with inflight packets. After this point:
1321                  * TX: no non-encrypted packets will be passed to the driver.
1322                  * RX: resync requests from the driver will be ignored.
1323                  */
1324                 synchronize_net();
1325
1326                 /* Release the offload context on the driver side. */
1327                 if (ctx->tx_conf == TLS_HW)
1328                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1329                                                         TLS_OFFLOAD_CTX_DIR_TX);
1330                 if (ctx->rx_conf == TLS_HW &&
1331                     !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1332                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1333                                                         TLS_OFFLOAD_CTX_DIR_RX);
1334
1335                 dev_put(netdev);
1336
1337                 /* Move the context to a separate list for two reasons:
1338                  * 1. When the context is deallocated, list_del is called.
1339                  * 2. It's no longer an offloaded context, so we don't want to
1340                  *    run offload-specific code on this context.
1341                  */
1342                 spin_lock_irqsave(&tls_device_lock, flags);
1343                 list_move_tail(&ctx->list, &tls_device_down_list);
1344                 spin_unlock_irqrestore(&tls_device_lock, flags);
1345
1346                 /* Device contexts for RX and TX will be freed in on sk_destruct
1347                  * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1348                  */
1349         }
1350
1351         up_write(&device_offload_lock);
1352
1353         flush_work(&tls_device_gc_work);
1354
1355         return NOTIFY_DONE;
1356 }
1357
1358 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1359                          void *ptr)
1360 {
1361         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1362
1363         if (!dev->tlsdev_ops &&
1364             !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1365                 return NOTIFY_DONE;
1366
1367         switch (event) {
1368         case NETDEV_REGISTER:
1369         case NETDEV_FEAT_CHANGE:
1370                 if (netif_is_bond_master(dev))
1371                         return NOTIFY_DONE;
1372                 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1373                     !dev->tlsdev_ops->tls_dev_resync)
1374                         return NOTIFY_BAD;
1375
1376                 if  (dev->tlsdev_ops &&
1377                      dev->tlsdev_ops->tls_dev_add &&
1378                      dev->tlsdev_ops->tls_dev_del)
1379                         return NOTIFY_DONE;
1380                 else
1381                         return NOTIFY_BAD;
1382         case NETDEV_DOWN:
1383                 return tls_device_down(dev);
1384         }
1385         return NOTIFY_DONE;
1386 }
1387
1388 static struct notifier_block tls_dev_notifier = {
1389         .notifier_call  = tls_dev_event,
1390 };
1391
1392 void __init tls_device_init(void)
1393 {
1394         register_netdevice_notifier(&tls_dev_notifier);
1395 }
1396
1397 void __exit tls_device_cleanup(void)
1398 {
1399         unregister_netdevice_notifier(&tls_dev_notifier);
1400         flush_work(&tls_device_gc_work);
1401         clean_acked_data_flush();
1402 }