net/tls: generalize the resync callback
[platform/kernel/linux-rpi.git] / net / tls / tls_device.c
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2  *
3  * This software is available to you under a choice of one of two
4  * licenses.  You may choose to be licensed under the terms of the GNU
5  * General Public License (GPL) Version 2, available from the file
6  * COPYING in the main directory of this source tree, or the
7  * OpenIB.org BSD license below:
8  *
9  *     Redistribution and use in source and binary forms, with or
10  *     without modification, are permitted provided that the following
11  *     conditions are met:
12  *
13  *      - Redistributions of source code must retain the above
14  *        copyright notice, this list of conditions and the following
15  *        disclaimer.
16  *
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
40
41 /* device_offload_lock is used to synchronize tls_dev_add
42  * against NETDEV_DOWN notifications.
43  */
44 static DECLARE_RWSEM(device_offload_lock);
45
46 static void tls_device_gc_task(struct work_struct *work);
47
48 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
49 static LIST_HEAD(tls_device_gc_list);
50 static LIST_HEAD(tls_device_list);
51 static DEFINE_SPINLOCK(tls_device_lock);
52
53 static void tls_device_free_ctx(struct tls_context *ctx)
54 {
55         if (ctx->tx_conf == TLS_HW) {
56                 kfree(tls_offload_ctx_tx(ctx));
57                 kfree(ctx->tx.rec_seq);
58                 kfree(ctx->tx.iv);
59         }
60
61         if (ctx->rx_conf == TLS_HW)
62                 kfree(tls_offload_ctx_rx(ctx));
63
64         kfree(ctx);
65 }
66
67 static void tls_device_gc_task(struct work_struct *work)
68 {
69         struct tls_context *ctx, *tmp;
70         unsigned long flags;
71         LIST_HEAD(gc_list);
72
73         spin_lock_irqsave(&tls_device_lock, flags);
74         list_splice_init(&tls_device_gc_list, &gc_list);
75         spin_unlock_irqrestore(&tls_device_lock, flags);
76
77         list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
78                 struct net_device *netdev = ctx->netdev;
79
80                 if (netdev && ctx->tx_conf == TLS_HW) {
81                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
82                                                         TLS_OFFLOAD_CTX_DIR_TX);
83                         dev_put(netdev);
84                         ctx->netdev = NULL;
85                 }
86
87                 list_del(&ctx->list);
88                 tls_device_free_ctx(ctx);
89         }
90 }
91
92 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
93 {
94         unsigned long flags;
95
96         spin_lock_irqsave(&tls_device_lock, flags);
97         list_move_tail(&ctx->list, &tls_device_gc_list);
98
99         /* schedule_work inside the spinlock
100          * to make sure tls_device_down waits for that work.
101          */
102         schedule_work(&tls_device_gc_work);
103
104         spin_unlock_irqrestore(&tls_device_lock, flags);
105 }
106
107 /* We assume that the socket is already connected */
108 static struct net_device *get_netdev_for_sock(struct sock *sk)
109 {
110         struct dst_entry *dst = sk_dst_get(sk);
111         struct net_device *netdev = NULL;
112
113         if (likely(dst)) {
114                 netdev = dst->dev;
115                 dev_hold(netdev);
116         }
117
118         dst_release(dst);
119
120         return netdev;
121 }
122
123 static void destroy_record(struct tls_record_info *record)
124 {
125         int nr_frags = record->num_frags;
126         skb_frag_t *frag;
127
128         while (nr_frags-- > 0) {
129                 frag = &record->frags[nr_frags];
130                 __skb_frag_unref(frag);
131         }
132         kfree(record);
133 }
134
135 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
136 {
137         struct tls_record_info *info, *temp;
138
139         list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
140                 list_del(&info->list);
141                 destroy_record(info);
142         }
143
144         offload_ctx->retransmit_hint = NULL;
145 }
146
147 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
148 {
149         struct tls_context *tls_ctx = tls_get_ctx(sk);
150         struct tls_record_info *info, *temp;
151         struct tls_offload_context_tx *ctx;
152         u64 deleted_records = 0;
153         unsigned long flags;
154
155         if (!tls_ctx)
156                 return;
157
158         ctx = tls_offload_ctx_tx(tls_ctx);
159
160         spin_lock_irqsave(&ctx->lock, flags);
161         info = ctx->retransmit_hint;
162         if (info && !before(acked_seq, info->end_seq)) {
163                 ctx->retransmit_hint = NULL;
164                 list_del(&info->list);
165                 destroy_record(info);
166                 deleted_records++;
167         }
168
169         list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
170                 if (before(acked_seq, info->end_seq))
171                         break;
172                 list_del(&info->list);
173
174                 destroy_record(info);
175                 deleted_records++;
176         }
177
178         ctx->unacked_record_sn += deleted_records;
179         spin_unlock_irqrestore(&ctx->lock, flags);
180 }
181
182 /* At this point, there should be no references on this
183  * socket and no in-flight SKBs associated with this
184  * socket, so it is safe to free all the resources.
185  */
186 static void tls_device_sk_destruct(struct sock *sk)
187 {
188         struct tls_context *tls_ctx = tls_get_ctx(sk);
189         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
190
191         tls_ctx->sk_destruct(sk);
192
193         if (tls_ctx->tx_conf == TLS_HW) {
194                 if (ctx->open_record)
195                         destroy_record(ctx->open_record);
196                 delete_all_records(ctx);
197                 crypto_free_aead(ctx->aead_send);
198                 clean_acked_data_disable(inet_csk(sk));
199         }
200
201         if (refcount_dec_and_test(&tls_ctx->refcount))
202                 tls_device_queue_ctx_destruction(tls_ctx);
203 }
204
205 void tls_device_free_resources_tx(struct sock *sk)
206 {
207         struct tls_context *tls_ctx = tls_get_ctx(sk);
208
209         tls_free_partial_record(sk, tls_ctx);
210 }
211
212 static void tls_append_frag(struct tls_record_info *record,
213                             struct page_frag *pfrag,
214                             int size)
215 {
216         skb_frag_t *frag;
217
218         frag = &record->frags[record->num_frags - 1];
219         if (frag->page.p == pfrag->page &&
220             frag->page_offset + frag->size == pfrag->offset) {
221                 frag->size += size;
222         } else {
223                 ++frag;
224                 frag->page.p = pfrag->page;
225                 frag->page_offset = pfrag->offset;
226                 frag->size = size;
227                 ++record->num_frags;
228                 get_page(pfrag->page);
229         }
230
231         pfrag->offset += size;
232         record->len += size;
233 }
234
235 static int tls_push_record(struct sock *sk,
236                            struct tls_context *ctx,
237                            struct tls_offload_context_tx *offload_ctx,
238                            struct tls_record_info *record,
239                            struct page_frag *pfrag,
240                            int flags,
241                            unsigned char record_type)
242 {
243         struct tls_prot_info *prot = &ctx->prot_info;
244         struct tcp_sock *tp = tcp_sk(sk);
245         struct page_frag dummy_tag_frag;
246         skb_frag_t *frag;
247         int i;
248
249         /* fill prepend */
250         frag = &record->frags[0];
251         tls_fill_prepend(ctx,
252                          skb_frag_address(frag),
253                          record->len - prot->prepend_size,
254                          record_type,
255                          prot->version);
256
257         /* HW doesn't care about the data in the tag, because it fills it. */
258         dummy_tag_frag.page = skb_frag_page(frag);
259         dummy_tag_frag.offset = 0;
260
261         tls_append_frag(record, &dummy_tag_frag, prot->tag_size);
262         record->end_seq = tp->write_seq + record->len;
263         spin_lock_irq(&offload_ctx->lock);
264         list_add_tail(&record->list, &offload_ctx->records_list);
265         spin_unlock_irq(&offload_ctx->lock);
266         offload_ctx->open_record = NULL;
267         tls_advance_record_sn(sk, prot, &ctx->tx);
268
269         for (i = 0; i < record->num_frags; i++) {
270                 frag = &record->frags[i];
271                 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
272                 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
273                             frag->size, frag->page_offset);
274                 sk_mem_charge(sk, frag->size);
275                 get_page(skb_frag_page(frag));
276         }
277         sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
278
279         /* all ready, send */
280         return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
281 }
282
283 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
284                                  struct page_frag *pfrag,
285                                  size_t prepend_size)
286 {
287         struct tls_record_info *record;
288         skb_frag_t *frag;
289
290         record = kmalloc(sizeof(*record), GFP_KERNEL);
291         if (!record)
292                 return -ENOMEM;
293
294         frag = &record->frags[0];
295         __skb_frag_set_page(frag, pfrag->page);
296         frag->page_offset = pfrag->offset;
297         skb_frag_size_set(frag, prepend_size);
298
299         get_page(pfrag->page);
300         pfrag->offset += prepend_size;
301
302         record->num_frags = 1;
303         record->len = prepend_size;
304         offload_ctx->open_record = record;
305         return 0;
306 }
307
308 static int tls_do_allocation(struct sock *sk,
309                              struct tls_offload_context_tx *offload_ctx,
310                              struct page_frag *pfrag,
311                              size_t prepend_size)
312 {
313         int ret;
314
315         if (!offload_ctx->open_record) {
316                 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
317                                                    sk->sk_allocation))) {
318                         sk->sk_prot->enter_memory_pressure(sk);
319                         sk_stream_moderate_sndbuf(sk);
320                         return -ENOMEM;
321                 }
322
323                 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
324                 if (ret)
325                         return ret;
326
327                 if (pfrag->size > pfrag->offset)
328                         return 0;
329         }
330
331         if (!sk_page_frag_refill(sk, pfrag))
332                 return -ENOMEM;
333
334         return 0;
335 }
336
337 static int tls_push_data(struct sock *sk,
338                          struct iov_iter *msg_iter,
339                          size_t size, int flags,
340                          unsigned char record_type)
341 {
342         struct tls_context *tls_ctx = tls_get_ctx(sk);
343         struct tls_prot_info *prot = &tls_ctx->prot_info;
344         struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
345         int tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
346         int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
347         struct tls_record_info *record = ctx->open_record;
348         struct page_frag *pfrag;
349         size_t orig_size = size;
350         u32 max_open_record_len;
351         int copy, rc = 0;
352         bool done = false;
353         long timeo;
354
355         if (flags &
356             ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
357                 return -ENOTSUPP;
358
359         if (sk->sk_err)
360                 return -sk->sk_err;
361
362         timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
363         if (tls_is_partially_sent_record(tls_ctx)) {
364                 rc = tls_push_partial_record(sk, tls_ctx, flags);
365                 if (rc < 0)
366                         return rc;
367         }
368
369         pfrag = sk_page_frag(sk);
370
371         /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
372          * we need to leave room for an authentication tag.
373          */
374         max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
375                               prot->prepend_size;
376         do {
377                 rc = tls_do_allocation(sk, ctx, pfrag,
378                                        prot->prepend_size);
379                 if (rc) {
380                         rc = sk_stream_wait_memory(sk, &timeo);
381                         if (!rc)
382                                 continue;
383
384                         record = ctx->open_record;
385                         if (!record)
386                                 break;
387 handle_error:
388                         if (record_type != TLS_RECORD_TYPE_DATA) {
389                                 /* avoid sending partial
390                                  * record with type !=
391                                  * application_data
392                                  */
393                                 size = orig_size;
394                                 destroy_record(record);
395                                 ctx->open_record = NULL;
396                         } else if (record->len > prot->prepend_size) {
397                                 goto last_record;
398                         }
399
400                         break;
401                 }
402
403                 record = ctx->open_record;
404                 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
405                 copy = min_t(size_t, copy, (max_open_record_len - record->len));
406
407                 if (copy_from_iter_nocache(page_address(pfrag->page) +
408                                                pfrag->offset,
409                                            copy, msg_iter) != copy) {
410                         rc = -EFAULT;
411                         goto handle_error;
412                 }
413                 tls_append_frag(record, pfrag, copy);
414
415                 size -= copy;
416                 if (!size) {
417 last_record:
418                         tls_push_record_flags = flags;
419                         if (more) {
420                                 tls_ctx->pending_open_record_frags =
421                                                 !!record->num_frags;
422                                 break;
423                         }
424
425                         done = true;
426                 }
427
428                 if (done || record->len >= max_open_record_len ||
429                     (record->num_frags >= MAX_SKB_FRAGS - 1)) {
430                         rc = tls_push_record(sk,
431                                              tls_ctx,
432                                              ctx,
433                                              record,
434                                              pfrag,
435                                              tls_push_record_flags,
436                                              record_type);
437                         if (rc < 0)
438                                 break;
439                 }
440         } while (!done);
441
442         if (orig_size - size > 0)
443                 rc = orig_size - size;
444
445         return rc;
446 }
447
448 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
449 {
450         unsigned char record_type = TLS_RECORD_TYPE_DATA;
451         int rc;
452
453         lock_sock(sk);
454
455         if (unlikely(msg->msg_controllen)) {
456                 rc = tls_proccess_cmsg(sk, msg, &record_type);
457                 if (rc)
458                         goto out;
459         }
460
461         rc = tls_push_data(sk, &msg->msg_iter, size,
462                            msg->msg_flags, record_type);
463
464 out:
465         release_sock(sk);
466         return rc;
467 }
468
469 int tls_device_sendpage(struct sock *sk, struct page *page,
470                         int offset, size_t size, int flags)
471 {
472         struct iov_iter msg_iter;
473         char *kaddr = kmap(page);
474         struct kvec iov;
475         int rc;
476
477         if (flags & MSG_SENDPAGE_NOTLAST)
478                 flags |= MSG_MORE;
479
480         lock_sock(sk);
481
482         if (flags & MSG_OOB) {
483                 rc = -ENOTSUPP;
484                 goto out;
485         }
486
487         iov.iov_base = kaddr + offset;
488         iov.iov_len = size;
489         iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
490         rc = tls_push_data(sk, &msg_iter, size,
491                            flags, TLS_RECORD_TYPE_DATA);
492         kunmap(page);
493
494 out:
495         release_sock(sk);
496         return rc;
497 }
498
499 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
500                                        u32 seq, u64 *p_record_sn)
501 {
502         u64 record_sn = context->hint_record_sn;
503         struct tls_record_info *info;
504
505         info = context->retransmit_hint;
506         if (!info ||
507             before(seq, info->end_seq - info->len)) {
508                 /* if retransmit_hint is irrelevant start
509                  * from the beggining of the list
510                  */
511                 info = list_first_entry(&context->records_list,
512                                         struct tls_record_info, list);
513                 record_sn = context->unacked_record_sn;
514         }
515
516         list_for_each_entry_from(info, &context->records_list, list) {
517                 if (before(seq, info->end_seq)) {
518                         if (!context->retransmit_hint ||
519                             after(info->end_seq,
520                                   context->retransmit_hint->end_seq)) {
521                                 context->hint_record_sn = record_sn;
522                                 context->retransmit_hint = info;
523                         }
524                         *p_record_sn = record_sn;
525                         return info;
526                 }
527                 record_sn++;
528         }
529
530         return NULL;
531 }
532 EXPORT_SYMBOL(tls_get_record);
533
534 static int tls_device_push_pending_record(struct sock *sk, int flags)
535 {
536         struct iov_iter msg_iter;
537
538         iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
539         return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
540 }
541
542 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
543 {
544         if (!sk->sk_write_pending && tls_is_partially_sent_record(ctx)) {
545                 gfp_t sk_allocation = sk->sk_allocation;
546
547                 sk->sk_allocation = GFP_ATOMIC;
548                 tls_push_partial_record(sk, ctx, MSG_DONTWAIT | MSG_NOSIGNAL);
549                 sk->sk_allocation = sk_allocation;
550         }
551 }
552
553 static void tls_device_resync_rx(struct tls_context *tls_ctx,
554                                  struct sock *sk, u32 seq, u8 *rcd_sn)
555 {
556         struct net_device *netdev;
557
558         if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
559                 return;
560         netdev = READ_ONCE(tls_ctx->netdev);
561         if (netdev)
562                 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
563                                                    TLS_OFFLOAD_CTX_DIR_RX);
564         clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
565 }
566
567 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
568 {
569         struct tls_context *tls_ctx = tls_get_ctx(sk);
570         struct tls_offload_context_rx *rx_ctx;
571         u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
572         struct tls_prot_info *prot;
573         u32 is_req_pending;
574         s64 resync_req;
575         u32 req_seq;
576
577         if (tls_ctx->rx_conf != TLS_HW)
578                 return;
579
580         prot = &tls_ctx->prot_info;
581         rx_ctx = tls_offload_ctx_rx(tls_ctx);
582         memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
583
584         switch (rx_ctx->resync_type) {
585         case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
586                 resync_req = atomic64_read(&rx_ctx->resync_req);
587                 req_seq = resync_req >> 32;
588                 seq += TLS_HEADER_SIZE - 1;
589                 is_req_pending = resync_req;
590
591                 if (likely(!is_req_pending) || req_seq != seq ||
592                     !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
593                         return;
594                 break;
595         case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
596                 if (likely(!rx_ctx->resync_nh_do_now))
597                         return;
598
599                 /* head of next rec is already in, note that the sock_inq will
600                  * include the currently parsed message when called from parser
601                  */
602                 if (tcp_inq(sk) > rcd_len)
603                         return;
604
605                 rx_ctx->resync_nh_do_now = 0;
606                 seq += rcd_len;
607                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
608                 break;
609         }
610
611         tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
612 }
613
614 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
615                                            struct tls_offload_context_rx *ctx,
616                                            struct sock *sk, struct sk_buff *skb)
617 {
618         struct strp_msg *rxm;
619
620         /* device will request resyncs by itself based on stream scan */
621         if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
622                 return;
623         /* already scheduled */
624         if (ctx->resync_nh_do_now)
625                 return;
626         /* seen decrypted fragments since last fully-failed record */
627         if (ctx->resync_nh_reset) {
628                 ctx->resync_nh_reset = 0;
629                 ctx->resync_nh.decrypted_failed = 1;
630                 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
631                 return;
632         }
633
634         if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
635                 return;
636
637         /* doing resync, bump the next target in case it fails */
638         if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
639                 ctx->resync_nh.decrypted_tgt *= 2;
640         else
641                 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
642
643         rxm = strp_msg(skb);
644
645         /* head of next rec is already in, parser will sync for us */
646         if (tcp_inq(sk) > rxm->full_len) {
647                 ctx->resync_nh_do_now = 1;
648         } else {
649                 struct tls_prot_info *prot = &tls_ctx->prot_info;
650                 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
651
652                 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
653                 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
654
655                 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
656                                      rcd_sn);
657         }
658 }
659
660 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
661 {
662         struct strp_msg *rxm = strp_msg(skb);
663         int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
664         struct sk_buff *skb_iter, *unused;
665         struct scatterlist sg[1];
666         char *orig_buf, *buf;
667
668         orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
669                            TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
670         if (!orig_buf)
671                 return -ENOMEM;
672         buf = orig_buf;
673
674         nsg = skb_cow_data(skb, 0, &unused);
675         if (unlikely(nsg < 0)) {
676                 err = nsg;
677                 goto free_buf;
678         }
679
680         sg_init_table(sg, 1);
681         sg_set_buf(&sg[0], buf,
682                    rxm->full_len + TLS_HEADER_SIZE +
683                    TLS_CIPHER_AES_GCM_128_IV_SIZE);
684         err = skb_copy_bits(skb, offset, buf,
685                             TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
686         if (err)
687                 goto free_buf;
688
689         /* We are interested only in the decrypted data not the auth */
690         err = decrypt_skb(sk, skb, sg);
691         if (err != -EBADMSG)
692                 goto free_buf;
693         else
694                 err = 0;
695
696         data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
697
698         if (skb_pagelen(skb) > offset) {
699                 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
700
701                 if (skb->decrypted) {
702                         err = skb_store_bits(skb, offset, buf, copy);
703                         if (err)
704                                 goto free_buf;
705                 }
706
707                 offset += copy;
708                 buf += copy;
709         }
710
711         pos = skb_pagelen(skb);
712         skb_walk_frags(skb, skb_iter) {
713                 int frag_pos;
714
715                 /* Practically all frags must belong to msg if reencrypt
716                  * is needed with current strparser and coalescing logic,
717                  * but strparser may "get optimized", so let's be safe.
718                  */
719                 if (pos + skb_iter->len <= offset)
720                         goto done_with_frag;
721                 if (pos >= data_len + rxm->offset)
722                         break;
723
724                 frag_pos = offset - pos;
725                 copy = min_t(int, skb_iter->len - frag_pos,
726                              data_len + rxm->offset - offset);
727
728                 if (skb_iter->decrypted) {
729                         err = skb_store_bits(skb_iter, frag_pos, buf, copy);
730                         if (err)
731                                 goto free_buf;
732                 }
733
734                 offset += copy;
735                 buf += copy;
736 done_with_frag:
737                 pos += skb_iter->len;
738         }
739
740 free_buf:
741         kfree(orig_buf);
742         return err;
743 }
744
745 int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
746 {
747         struct tls_context *tls_ctx = tls_get_ctx(sk);
748         struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
749         int is_decrypted = skb->decrypted;
750         int is_encrypted = !is_decrypted;
751         struct sk_buff *skb_iter;
752
753         /* Check if all the data is decrypted already */
754         skb_walk_frags(skb, skb_iter) {
755                 is_decrypted &= skb_iter->decrypted;
756                 is_encrypted &= !skb_iter->decrypted;
757         }
758
759         ctx->sw.decrypted |= is_decrypted;
760
761         /* Return immediately if the record is either entirely plaintext or
762          * entirely ciphertext. Otherwise handle reencrypt partially decrypted
763          * record.
764          */
765         if (is_decrypted) {
766                 ctx->resync_nh_reset = 1;
767                 return 0;
768         }
769         if (is_encrypted) {
770                 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
771                 return 0;
772         }
773
774         ctx->resync_nh_reset = 1;
775         return tls_device_reencrypt(sk, skb);
776 }
777
778 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
779                               struct net_device *netdev)
780 {
781         if (sk->sk_destruct != tls_device_sk_destruct) {
782                 refcount_set(&ctx->refcount, 1);
783                 dev_hold(netdev);
784                 ctx->netdev = netdev;
785                 spin_lock_irq(&tls_device_lock);
786                 list_add_tail(&ctx->list, &tls_device_list);
787                 spin_unlock_irq(&tls_device_lock);
788
789                 ctx->sk_destruct = sk->sk_destruct;
790                 sk->sk_destruct = tls_device_sk_destruct;
791         }
792 }
793
794 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
795 {
796         u16 nonce_size, tag_size, iv_size, rec_seq_size;
797         struct tls_context *tls_ctx = tls_get_ctx(sk);
798         struct tls_prot_info *prot = &tls_ctx->prot_info;
799         struct tls_record_info *start_marker_record;
800         struct tls_offload_context_tx *offload_ctx;
801         struct tls_crypto_info *crypto_info;
802         struct net_device *netdev;
803         char *iv, *rec_seq;
804         struct sk_buff *skb;
805         int rc = -EINVAL;
806         __be64 rcd_sn;
807
808         if (!ctx)
809                 goto out;
810
811         if (ctx->priv_ctx_tx) {
812                 rc = -EEXIST;
813                 goto out;
814         }
815
816         start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
817         if (!start_marker_record) {
818                 rc = -ENOMEM;
819                 goto out;
820         }
821
822         offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
823         if (!offload_ctx) {
824                 rc = -ENOMEM;
825                 goto free_marker_record;
826         }
827
828         crypto_info = &ctx->crypto_send.info;
829         switch (crypto_info->cipher_type) {
830         case TLS_CIPHER_AES_GCM_128:
831                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
832                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
833                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
834                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
835                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
836                 rec_seq =
837                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
838                 break;
839         default:
840                 rc = -EINVAL;
841                 goto free_offload_ctx;
842         }
843
844         /* Sanity-check the rec_seq_size for stack allocations */
845         if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
846                 rc = -EINVAL;
847                 goto free_offload_ctx;
848         }
849
850         prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
851         prot->tag_size = tag_size;
852         prot->overhead_size = prot->prepend_size + prot->tag_size;
853         prot->iv_size = iv_size;
854         ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
855                              GFP_KERNEL);
856         if (!ctx->tx.iv) {
857                 rc = -ENOMEM;
858                 goto free_offload_ctx;
859         }
860
861         memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
862
863         prot->rec_seq_size = rec_seq_size;
864         ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
865         if (!ctx->tx.rec_seq) {
866                 rc = -ENOMEM;
867                 goto free_iv;
868         }
869
870         rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
871         if (rc)
872                 goto free_rec_seq;
873
874         /* start at rec_seq - 1 to account for the start marker record */
875         memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
876         offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
877
878         start_marker_record->end_seq = tcp_sk(sk)->write_seq;
879         start_marker_record->len = 0;
880         start_marker_record->num_frags = 0;
881
882         INIT_LIST_HEAD(&offload_ctx->records_list);
883         list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
884         spin_lock_init(&offload_ctx->lock);
885         sg_init_table(offload_ctx->sg_tx_data,
886                       ARRAY_SIZE(offload_ctx->sg_tx_data));
887
888         clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
889         ctx->push_pending_record = tls_device_push_pending_record;
890
891         /* TLS offload is greatly simplified if we don't send
892          * SKBs where only part of the payload needs to be encrypted.
893          * So mark the last skb in the write queue as end of record.
894          */
895         skb = tcp_write_queue_tail(sk);
896         if (skb)
897                 TCP_SKB_CB(skb)->eor = 1;
898
899         /* We support starting offload on multiple sockets
900          * concurrently, so we only need a read lock here.
901          * This lock must precede get_netdev_for_sock to prevent races between
902          * NETDEV_DOWN and setsockopt.
903          */
904         down_read(&device_offload_lock);
905         netdev = get_netdev_for_sock(sk);
906         if (!netdev) {
907                 pr_err_ratelimited("%s: netdev not found\n", __func__);
908                 rc = -EINVAL;
909                 goto release_lock;
910         }
911
912         if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
913                 rc = -ENOTSUPP;
914                 goto release_netdev;
915         }
916
917         /* Avoid offloading if the device is down
918          * We don't want to offload new flows after
919          * the NETDEV_DOWN event
920          */
921         if (!(netdev->flags & IFF_UP)) {
922                 rc = -EINVAL;
923                 goto release_netdev;
924         }
925
926         ctx->priv_ctx_tx = offload_ctx;
927         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
928                                              &ctx->crypto_send.info,
929                                              tcp_sk(sk)->write_seq);
930         if (rc)
931                 goto release_netdev;
932
933         tls_device_attach(ctx, sk, netdev);
934
935         /* following this assignment tls_is_sk_tx_device_offloaded
936          * will return true and the context might be accessed
937          * by the netdev's xmit function.
938          */
939         smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
940         dev_put(netdev);
941         up_read(&device_offload_lock);
942         goto out;
943
944 release_netdev:
945         dev_put(netdev);
946 release_lock:
947         up_read(&device_offload_lock);
948         clean_acked_data_disable(inet_csk(sk));
949         crypto_free_aead(offload_ctx->aead_send);
950 free_rec_seq:
951         kfree(ctx->tx.rec_seq);
952 free_iv:
953         kfree(ctx->tx.iv);
954 free_offload_ctx:
955         kfree(offload_ctx);
956         ctx->priv_ctx_tx = NULL;
957 free_marker_record:
958         kfree(start_marker_record);
959 out:
960         return rc;
961 }
962
963 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
964 {
965         struct tls_offload_context_rx *context;
966         struct net_device *netdev;
967         int rc = 0;
968
969         /* We support starting offload on multiple sockets
970          * concurrently, so we only need a read lock here.
971          * This lock must precede get_netdev_for_sock to prevent races between
972          * NETDEV_DOWN and setsockopt.
973          */
974         down_read(&device_offload_lock);
975         netdev = get_netdev_for_sock(sk);
976         if (!netdev) {
977                 pr_err_ratelimited("%s: netdev not found\n", __func__);
978                 rc = -EINVAL;
979                 goto release_lock;
980         }
981
982         if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
983                 rc = -ENOTSUPP;
984                 goto release_netdev;
985         }
986
987         /* Avoid offloading if the device is down
988          * We don't want to offload new flows after
989          * the NETDEV_DOWN event
990          */
991         if (!(netdev->flags & IFF_UP)) {
992                 rc = -EINVAL;
993                 goto release_netdev;
994         }
995
996         context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
997         if (!context) {
998                 rc = -ENOMEM;
999                 goto release_netdev;
1000         }
1001         context->resync_nh_reset = 1;
1002
1003         ctx->priv_ctx_rx = context;
1004         rc = tls_set_sw_offload(sk, ctx, 0);
1005         if (rc)
1006                 goto release_ctx;
1007
1008         rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1009                                              &ctx->crypto_recv.info,
1010                                              tcp_sk(sk)->copied_seq);
1011         if (rc)
1012                 goto free_sw_resources;
1013
1014         tls_device_attach(ctx, sk, netdev);
1015         goto release_netdev;
1016
1017 free_sw_resources:
1018         up_read(&device_offload_lock);
1019         tls_sw_free_resources_rx(sk);
1020         down_read(&device_offload_lock);
1021 release_ctx:
1022         ctx->priv_ctx_rx = NULL;
1023 release_netdev:
1024         dev_put(netdev);
1025 release_lock:
1026         up_read(&device_offload_lock);
1027         return rc;
1028 }
1029
1030 void tls_device_offload_cleanup_rx(struct sock *sk)
1031 {
1032         struct tls_context *tls_ctx = tls_get_ctx(sk);
1033         struct net_device *netdev;
1034
1035         down_read(&device_offload_lock);
1036         netdev = tls_ctx->netdev;
1037         if (!netdev)
1038                 goto out;
1039
1040         netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1041                                         TLS_OFFLOAD_CTX_DIR_RX);
1042
1043         if (tls_ctx->tx_conf != TLS_HW) {
1044                 dev_put(netdev);
1045                 tls_ctx->netdev = NULL;
1046         }
1047 out:
1048         up_read(&device_offload_lock);
1049         tls_sw_release_resources_rx(sk);
1050 }
1051
1052 static int tls_device_down(struct net_device *netdev)
1053 {
1054         struct tls_context *ctx, *tmp;
1055         unsigned long flags;
1056         LIST_HEAD(list);
1057
1058         /* Request a write lock to block new offload attempts */
1059         down_write(&device_offload_lock);
1060
1061         spin_lock_irqsave(&tls_device_lock, flags);
1062         list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1063                 if (ctx->netdev != netdev ||
1064                     !refcount_inc_not_zero(&ctx->refcount))
1065                         continue;
1066
1067                 list_move(&ctx->list, &list);
1068         }
1069         spin_unlock_irqrestore(&tls_device_lock, flags);
1070
1071         list_for_each_entry_safe(ctx, tmp, &list, list) {
1072                 if (ctx->tx_conf == TLS_HW)
1073                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1074                                                         TLS_OFFLOAD_CTX_DIR_TX);
1075                 if (ctx->rx_conf == TLS_HW)
1076                         netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1077                                                         TLS_OFFLOAD_CTX_DIR_RX);
1078                 WRITE_ONCE(ctx->netdev, NULL);
1079                 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1080                 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1081                         usleep_range(10, 200);
1082                 dev_put(netdev);
1083                 list_del_init(&ctx->list);
1084
1085                 if (refcount_dec_and_test(&ctx->refcount))
1086                         tls_device_free_ctx(ctx);
1087         }
1088
1089         up_write(&device_offload_lock);
1090
1091         flush_work(&tls_device_gc_work);
1092
1093         return NOTIFY_DONE;
1094 }
1095
1096 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1097                          void *ptr)
1098 {
1099         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1100
1101         if (!dev->tlsdev_ops &&
1102             !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1103                 return NOTIFY_DONE;
1104
1105         switch (event) {
1106         case NETDEV_REGISTER:
1107         case NETDEV_FEAT_CHANGE:
1108                 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1109                     !dev->tlsdev_ops->tls_dev_resync)
1110                         return NOTIFY_BAD;
1111
1112                 if  (dev->tlsdev_ops &&
1113                      dev->tlsdev_ops->tls_dev_add &&
1114                      dev->tlsdev_ops->tls_dev_del)
1115                         return NOTIFY_DONE;
1116                 else
1117                         return NOTIFY_BAD;
1118         case NETDEV_DOWN:
1119                 return tls_device_down(dev);
1120         }
1121         return NOTIFY_DONE;
1122 }
1123
1124 static struct notifier_block tls_dev_notifier = {
1125         .notifier_call  = tls_dev_event,
1126 };
1127
1128 void __init tls_device_init(void)
1129 {
1130         register_netdevice_notifier(&tls_dev_notifier);
1131 }
1132
1133 void __exit tls_device_cleanup(void)
1134 {
1135         unregister_netdevice_notifier(&tls_dev_notifier);
1136         flush_work(&tls_device_gc_work);
1137         clean_acked_data_flush();
1138 }