1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/net/sunrpc/sched.c
5 * Scheduling for synchronous and asynchronous RPC requests.
7 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
9 * TCP NFS related read + write fixes
10 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
13 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/sunrpc.h>
34 * RPC slabs and memory pools
36 #define RPC_BUFFER_MAXSIZE (2048)
37 #define RPC_BUFFER_POOLSIZE (8)
38 #define RPC_TASK_POOLSIZE (8)
39 static struct kmem_cache *rpc_task_slabp __read_mostly;
40 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
41 static mempool_t *rpc_task_mempool __read_mostly;
42 static mempool_t *rpc_buffer_mempool __read_mostly;
44 static void rpc_async_schedule(struct work_struct *);
45 static void rpc_release_task(struct rpc_task *task);
46 static void __rpc_queue_timer_fn(struct work_struct *);
49 * RPC tasks sit here while waiting for conditions to improve.
51 static struct rpc_wait_queue delay_queue;
54 * rpciod-related stuff
56 struct workqueue_struct *rpciod_workqueue __read_mostly;
57 struct workqueue_struct *xprtiod_workqueue __read_mostly;
58 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
61 rpc_task_timeout(const struct rpc_task *task)
63 unsigned long timeout = READ_ONCE(task->tk_timeout);
66 unsigned long now = jiffies;
67 if (time_before(now, timeout))
72 EXPORT_SYMBOL_GPL(rpc_task_timeout);
75 * Disable the timer for a given RPC task. Should be called with
76 * queue->lock and bh_disabled in order to avoid races within
80 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
82 if (list_empty(&task->u.tk_wait.timer_list))
85 list_del(&task->u.tk_wait.timer_list);
86 if (list_empty(&queue->timer_list.list))
87 cancel_delayed_work(&queue->timer_list.dwork);
91 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
93 unsigned long now = jiffies;
94 queue->timer_list.expires = expires;
95 if (time_before_eq(expires, now))
99 mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
103 * Set up a timer for the current task.
106 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
107 unsigned long timeout)
109 task->tk_timeout = timeout;
110 if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
111 rpc_set_queue_timer(queue, timeout);
112 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
115 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
117 if (queue->priority != priority) {
118 queue->priority = priority;
119 queue->nr = 1U << priority;
123 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
125 rpc_set_waitqueue_priority(queue, queue->maxpriority);
129 * Add a request to a queue list
132 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
136 list_for_each_entry(t, q, u.tk_wait.list) {
137 if (t->tk_owner == task->tk_owner) {
138 list_add_tail(&task->u.tk_wait.links,
139 &t->u.tk_wait.links);
140 /* Cache the queue head in task->u.tk_wait.list */
141 task->u.tk_wait.list.next = q;
142 task->u.tk_wait.list.prev = NULL;
146 INIT_LIST_HEAD(&task->u.tk_wait.links);
147 list_add_tail(&task->u.tk_wait.list, q);
151 * Remove request from a queue list
154 __rpc_list_dequeue_task(struct rpc_task *task)
159 if (task->u.tk_wait.list.prev == NULL) {
160 list_del(&task->u.tk_wait.links);
163 if (!list_empty(&task->u.tk_wait.links)) {
164 t = list_first_entry(&task->u.tk_wait.links,
167 /* Assume __rpc_list_enqueue_task() cached the queue head */
168 q = t->u.tk_wait.list.next;
169 list_add_tail(&t->u.tk_wait.list, q);
170 list_del(&task->u.tk_wait.links);
172 list_del(&task->u.tk_wait.list);
176 * Add new request to a priority queue.
178 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
179 struct rpc_task *task,
180 unsigned char queue_priority)
182 if (unlikely(queue_priority > queue->maxpriority))
183 queue_priority = queue->maxpriority;
184 __rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
188 * Add new request to wait queue.
190 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
191 struct rpc_task *task,
192 unsigned char queue_priority)
194 INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
195 if (RPC_IS_PRIORITY(queue))
196 __rpc_add_wait_queue_priority(queue, task, queue_priority);
198 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
199 task->tk_waitqueue = queue;
201 /* barrier matches the read in rpc_wake_up_task_queue_locked() */
203 rpc_set_queued(task);
207 * Remove request from a priority queue.
209 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
211 __rpc_list_dequeue_task(task);
215 * Remove request from queue.
216 * Note: must be called with spin lock held.
218 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
220 __rpc_disable_timer(queue, task);
221 if (RPC_IS_PRIORITY(queue))
222 __rpc_remove_wait_queue_priority(task);
224 list_del(&task->u.tk_wait.list);
228 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
232 spin_lock_init(&queue->lock);
233 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
234 INIT_LIST_HEAD(&queue->tasks[i]);
235 queue->maxpriority = nr_queues - 1;
236 rpc_reset_waitqueue_priority(queue);
238 queue->timer_list.expires = 0;
239 INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
240 INIT_LIST_HEAD(&queue->timer_list.list);
241 rpc_assign_waitqueue_name(queue, qname);
244 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
246 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
248 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
250 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
252 __rpc_init_priority_wait_queue(queue, qname, 1);
254 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
256 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
258 cancel_delayed_work_sync(&queue->timer_list.dwork);
260 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
262 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
264 freezable_schedule_unsafe();
265 if (signal_pending_state(mode, current))
270 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
271 static void rpc_task_set_debuginfo(struct rpc_task *task)
273 static atomic_t rpc_pid;
275 task->tk_pid = atomic_inc_return(&rpc_pid);
278 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
283 static void rpc_set_active(struct rpc_task *task)
285 rpc_task_set_debuginfo(task);
286 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
287 trace_rpc_task_begin(task, NULL);
291 * Mark an RPC call as having completed by clearing the 'active' bit
292 * and then waking up all tasks that were sleeping.
294 static int rpc_complete_task(struct rpc_task *task)
296 void *m = &task->tk_runstate;
297 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
298 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
302 trace_rpc_task_complete(task, NULL);
304 spin_lock_irqsave(&wq->lock, flags);
305 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
306 ret = atomic_dec_and_test(&task->tk_count);
307 if (waitqueue_active(wq))
308 __wake_up_locked_key(wq, TASK_NORMAL, &k);
309 spin_unlock_irqrestore(&wq->lock, flags);
314 * Allow callers to wait for completion of an RPC call
316 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
317 * to enforce taking of the wq->lock and hence avoid races with
318 * rpc_complete_task().
320 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
323 action = rpc_wait_bit_killable;
324 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
325 action, TASK_KILLABLE);
327 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
330 * Make an RPC task runnable.
332 * Note: If the task is ASYNC, and is being made runnable after sitting on an
333 * rpc_wait_queue, this must be called with the queue spinlock held to protect
334 * the wait queue operation.
335 * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
336 * which is needed to ensure that __rpc_execute() doesn't loop (due to the
337 * lockless RPC_IS_QUEUED() test) before we've had a chance to test
338 * the RPC_TASK_RUNNING flag.
340 static void rpc_make_runnable(struct workqueue_struct *wq,
341 struct rpc_task *task)
343 bool need_wakeup = !rpc_test_and_set_running(task);
345 rpc_clear_queued(task);
348 if (RPC_IS_ASYNC(task)) {
349 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
350 queue_work(wq, &task->u.tk_work);
352 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
356 * Prepare for sleeping on a wait queue.
357 * By always appending tasks to the list we ensure FIFO behavior.
358 * NB: An RPC task will only receive interrupt-driven events as long
359 * as it's on a wait queue.
361 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
362 struct rpc_task *task,
363 unsigned char queue_priority)
365 trace_rpc_task_sleep(task, q);
367 __rpc_add_wait_queue(q, task, queue_priority);
370 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
371 struct rpc_task *task,
372 unsigned char queue_priority)
374 if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
376 __rpc_do_sleep_on_priority(q, task, queue_priority);
379 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
380 struct rpc_task *task, unsigned long timeout,
381 unsigned char queue_priority)
383 if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
385 if (time_is_after_jiffies(timeout)) {
386 __rpc_do_sleep_on_priority(q, task, queue_priority);
387 __rpc_add_timer(q, task, timeout);
389 task->tk_status = -ETIMEDOUT;
392 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
394 if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
395 task->tk_callback = action;
398 static bool rpc_sleep_check_activated(struct rpc_task *task)
400 /* We shouldn't ever put an inactive task to sleep */
401 if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
402 task->tk_status = -EIO;
403 rpc_put_task_async(task);
409 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
410 rpc_action action, unsigned long timeout)
412 if (!rpc_sleep_check_activated(task))
415 rpc_set_tk_callback(task, action);
418 * Protect the queue operations.
421 __rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
422 spin_unlock(&q->lock);
424 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
426 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
429 if (!rpc_sleep_check_activated(task))
432 rpc_set_tk_callback(task, action);
434 WARN_ON_ONCE(task->tk_timeout != 0);
436 * Protect the queue operations.
439 __rpc_sleep_on_priority(q, task, task->tk_priority);
440 spin_unlock(&q->lock);
442 EXPORT_SYMBOL_GPL(rpc_sleep_on);
444 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
445 struct rpc_task *task, unsigned long timeout, int priority)
447 if (!rpc_sleep_check_activated(task))
450 priority -= RPC_PRIORITY_LOW;
452 * Protect the queue operations.
455 __rpc_sleep_on_priority_timeout(q, task, timeout, priority);
456 spin_unlock(&q->lock);
458 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
460 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
463 if (!rpc_sleep_check_activated(task))
466 WARN_ON_ONCE(task->tk_timeout != 0);
467 priority -= RPC_PRIORITY_LOW;
469 * Protect the queue operations.
472 __rpc_sleep_on_priority(q, task, priority);
473 spin_unlock(&q->lock);
475 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
478 * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
479 * @wq: workqueue on which to run task
481 * @task: task to be woken up
483 * Caller must hold queue->lock, and have cleared the task queued flag.
485 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
486 struct rpc_wait_queue *queue,
487 struct rpc_task *task)
489 /* Has the task been executed yet? If not, we cannot wake it up! */
490 if (!RPC_IS_ACTIVATED(task)) {
491 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
495 trace_rpc_task_wakeup(task, queue);
497 __rpc_remove_wait_queue(queue, task);
499 rpc_make_runnable(wq, task);
503 * Wake up a queued task while the queue lock is being held
505 static struct rpc_task *
506 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
507 struct rpc_wait_queue *queue, struct rpc_task *task,
508 bool (*action)(struct rpc_task *, void *), void *data)
510 if (RPC_IS_QUEUED(task)) {
512 if (task->tk_waitqueue == queue) {
513 if (action == NULL || action(task, data)) {
514 __rpc_do_wake_up_task_on_wq(wq, queue, task);
523 * Wake up a queued task while the queue lock is being held
525 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
526 struct rpc_task *task)
528 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
533 * Wake up a task on a specific queue
535 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
537 if (!RPC_IS_QUEUED(task))
539 spin_lock(&queue->lock);
540 rpc_wake_up_task_queue_locked(queue, task);
541 spin_unlock(&queue->lock);
543 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
545 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
547 task->tk_status = *(int *)status;
552 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
553 struct rpc_task *task, int status)
555 rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
556 task, rpc_task_action_set_status, &status);
560 * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
561 * @queue: pointer to rpc_wait_queue
562 * @task: pointer to rpc_task
563 * @status: integer error value
565 * If @task is queued on @queue, then it is woken up, and @task->tk_status is
566 * set to the value of @status.
569 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
570 struct rpc_task *task, int status)
572 if (!RPC_IS_QUEUED(task))
574 spin_lock(&queue->lock);
575 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
576 spin_unlock(&queue->lock);
580 * Wake up the next task on a priority queue.
582 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
585 struct rpc_task *task;
588 * Service the privileged queue.
590 q = &queue->tasks[RPC_NR_PRIORITY - 1];
591 if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
592 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
597 * Service a batch of tasks from a single owner.
599 q = &queue->tasks[queue->priority];
600 if (!list_empty(q) && queue->nr) {
602 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
607 * Service the next queue.
610 if (q == &queue->tasks[0])
611 q = &queue->tasks[queue->maxpriority];
614 if (!list_empty(q)) {
615 task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
618 } while (q != &queue->tasks[queue->priority]);
620 rpc_reset_waitqueue_priority(queue);
624 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
629 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
631 if (RPC_IS_PRIORITY(queue))
632 return __rpc_find_next_queued_priority(queue);
633 if (!list_empty(&queue->tasks[0]))
634 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
639 * Wake up the first task on the wait queue.
641 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
642 struct rpc_wait_queue *queue,
643 bool (*func)(struct rpc_task *, void *), void *data)
645 struct rpc_task *task = NULL;
647 spin_lock(&queue->lock);
648 task = __rpc_find_next_queued(queue);
650 task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
652 spin_unlock(&queue->lock);
658 * Wake up the first task on the wait queue.
660 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
661 bool (*func)(struct rpc_task *, void *), void *data)
663 return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
665 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
667 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
673 * Wake up the next task on the wait queue.
675 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
677 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
679 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
682 * rpc_wake_up_locked - wake up all rpc_tasks
683 * @queue: rpc_wait_queue on which the tasks are sleeping
686 static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
688 struct rpc_task *task;
691 task = __rpc_find_next_queued(queue);
694 rpc_wake_up_task_queue_locked(queue, task);
699 * rpc_wake_up - wake up all rpc_tasks
700 * @queue: rpc_wait_queue on which the tasks are sleeping
704 void rpc_wake_up(struct rpc_wait_queue *queue)
706 spin_lock(&queue->lock);
707 rpc_wake_up_locked(queue);
708 spin_unlock(&queue->lock);
710 EXPORT_SYMBOL_GPL(rpc_wake_up);
713 * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
714 * @queue: rpc_wait_queue on which the tasks are sleeping
715 * @status: status value to set
717 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
719 struct rpc_task *task;
722 task = __rpc_find_next_queued(queue);
725 rpc_wake_up_task_queue_set_status_locked(queue, task, status);
730 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
731 * @queue: rpc_wait_queue on which the tasks are sleeping
732 * @status: status value to set
736 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
738 spin_lock(&queue->lock);
739 rpc_wake_up_status_locked(queue, status);
740 spin_unlock(&queue->lock);
742 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
744 static void __rpc_queue_timer_fn(struct work_struct *work)
746 struct rpc_wait_queue *queue = container_of(work,
747 struct rpc_wait_queue,
748 timer_list.dwork.work);
749 struct rpc_task *task, *n;
750 unsigned long expires, now, timeo;
752 spin_lock(&queue->lock);
753 expires = now = jiffies;
754 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
755 timeo = task->tk_timeout;
756 if (time_after_eq(now, timeo)) {
757 trace_rpc_task_timeout(task, task->tk_action);
758 task->tk_status = -ETIMEDOUT;
759 rpc_wake_up_task_queue_locked(queue, task);
762 if (expires == now || time_after(expires, timeo))
765 if (!list_empty(&queue->timer_list.list))
766 rpc_set_queue_timer(queue, expires);
767 spin_unlock(&queue->lock);
770 static void __rpc_atrun(struct rpc_task *task)
772 if (task->tk_status == -ETIMEDOUT)
777 * Run a task at a later time
779 void rpc_delay(struct rpc_task *task, unsigned long delay)
781 rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
783 EXPORT_SYMBOL_GPL(rpc_delay);
786 * Helper to call task->tk_ops->rpc_call_prepare
788 void rpc_prepare_task(struct rpc_task *task)
790 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
794 rpc_init_task_statistics(struct rpc_task *task)
796 /* Initialize retry counters */
797 task->tk_garb_retry = 2;
798 task->tk_cred_retry = 2;
799 task->tk_rebind_retry = 2;
801 /* starting timestamp */
802 task->tk_start = ktime_get();
806 rpc_reset_task_statistics(struct rpc_task *task)
808 task->tk_timeouts = 0;
809 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
810 rpc_init_task_statistics(task);
814 * Helper that calls task->tk_ops->rpc_call_done if it exists
816 void rpc_exit_task(struct rpc_task *task)
818 trace_rpc_task_end(task, task->tk_action);
819 task->tk_action = NULL;
820 if (task->tk_ops->rpc_count_stats)
821 task->tk_ops->rpc_count_stats(task, task->tk_calldata);
822 else if (task->tk_client)
823 rpc_count_iostats(task, task->tk_client->cl_metrics);
824 if (task->tk_ops->rpc_call_done != NULL) {
825 task->tk_ops->rpc_call_done(task, task->tk_calldata);
826 if (task->tk_action != NULL) {
827 /* Always release the RPC slot and buffer memory */
829 rpc_reset_task_statistics(task);
834 void rpc_signal_task(struct rpc_task *task)
836 struct rpc_wait_queue *queue;
838 if (!RPC_IS_ACTIVATED(task))
841 trace_rpc_task_signalled(task, task->tk_action);
842 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
843 smp_mb__after_atomic();
844 queue = READ_ONCE(task->tk_waitqueue);
846 rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
849 void rpc_exit(struct rpc_task *task, int status)
851 task->tk_status = status;
852 task->tk_action = rpc_exit_task;
853 rpc_wake_up_queued_task(task->tk_waitqueue, task);
855 EXPORT_SYMBOL_GPL(rpc_exit);
857 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
859 if (ops->rpc_release != NULL)
860 ops->rpc_release(calldata);
864 * This is the RPC `scheduler' (or rather, the finite state machine).
866 static void __rpc_execute(struct rpc_task *task)
868 struct rpc_wait_queue *queue;
869 int task_is_async = RPC_IS_ASYNC(task);
872 WARN_ON_ONCE(RPC_IS_QUEUED(task));
873 if (RPC_IS_QUEUED(task))
877 void (*do_action)(struct rpc_task *);
880 * Perform the next FSM step or a pending callback.
882 * tk_action may be NULL if the task has been killed.
883 * In particular, note that rpc_killall_tasks may
884 * do this at any time, so beware when dereferencing.
886 do_action = task->tk_action;
887 if (task->tk_callback) {
888 do_action = task->tk_callback;
889 task->tk_callback = NULL;
893 trace_rpc_task_run_action(task, do_action);
897 * Lockless check for whether task is sleeping or not.
899 if (!RPC_IS_QUEUED(task))
903 * Signalled tasks should exit rather than sleep.
905 if (RPC_SIGNALLED(task)) {
906 task->tk_rpc_status = -ERESTARTSYS;
907 rpc_exit(task, -ERESTARTSYS);
911 * The queue->lock protects against races with
912 * rpc_make_runnable().
914 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
915 * rpc_task, rpc_make_runnable() can assign it to a
916 * different workqueue. We therefore cannot assume that the
917 * rpc_task pointer may still be dereferenced.
919 queue = task->tk_waitqueue;
920 spin_lock(&queue->lock);
921 if (!RPC_IS_QUEUED(task)) {
922 spin_unlock(&queue->lock);
925 rpc_clear_running(task);
926 spin_unlock(&queue->lock);
930 /* sync task: sleep here */
931 trace_rpc_task_sync_sleep(task, task->tk_action);
932 status = out_of_line_wait_on_bit(&task->tk_runstate,
933 RPC_TASK_QUEUED, rpc_wait_bit_killable,
937 * When a sync task receives a signal, it exits with
938 * -ERESTARTSYS. In order to catch any callbacks that
939 * clean up after sleeping on some queue, we don't
940 * break the loop here, but go around once more.
942 trace_rpc_task_signalled(task, task->tk_action);
943 set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
944 task->tk_rpc_status = -ERESTARTSYS;
945 rpc_exit(task, -ERESTARTSYS);
947 trace_rpc_task_sync_wake(task, task->tk_action);
950 /* Release all resources associated with the task */
951 rpc_release_task(task);
955 * User-visible entry point to the scheduler.
957 * This may be called recursively if e.g. an async NFS task updates
958 * the attributes and finds that dirty pages must be flushed.
959 * NOTE: Upon exit of this function the task is guaranteed to be
960 * released. In particular note that tk_release() will have
961 * been called, so your task memory may have been freed.
963 void rpc_execute(struct rpc_task *task)
965 bool is_async = RPC_IS_ASYNC(task);
967 rpc_set_active(task);
968 rpc_make_runnable(rpciod_workqueue, task);
970 unsigned int pflags = memalloc_nofs_save();
972 memalloc_nofs_restore(pflags);
976 static void rpc_async_schedule(struct work_struct *work)
978 unsigned int pflags = memalloc_nofs_save();
980 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
981 memalloc_nofs_restore(pflags);
985 * rpc_malloc - allocate RPC buffer resources
988 * A single memory region is allocated, which is split between the
989 * RPC call and RPC reply that this task is being used for. When
990 * this RPC is retired, the memory is released by calling rpc_free.
992 * To prevent rpciod from hanging, this allocator never sleeps,
993 * returning -ENOMEM and suppressing warning if the request cannot
994 * be serviced immediately. The caller can arrange to sleep in a
995 * way that is safe for rpciod.
997 * Most requests are 'small' (under 2KiB) and can be serviced from a
998 * mempool, ensuring that NFS reads and writes can always proceed,
999 * and that there is good locality of reference for these buffers.
1001 int rpc_malloc(struct rpc_task *task)
1003 struct rpc_rqst *rqst = task->tk_rqstp;
1004 size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1005 struct rpc_buffer *buf;
1006 gfp_t gfp = GFP_NOFS;
1008 if (RPC_IS_ASYNC(task))
1009 gfp = GFP_NOWAIT | __GFP_NOWARN;
1010 if (RPC_IS_SWAPPER(task))
1011 gfp |= __GFP_MEMALLOC;
1013 size += sizeof(struct rpc_buffer);
1014 if (size <= RPC_BUFFER_MAXSIZE)
1015 buf = mempool_alloc(rpc_buffer_mempool, gfp);
1017 buf = kmalloc(size, gfp);
1023 rqst->rq_buffer = buf->data;
1024 rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1027 EXPORT_SYMBOL_GPL(rpc_malloc);
1030 * rpc_free - free RPC buffer resources allocated via rpc_malloc
1034 void rpc_free(struct rpc_task *task)
1036 void *buffer = task->tk_rqstp->rq_buffer;
1038 struct rpc_buffer *buf;
1040 buf = container_of(buffer, struct rpc_buffer, data);
1043 if (size <= RPC_BUFFER_MAXSIZE)
1044 mempool_free(buf, rpc_buffer_mempool);
1048 EXPORT_SYMBOL_GPL(rpc_free);
1051 * Creation and deletion of RPC task structures
1053 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1055 memset(task, 0, sizeof(*task));
1056 atomic_set(&task->tk_count, 1);
1057 task->tk_flags = task_setup_data->flags;
1058 task->tk_ops = task_setup_data->callback_ops;
1059 task->tk_calldata = task_setup_data->callback_data;
1060 INIT_LIST_HEAD(&task->tk_task);
1062 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1063 task->tk_owner = current->tgid;
1065 /* Initialize workqueue for async tasks */
1066 task->tk_workqueue = task_setup_data->workqueue;
1068 task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1069 xprt_get(task_setup_data->rpc_xprt));
1071 task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1073 if (task->tk_ops->rpc_call_prepare != NULL)
1074 task->tk_action = rpc_prepare_task;
1076 rpc_init_task_statistics(task);
1079 static struct rpc_task *
1080 rpc_alloc_task(void)
1082 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1086 * Create a new task for the specified client.
1088 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1090 struct rpc_task *task = setup_data->task;
1091 unsigned short flags = 0;
1094 task = rpc_alloc_task();
1095 flags = RPC_TASK_DYNAMIC;
1098 rpc_init_task(task, setup_data);
1099 task->tk_flags |= flags;
1104 * rpc_free_task - release rpc task and perform cleanups
1106 * Note that we free up the rpc_task _after_ rpc_release_calldata()
1107 * in order to work around a workqueue dependency issue.
1110 * "Workqueue currently considers two work items to be the same if they're
1111 * on the same address and won't execute them concurrently - ie. it
1112 * makes a work item which is queued again while being executed wait
1113 * for the previous execution to complete.
1115 * If a work function frees the work item, and then waits for an event
1116 * which should be performed by another work item and *that* work item
1117 * recycles the freed work item, it can create a false dependency loop.
1118 * There really is no reliable way to detect this short of verifying
1119 * every memory free."
1122 static void rpc_free_task(struct rpc_task *task)
1124 unsigned short tk_flags = task->tk_flags;
1126 put_rpccred(task->tk_op_cred);
1127 rpc_release_calldata(task->tk_ops, task->tk_calldata);
1129 if (tk_flags & RPC_TASK_DYNAMIC)
1130 mempool_free(task, rpc_task_mempool);
1133 static void rpc_async_release(struct work_struct *work)
1135 unsigned int pflags = memalloc_nofs_save();
1137 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1138 memalloc_nofs_restore(pflags);
1141 static void rpc_release_resources_task(struct rpc_task *task)
1144 if (task->tk_msg.rpc_cred) {
1145 if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1146 put_cred(task->tk_msg.rpc_cred);
1147 task->tk_msg.rpc_cred = NULL;
1149 rpc_task_release_client(task);
1152 static void rpc_final_put_task(struct rpc_task *task,
1153 struct workqueue_struct *q)
1156 INIT_WORK(&task->u.tk_work, rpc_async_release);
1157 queue_work(q, &task->u.tk_work);
1159 rpc_free_task(task);
1162 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1164 if (atomic_dec_and_test(&task->tk_count)) {
1165 rpc_release_resources_task(task);
1166 rpc_final_put_task(task, q);
1170 void rpc_put_task(struct rpc_task *task)
1172 rpc_do_put_task(task, NULL);
1174 EXPORT_SYMBOL_GPL(rpc_put_task);
1176 void rpc_put_task_async(struct rpc_task *task)
1178 rpc_do_put_task(task, task->tk_workqueue);
1180 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1182 static void rpc_release_task(struct rpc_task *task)
1184 WARN_ON_ONCE(RPC_IS_QUEUED(task));
1186 rpc_release_resources_task(task);
1189 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1190 * so it should be safe to use task->tk_count as a test for whether
1191 * or not any other processes still hold references to our rpc_task.
1193 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1194 /* Wake up anyone who may be waiting for task completion */
1195 if (!rpc_complete_task(task))
1198 if (!atomic_dec_and_test(&task->tk_count))
1201 rpc_final_put_task(task, task->tk_workqueue);
1206 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1209 void rpciod_down(void)
1211 module_put(THIS_MODULE);
1215 * Start up the rpciod workqueue.
1217 static int rpciod_start(void)
1219 struct workqueue_struct *wq;
1222 * Create the rpciod thread and wait for it to start.
1224 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1227 rpciod_workqueue = wq;
1228 /* Note: highpri because network receive is latency sensitive */
1229 wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1232 xprtiod_workqueue = wq;
1235 wq = rpciod_workqueue;
1236 rpciod_workqueue = NULL;
1237 destroy_workqueue(wq);
1242 static void rpciod_stop(void)
1244 struct workqueue_struct *wq = NULL;
1246 if (rpciod_workqueue == NULL)
1249 wq = rpciod_workqueue;
1250 rpciod_workqueue = NULL;
1251 destroy_workqueue(wq);
1252 wq = xprtiod_workqueue;
1253 xprtiod_workqueue = NULL;
1254 destroy_workqueue(wq);
1258 rpc_destroy_mempool(void)
1261 mempool_destroy(rpc_buffer_mempool);
1262 mempool_destroy(rpc_task_mempool);
1263 kmem_cache_destroy(rpc_task_slabp);
1264 kmem_cache_destroy(rpc_buffer_slabp);
1265 rpc_destroy_wait_queue(&delay_queue);
1269 rpc_init_mempool(void)
1272 * The following is not strictly a mempool initialisation,
1273 * but there is no harm in doing it here
1275 rpc_init_wait_queue(&delay_queue, "delayq");
1276 if (!rpciod_start())
1279 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1280 sizeof(struct rpc_task),
1281 0, SLAB_HWCACHE_ALIGN,
1283 if (!rpc_task_slabp)
1285 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1287 0, SLAB_HWCACHE_ALIGN,
1289 if (!rpc_buffer_slabp)
1291 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1293 if (!rpc_task_mempool)
1295 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1297 if (!rpc_buffer_mempool)
1301 rpc_destroy_mempool();