Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[platform/adaptation/renesas_rcar/renesas_kernel.git] / net / sunrpc / sched.c
1 /*
2  * linux/net/sunrpc/sched.c
3  *
4  * Scheduling for synchronous and asynchronous RPC requests.
5  *
6  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
7  *
8  * TCP NFS related read + write fixes
9  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
10  */
11
12 #include <linux/module.h>
13
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
22
23 #include <linux/sunrpc/clnt.h>
24
25 #include "sunrpc.h"
26
27 #ifdef RPC_DEBUG
28 #define RPCDBG_FACILITY         RPCDBG_SCHED
29 #endif
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
33
34 /*
35  * RPC slabs and memory pools
36  */
37 #define RPC_BUFFER_MAXSIZE      (2048)
38 #define RPC_BUFFER_POOLSIZE     (8)
39 #define RPC_TASK_POOLSIZE       (8)
40 static struct kmem_cache        *rpc_task_slabp __read_mostly;
41 static struct kmem_cache        *rpc_buffer_slabp __read_mostly;
42 static mempool_t        *rpc_task_mempool __read_mostly;
43 static mempool_t        *rpc_buffer_mempool __read_mostly;
44
45 static void                     rpc_async_schedule(struct work_struct *);
46 static void                      rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
48
49 /*
50  * RPC tasks sit here while waiting for conditions to improve.
51  */
52 static struct rpc_wait_queue delay_queue;
53
54 /*
55  * rpciod-related stuff
56  */
57 struct workqueue_struct *rpciod_workqueue;
58
59 /*
60  * Disable the timer for a given RPC task. Should be called with
61  * queue->lock and bh_disabled in order to avoid races within
62  * rpc_run_timer().
63  */
64 static void
65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
66 {
67         if (task->tk_timeout == 0)
68                 return;
69         dprintk("RPC: %5u disabling timer\n", task->tk_pid);
70         task->tk_timeout = 0;
71         list_del(&task->u.tk_wait.timer_list);
72         if (list_empty(&queue->timer_list.list))
73                 del_timer(&queue->timer_list.timer);
74 }
75
76 static void
77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
78 {
79         queue->timer_list.expires = expires;
80         mod_timer(&queue->timer_list.timer, expires);
81 }
82
83 /*
84  * Set up a timer for the current task.
85  */
86 static void
87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
88 {
89         if (!task->tk_timeout)
90                 return;
91
92         dprintk("RPC: %5u setting alarm for %lu ms\n",
93                         task->tk_pid, task->tk_timeout * 1000 / HZ);
94
95         task->u.tk_wait.expires = jiffies + task->tk_timeout;
96         if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97                 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98         list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
99 }
100
101 /*
102  * Add new request to a priority queue.
103  */
104 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
105                 struct rpc_task *task,
106                 unsigned char queue_priority)
107 {
108         struct list_head *q;
109         struct rpc_task *t;
110
111         INIT_LIST_HEAD(&task->u.tk_wait.links);
112         q = &queue->tasks[queue_priority];
113         if (unlikely(queue_priority > queue->maxpriority))
114                 q = &queue->tasks[queue->maxpriority];
115         list_for_each_entry(t, q, u.tk_wait.list) {
116                 if (t->tk_owner == task->tk_owner) {
117                         list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
118                         return;
119                 }
120         }
121         list_add_tail(&task->u.tk_wait.list, q);
122 }
123
124 /*
125  * Add new request to wait queue.
126  *
127  * Swapper tasks always get inserted at the head of the queue.
128  * This should avoid many nasty memory deadlocks and hopefully
129  * improve overall performance.
130  * Everyone else gets appended to the queue to ensure proper FIFO behavior.
131  */
132 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
133                 struct rpc_task *task,
134                 unsigned char queue_priority)
135 {
136         BUG_ON (RPC_IS_QUEUED(task));
137
138         if (RPC_IS_PRIORITY(queue))
139                 __rpc_add_wait_queue_priority(queue, task, queue_priority);
140         else if (RPC_IS_SWAPPER(task))
141                 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
142         else
143                 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
144         task->tk_waitqueue = queue;
145         queue->qlen++;
146         rpc_set_queued(task);
147
148         dprintk("RPC: %5u added to queue %p \"%s\"\n",
149                         task->tk_pid, queue, rpc_qname(queue));
150 }
151
152 /*
153  * Remove request from a priority queue.
154  */
155 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
156 {
157         struct rpc_task *t;
158
159         if (!list_empty(&task->u.tk_wait.links)) {
160                 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
161                 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
162                 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
163         }
164 }
165
166 /*
167  * Remove request from queue.
168  * Note: must be called with spin lock held.
169  */
170 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
171 {
172         __rpc_disable_timer(queue, task);
173         if (RPC_IS_PRIORITY(queue))
174                 __rpc_remove_wait_queue_priority(task);
175         list_del(&task->u.tk_wait.list);
176         queue->qlen--;
177         dprintk("RPC: %5u removed from queue %p \"%s\"\n",
178                         task->tk_pid, queue, rpc_qname(queue));
179 }
180
181 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
182 {
183         queue->priority = priority;
184         queue->count = 1 << (priority * 2);
185 }
186
187 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
188 {
189         queue->owner = pid;
190         queue->nr = RPC_BATCH_COUNT;
191 }
192
193 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
194 {
195         rpc_set_waitqueue_priority(queue, queue->maxpriority);
196         rpc_set_waitqueue_owner(queue, 0);
197 }
198
199 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
200 {
201         int i;
202
203         spin_lock_init(&queue->lock);
204         for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
205                 INIT_LIST_HEAD(&queue->tasks[i]);
206         queue->maxpriority = nr_queues - 1;
207         rpc_reset_waitqueue_priority(queue);
208         queue->qlen = 0;
209         setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
210         INIT_LIST_HEAD(&queue->timer_list.list);
211         rpc_assign_waitqueue_name(queue, qname);
212 }
213
214 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
215 {
216         __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
217 }
218 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
219
220 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
221 {
222         __rpc_init_priority_wait_queue(queue, qname, 1);
223 }
224 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
225
226 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
227 {
228         del_timer_sync(&queue->timer_list.timer);
229 }
230 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
231
232 static int rpc_wait_bit_killable(void *word)
233 {
234         if (fatal_signal_pending(current))
235                 return -ERESTARTSYS;
236         freezable_schedule();
237         return 0;
238 }
239
240 #ifdef RPC_DEBUG
241 static void rpc_task_set_debuginfo(struct rpc_task *task)
242 {
243         static atomic_t rpc_pid;
244
245         task->tk_pid = atomic_inc_return(&rpc_pid);
246 }
247 #else
248 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
249 {
250 }
251 #endif
252
253 static void rpc_set_active(struct rpc_task *task)
254 {
255         trace_rpc_task_begin(task->tk_client, task, NULL);
256
257         rpc_task_set_debuginfo(task);
258         set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
259 }
260
261 /*
262  * Mark an RPC call as having completed by clearing the 'active' bit
263  * and then waking up all tasks that were sleeping.
264  */
265 static int rpc_complete_task(struct rpc_task *task)
266 {
267         void *m = &task->tk_runstate;
268         wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
269         struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
270         unsigned long flags;
271         int ret;
272
273         trace_rpc_task_complete(task->tk_client, task, NULL);
274
275         spin_lock_irqsave(&wq->lock, flags);
276         clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
277         ret = atomic_dec_and_test(&task->tk_count);
278         if (waitqueue_active(wq))
279                 __wake_up_locked_key(wq, TASK_NORMAL, &k);
280         spin_unlock_irqrestore(&wq->lock, flags);
281         return ret;
282 }
283
284 /*
285  * Allow callers to wait for completion of an RPC call
286  *
287  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
288  * to enforce taking of the wq->lock and hence avoid races with
289  * rpc_complete_task().
290  */
291 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
292 {
293         if (action == NULL)
294                 action = rpc_wait_bit_killable;
295         return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
296                         action, TASK_KILLABLE);
297 }
298 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
299
300 /*
301  * Make an RPC task runnable.
302  *
303  * Note: If the task is ASYNC, and is being made runnable after sitting on an
304  * rpc_wait_queue, this must be called with the queue spinlock held to protect
305  * the wait queue operation.
306  */
307 static void rpc_make_runnable(struct rpc_task *task)
308 {
309         rpc_clear_queued(task);
310         if (rpc_test_and_set_running(task))
311                 return;
312         if (RPC_IS_ASYNC(task)) {
313                 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
314                 queue_work(rpciod_workqueue, &task->u.tk_work);
315         } else
316                 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
317 }
318
319 /*
320  * Prepare for sleeping on a wait queue.
321  * By always appending tasks to the list we ensure FIFO behavior.
322  * NB: An RPC task will only receive interrupt-driven events as long
323  * as it's on a wait queue.
324  */
325 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
326                 struct rpc_task *task,
327                 rpc_action action,
328                 unsigned char queue_priority)
329 {
330         dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
331                         task->tk_pid, rpc_qname(q), jiffies);
332
333         trace_rpc_task_sleep(task->tk_client, task, q);
334
335         __rpc_add_wait_queue(q, task, queue_priority);
336
337         BUG_ON(task->tk_callback != NULL);
338         task->tk_callback = action;
339         __rpc_add_timer(q, task);
340 }
341
342 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
343                                 rpc_action action)
344 {
345         /* We shouldn't ever put an inactive task to sleep */
346         BUG_ON(!RPC_IS_ACTIVATED(task));
347
348         /*
349          * Protect the queue operations.
350          */
351         spin_lock_bh(&q->lock);
352         __rpc_sleep_on_priority(q, task, action, task->tk_priority);
353         spin_unlock_bh(&q->lock);
354 }
355 EXPORT_SYMBOL_GPL(rpc_sleep_on);
356
357 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
358                 rpc_action action, int priority)
359 {
360         /* We shouldn't ever put an inactive task to sleep */
361         BUG_ON(!RPC_IS_ACTIVATED(task));
362
363         /*
364          * Protect the queue operations.
365          */
366         spin_lock_bh(&q->lock);
367         __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
368         spin_unlock_bh(&q->lock);
369 }
370
371 /**
372  * __rpc_do_wake_up_task - wake up a single rpc_task
373  * @queue: wait queue
374  * @task: task to be woken up
375  *
376  * Caller must hold queue->lock, and have cleared the task queued flag.
377  */
378 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
379 {
380         dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
381                         task->tk_pid, jiffies);
382
383         /* Has the task been executed yet? If not, we cannot wake it up! */
384         if (!RPC_IS_ACTIVATED(task)) {
385                 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
386                 return;
387         }
388
389         trace_rpc_task_wakeup(task->tk_client, task, queue);
390
391         __rpc_remove_wait_queue(queue, task);
392
393         rpc_make_runnable(task);
394
395         dprintk("RPC:       __rpc_wake_up_task done\n");
396 }
397
398 /*
399  * Wake up a queued task while the queue lock is being held
400  */
401 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
402 {
403         if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
404                 __rpc_do_wake_up_task(queue, task);
405 }
406
407 /*
408  * Tests whether rpc queue is empty
409  */
410 int rpc_queue_empty(struct rpc_wait_queue *queue)
411 {
412         int res;
413
414         spin_lock_bh(&queue->lock);
415         res = queue->qlen;
416         spin_unlock_bh(&queue->lock);
417         return res == 0;
418 }
419 EXPORT_SYMBOL_GPL(rpc_queue_empty);
420
421 /*
422  * Wake up a task on a specific queue
423  */
424 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
425 {
426         spin_lock_bh(&queue->lock);
427         rpc_wake_up_task_queue_locked(queue, task);
428         spin_unlock_bh(&queue->lock);
429 }
430 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
431
432 /*
433  * Wake up the next task on a priority queue.
434  */
435 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
436 {
437         struct list_head *q;
438         struct rpc_task *task;
439
440         /*
441          * Service a batch of tasks from a single owner.
442          */
443         q = &queue->tasks[queue->priority];
444         if (!list_empty(q)) {
445                 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
446                 if (queue->owner == task->tk_owner) {
447                         if (--queue->nr)
448                                 goto out;
449                         list_move_tail(&task->u.tk_wait.list, q);
450                 }
451                 /*
452                  * Check if we need to switch queues.
453                  */
454                 if (--queue->count)
455                         goto new_owner;
456         }
457
458         /*
459          * Service the next queue.
460          */
461         do {
462                 if (q == &queue->tasks[0])
463                         q = &queue->tasks[queue->maxpriority];
464                 else
465                         q = q - 1;
466                 if (!list_empty(q)) {
467                         task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
468                         goto new_queue;
469                 }
470         } while (q != &queue->tasks[queue->priority]);
471
472         rpc_reset_waitqueue_priority(queue);
473         return NULL;
474
475 new_queue:
476         rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
477 new_owner:
478         rpc_set_waitqueue_owner(queue, task->tk_owner);
479 out:
480         return task;
481 }
482
483 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
484 {
485         if (RPC_IS_PRIORITY(queue))
486                 return __rpc_find_next_queued_priority(queue);
487         if (!list_empty(&queue->tasks[0]))
488                 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
489         return NULL;
490 }
491
492 /*
493  * Wake up the first task on the wait queue.
494  */
495 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
496                 bool (*func)(struct rpc_task *, void *), void *data)
497 {
498         struct rpc_task *task = NULL;
499
500         dprintk("RPC:       wake_up_first(%p \"%s\")\n",
501                         queue, rpc_qname(queue));
502         spin_lock_bh(&queue->lock);
503         task = __rpc_find_next_queued(queue);
504         if (task != NULL) {
505                 if (func(task, data))
506                         rpc_wake_up_task_queue_locked(queue, task);
507                 else
508                         task = NULL;
509         }
510         spin_unlock_bh(&queue->lock);
511
512         return task;
513 }
514 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
515
516 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
517 {
518         return true;
519 }
520
521 /*
522  * Wake up the next task on the wait queue.
523 */
524 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
525 {
526         return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
527 }
528 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
529
530 /**
531  * rpc_wake_up - wake up all rpc_tasks
532  * @queue: rpc_wait_queue on which the tasks are sleeping
533  *
534  * Grabs queue->lock
535  */
536 void rpc_wake_up(struct rpc_wait_queue *queue)
537 {
538         struct list_head *head;
539
540         spin_lock_bh(&queue->lock);
541         head = &queue->tasks[queue->maxpriority];
542         for (;;) {
543                 while (!list_empty(head)) {
544                         struct rpc_task *task;
545                         task = list_first_entry(head,
546                                         struct rpc_task,
547                                         u.tk_wait.list);
548                         rpc_wake_up_task_queue_locked(queue, task);
549                 }
550                 if (head == &queue->tasks[0])
551                         break;
552                 head--;
553         }
554         spin_unlock_bh(&queue->lock);
555 }
556 EXPORT_SYMBOL_GPL(rpc_wake_up);
557
558 /**
559  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
560  * @queue: rpc_wait_queue on which the tasks are sleeping
561  * @status: status value to set
562  *
563  * Grabs queue->lock
564  */
565 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
566 {
567         struct list_head *head;
568
569         spin_lock_bh(&queue->lock);
570         head = &queue->tasks[queue->maxpriority];
571         for (;;) {
572                 while (!list_empty(head)) {
573                         struct rpc_task *task;
574                         task = list_first_entry(head,
575                                         struct rpc_task,
576                                         u.tk_wait.list);
577                         task->tk_status = status;
578                         rpc_wake_up_task_queue_locked(queue, task);
579                 }
580                 if (head == &queue->tasks[0])
581                         break;
582                 head--;
583         }
584         spin_unlock_bh(&queue->lock);
585 }
586 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
587
588 static void __rpc_queue_timer_fn(unsigned long ptr)
589 {
590         struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
591         struct rpc_task *task, *n;
592         unsigned long expires, now, timeo;
593
594         spin_lock(&queue->lock);
595         expires = now = jiffies;
596         list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
597                 timeo = task->u.tk_wait.expires;
598                 if (time_after_eq(now, timeo)) {
599                         dprintk("RPC: %5u timeout\n", task->tk_pid);
600                         task->tk_status = -ETIMEDOUT;
601                         rpc_wake_up_task_queue_locked(queue, task);
602                         continue;
603                 }
604                 if (expires == now || time_after(expires, timeo))
605                         expires = timeo;
606         }
607         if (!list_empty(&queue->timer_list.list))
608                 rpc_set_queue_timer(queue, expires);
609         spin_unlock(&queue->lock);
610 }
611
612 static void __rpc_atrun(struct rpc_task *task)
613 {
614         task->tk_status = 0;
615 }
616
617 /*
618  * Run a task at a later time
619  */
620 void rpc_delay(struct rpc_task *task, unsigned long delay)
621 {
622         task->tk_timeout = delay;
623         rpc_sleep_on(&delay_queue, task, __rpc_atrun);
624 }
625 EXPORT_SYMBOL_GPL(rpc_delay);
626
627 /*
628  * Helper to call task->tk_ops->rpc_call_prepare
629  */
630 void rpc_prepare_task(struct rpc_task *task)
631 {
632         task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
633 }
634
635 static void
636 rpc_init_task_statistics(struct rpc_task *task)
637 {
638         /* Initialize retry counters */
639         task->tk_garb_retry = 2;
640         task->tk_cred_retry = 2;
641         task->tk_rebind_retry = 2;
642
643         /* starting timestamp */
644         task->tk_start = ktime_get();
645 }
646
647 static void
648 rpc_reset_task_statistics(struct rpc_task *task)
649 {
650         task->tk_timeouts = 0;
651         task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
652
653         rpc_init_task_statistics(task);
654 }
655
656 /*
657  * Helper that calls task->tk_ops->rpc_call_done if it exists
658  */
659 void rpc_exit_task(struct rpc_task *task)
660 {
661         task->tk_action = NULL;
662         if (task->tk_ops->rpc_call_done != NULL) {
663                 task->tk_ops->rpc_call_done(task, task->tk_calldata);
664                 if (task->tk_action != NULL) {
665                         WARN_ON(RPC_ASSASSINATED(task));
666                         /* Always release the RPC slot and buffer memory */
667                         xprt_release(task);
668                         rpc_reset_task_statistics(task);
669                 }
670         }
671 }
672
673 void rpc_exit(struct rpc_task *task, int status)
674 {
675         task->tk_status = status;
676         task->tk_action = rpc_exit_task;
677         if (RPC_IS_QUEUED(task))
678                 rpc_wake_up_queued_task(task->tk_waitqueue, task);
679 }
680 EXPORT_SYMBOL_GPL(rpc_exit);
681
682 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
683 {
684         if (ops->rpc_release != NULL)
685                 ops->rpc_release(calldata);
686 }
687
688 /*
689  * This is the RPC `scheduler' (or rather, the finite state machine).
690  */
691 static void __rpc_execute(struct rpc_task *task)
692 {
693         struct rpc_wait_queue *queue;
694         int task_is_async = RPC_IS_ASYNC(task);
695         int status = 0;
696
697         dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
698                         task->tk_pid, task->tk_flags);
699
700         BUG_ON(RPC_IS_QUEUED(task));
701
702         for (;;) {
703                 void (*do_action)(struct rpc_task *);
704
705                 /*
706                  * Execute any pending callback first.
707                  */
708                 do_action = task->tk_callback;
709                 task->tk_callback = NULL;
710                 if (do_action == NULL) {
711                         /*
712                          * Perform the next FSM step.
713                          * tk_action may be NULL if the task has been killed.
714                          * In particular, note that rpc_killall_tasks may
715                          * do this at any time, so beware when dereferencing.
716                          */
717                         do_action = task->tk_action;
718                         if (do_action == NULL)
719                                 break;
720                 }
721                 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
722                 do_action(task);
723
724                 /*
725                  * Lockless check for whether task is sleeping or not.
726                  */
727                 if (!RPC_IS_QUEUED(task))
728                         continue;
729                 /*
730                  * The queue->lock protects against races with
731                  * rpc_make_runnable().
732                  *
733                  * Note that once we clear RPC_TASK_RUNNING on an asynchronous
734                  * rpc_task, rpc_make_runnable() can assign it to a
735                  * different workqueue. We therefore cannot assume that the
736                  * rpc_task pointer may still be dereferenced.
737                  */
738                 queue = task->tk_waitqueue;
739                 spin_lock_bh(&queue->lock);
740                 if (!RPC_IS_QUEUED(task)) {
741                         spin_unlock_bh(&queue->lock);
742                         continue;
743                 }
744                 rpc_clear_running(task);
745                 spin_unlock_bh(&queue->lock);
746                 if (task_is_async)
747                         return;
748
749                 /* sync task: sleep here */
750                 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
751                 status = out_of_line_wait_on_bit(&task->tk_runstate,
752                                 RPC_TASK_QUEUED, rpc_wait_bit_killable,
753                                 TASK_KILLABLE);
754                 if (status == -ERESTARTSYS) {
755                         /*
756                          * When a sync task receives a signal, it exits with
757                          * -ERESTARTSYS. In order to catch any callbacks that
758                          * clean up after sleeping on some queue, we don't
759                          * break the loop here, but go around once more.
760                          */
761                         dprintk("RPC: %5u got signal\n", task->tk_pid);
762                         task->tk_flags |= RPC_TASK_KILLED;
763                         rpc_exit(task, -ERESTARTSYS);
764                 }
765                 rpc_set_running(task);
766                 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
767         }
768
769         dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
770                         task->tk_status);
771         /* Release all resources associated with the task */
772         rpc_release_task(task);
773 }
774
775 /*
776  * User-visible entry point to the scheduler.
777  *
778  * This may be called recursively if e.g. an async NFS task updates
779  * the attributes and finds that dirty pages must be flushed.
780  * NOTE: Upon exit of this function the task is guaranteed to be
781  *       released. In particular note that tk_release() will have
782  *       been called, so your task memory may have been freed.
783  */
784 void rpc_execute(struct rpc_task *task)
785 {
786         rpc_set_active(task);
787         rpc_make_runnable(task);
788         if (!RPC_IS_ASYNC(task))
789                 __rpc_execute(task);
790 }
791
792 static void rpc_async_schedule(struct work_struct *work)
793 {
794         current->flags |= PF_FSTRANS;
795         __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
796         current->flags &= ~PF_FSTRANS;
797 }
798
799 /**
800  * rpc_malloc - allocate an RPC buffer
801  * @task: RPC task that will use this buffer
802  * @size: requested byte size
803  *
804  * To prevent rpciod from hanging, this allocator never sleeps,
805  * returning NULL if the request cannot be serviced immediately.
806  * The caller can arrange to sleep in a way that is safe for rpciod.
807  *
808  * Most requests are 'small' (under 2KiB) and can be serviced from a
809  * mempool, ensuring that NFS reads and writes can always proceed,
810  * and that there is good locality of reference for these buffers.
811  *
812  * In order to avoid memory starvation triggering more writebacks of
813  * NFS requests, we avoid using GFP_KERNEL.
814  */
815 void *rpc_malloc(struct rpc_task *task, size_t size)
816 {
817         struct rpc_buffer *buf;
818         gfp_t gfp = GFP_NOWAIT;
819
820         if (RPC_IS_SWAPPER(task))
821                 gfp |= __GFP_MEMALLOC;
822
823         size += sizeof(struct rpc_buffer);
824         if (size <= RPC_BUFFER_MAXSIZE)
825                 buf = mempool_alloc(rpc_buffer_mempool, gfp);
826         else
827                 buf = kmalloc(size, gfp);
828
829         if (!buf)
830                 return NULL;
831
832         buf->len = size;
833         dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
834                         task->tk_pid, size, buf);
835         return &buf->data;
836 }
837 EXPORT_SYMBOL_GPL(rpc_malloc);
838
839 /**
840  * rpc_free - free buffer allocated via rpc_malloc
841  * @buffer: buffer to free
842  *
843  */
844 void rpc_free(void *buffer)
845 {
846         size_t size;
847         struct rpc_buffer *buf;
848
849         if (!buffer)
850                 return;
851
852         buf = container_of(buffer, struct rpc_buffer, data);
853         size = buf->len;
854
855         dprintk("RPC:       freeing buffer of size %zu at %p\n",
856                         size, buf);
857
858         if (size <= RPC_BUFFER_MAXSIZE)
859                 mempool_free(buf, rpc_buffer_mempool);
860         else
861                 kfree(buf);
862 }
863 EXPORT_SYMBOL_GPL(rpc_free);
864
865 /*
866  * Creation and deletion of RPC task structures
867  */
868 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
869 {
870         memset(task, 0, sizeof(*task));
871         atomic_set(&task->tk_count, 1);
872         task->tk_flags  = task_setup_data->flags;
873         task->tk_ops = task_setup_data->callback_ops;
874         task->tk_calldata = task_setup_data->callback_data;
875         INIT_LIST_HEAD(&task->tk_task);
876
877         task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
878         task->tk_owner = current->tgid;
879
880         /* Initialize workqueue for async tasks */
881         task->tk_workqueue = task_setup_data->workqueue;
882
883         if (task->tk_ops->rpc_call_prepare != NULL)
884                 task->tk_action = rpc_prepare_task;
885
886         rpc_init_task_statistics(task);
887
888         dprintk("RPC:       new task initialized, procpid %u\n",
889                                 task_pid_nr(current));
890 }
891
892 static struct rpc_task *
893 rpc_alloc_task(void)
894 {
895         return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
896 }
897
898 /*
899  * Create a new task for the specified client.
900  */
901 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
902 {
903         struct rpc_task *task = setup_data->task;
904         unsigned short flags = 0;
905
906         if (task == NULL) {
907                 task = rpc_alloc_task();
908                 if (task == NULL) {
909                         rpc_release_calldata(setup_data->callback_ops,
910                                         setup_data->callback_data);
911                         return ERR_PTR(-ENOMEM);
912                 }
913                 flags = RPC_TASK_DYNAMIC;
914         }
915
916         rpc_init_task(task, setup_data);
917         task->tk_flags |= flags;
918         dprintk("RPC:       allocated task %p\n", task);
919         return task;
920 }
921
922 static void rpc_free_task(struct rpc_task *task)
923 {
924         const struct rpc_call_ops *tk_ops = task->tk_ops;
925         void *calldata = task->tk_calldata;
926
927         if (task->tk_flags & RPC_TASK_DYNAMIC) {
928                 dprintk("RPC: %5u freeing task\n", task->tk_pid);
929                 mempool_free(task, rpc_task_mempool);
930         }
931         rpc_release_calldata(tk_ops, calldata);
932 }
933
934 static void rpc_async_release(struct work_struct *work)
935 {
936         rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
937 }
938
939 static void rpc_release_resources_task(struct rpc_task *task)
940 {
941         if (task->tk_rqstp)
942                 xprt_release(task);
943         if (task->tk_msg.rpc_cred) {
944                 put_rpccred(task->tk_msg.rpc_cred);
945                 task->tk_msg.rpc_cred = NULL;
946         }
947         rpc_task_release_client(task);
948 }
949
950 static void rpc_final_put_task(struct rpc_task *task,
951                 struct workqueue_struct *q)
952 {
953         if (q != NULL) {
954                 INIT_WORK(&task->u.tk_work, rpc_async_release);
955                 queue_work(q, &task->u.tk_work);
956         } else
957                 rpc_free_task(task);
958 }
959
960 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
961 {
962         if (atomic_dec_and_test(&task->tk_count)) {
963                 rpc_release_resources_task(task);
964                 rpc_final_put_task(task, q);
965         }
966 }
967
968 void rpc_put_task(struct rpc_task *task)
969 {
970         rpc_do_put_task(task, NULL);
971 }
972 EXPORT_SYMBOL_GPL(rpc_put_task);
973
974 void rpc_put_task_async(struct rpc_task *task)
975 {
976         rpc_do_put_task(task, task->tk_workqueue);
977 }
978 EXPORT_SYMBOL_GPL(rpc_put_task_async);
979
980 static void rpc_release_task(struct rpc_task *task)
981 {
982         dprintk("RPC: %5u release task\n", task->tk_pid);
983
984         BUG_ON (RPC_IS_QUEUED(task));
985
986         rpc_release_resources_task(task);
987
988         /*
989          * Note: at this point we have been removed from rpc_clnt->cl_tasks,
990          * so it should be safe to use task->tk_count as a test for whether
991          * or not any other processes still hold references to our rpc_task.
992          */
993         if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
994                 /* Wake up anyone who may be waiting for task completion */
995                 if (!rpc_complete_task(task))
996                         return;
997         } else {
998                 if (!atomic_dec_and_test(&task->tk_count))
999                         return;
1000         }
1001         rpc_final_put_task(task, task->tk_workqueue);
1002 }
1003
1004 int rpciod_up(void)
1005 {
1006         return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1007 }
1008
1009 void rpciod_down(void)
1010 {
1011         module_put(THIS_MODULE);
1012 }
1013
1014 /*
1015  * Start up the rpciod workqueue.
1016  */
1017 static int rpciod_start(void)
1018 {
1019         struct workqueue_struct *wq;
1020
1021         /*
1022          * Create the rpciod thread and wait for it to start.
1023          */
1024         dprintk("RPC:       creating workqueue rpciod\n");
1025         wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1026         rpciod_workqueue = wq;
1027         return rpciod_workqueue != NULL;
1028 }
1029
1030 static void rpciod_stop(void)
1031 {
1032         struct workqueue_struct *wq = NULL;
1033
1034         if (rpciod_workqueue == NULL)
1035                 return;
1036         dprintk("RPC:       destroying workqueue rpciod\n");
1037
1038         wq = rpciod_workqueue;
1039         rpciod_workqueue = NULL;
1040         destroy_workqueue(wq);
1041 }
1042
1043 void
1044 rpc_destroy_mempool(void)
1045 {
1046         rpciod_stop();
1047         if (rpc_buffer_mempool)
1048                 mempool_destroy(rpc_buffer_mempool);
1049         if (rpc_task_mempool)
1050                 mempool_destroy(rpc_task_mempool);
1051         if (rpc_task_slabp)
1052                 kmem_cache_destroy(rpc_task_slabp);
1053         if (rpc_buffer_slabp)
1054                 kmem_cache_destroy(rpc_buffer_slabp);
1055         rpc_destroy_wait_queue(&delay_queue);
1056 }
1057
1058 int
1059 rpc_init_mempool(void)
1060 {
1061         /*
1062          * The following is not strictly a mempool initialisation,
1063          * but there is no harm in doing it here
1064          */
1065         rpc_init_wait_queue(&delay_queue, "delayq");
1066         if (!rpciod_start())
1067                 goto err_nomem;
1068
1069         rpc_task_slabp = kmem_cache_create("rpc_tasks",
1070                                              sizeof(struct rpc_task),
1071                                              0, SLAB_HWCACHE_ALIGN,
1072                                              NULL);
1073         if (!rpc_task_slabp)
1074                 goto err_nomem;
1075         rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1076                                              RPC_BUFFER_MAXSIZE,
1077                                              0, SLAB_HWCACHE_ALIGN,
1078                                              NULL);
1079         if (!rpc_buffer_slabp)
1080                 goto err_nomem;
1081         rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1082                                                     rpc_task_slabp);
1083         if (!rpc_task_mempool)
1084                 goto err_nomem;
1085         rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1086                                                       rpc_buffer_slabp);
1087         if (!rpc_buffer_mempool)
1088                 goto err_nomem;
1089         return 0;
1090 err_nomem:
1091         rpc_destroy_mempool();
1092         return -ENOMEM;
1093 }