2 * linux/net/sunrpc/sched.c
4 * Scheduling for synchronous and asynchronous RPC requests.
6 * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8 * TCP NFS related read + write fixes
9 * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
12 #include <linux/module.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/mempool.h>
18 #include <linux/smp.h>
19 #include <linux/spinlock.h>
20 #include <linux/mutex.h>
21 #include <linux/freezer.h>
23 #include <linux/sunrpc/clnt.h>
28 #define RPCDBG_FACILITY RPCDBG_SCHED
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/sunrpc.h>
35 * RPC slabs and memory pools
37 #define RPC_BUFFER_MAXSIZE (2048)
38 #define RPC_BUFFER_POOLSIZE (8)
39 #define RPC_TASK_POOLSIZE (8)
40 static struct kmem_cache *rpc_task_slabp __read_mostly;
41 static struct kmem_cache *rpc_buffer_slabp __read_mostly;
42 static mempool_t *rpc_task_mempool __read_mostly;
43 static mempool_t *rpc_buffer_mempool __read_mostly;
45 static void rpc_async_schedule(struct work_struct *);
46 static void rpc_release_task(struct rpc_task *task);
47 static void __rpc_queue_timer_fn(unsigned long ptr);
50 * RPC tasks sit here while waiting for conditions to improve.
52 static struct rpc_wait_queue delay_queue;
55 * rpciod-related stuff
57 struct workqueue_struct *rpciod_workqueue;
60 * Disable the timer for a given RPC task. Should be called with
61 * queue->lock and bh_disabled in order to avoid races within
65 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
67 if (task->tk_timeout == 0)
69 dprintk("RPC: %5u disabling timer\n", task->tk_pid);
71 list_del(&task->u.tk_wait.timer_list);
72 if (list_empty(&queue->timer_list.list))
73 del_timer(&queue->timer_list.timer);
77 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
79 queue->timer_list.expires = expires;
80 mod_timer(&queue->timer_list.timer, expires);
84 * Set up a timer for the current task.
87 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
89 if (!task->tk_timeout)
92 dprintk("RPC: %5u setting alarm for %lu ms\n",
93 task->tk_pid, task->tk_timeout * 1000 / HZ);
95 task->u.tk_wait.expires = jiffies + task->tk_timeout;
96 if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
97 rpc_set_queue_timer(queue, task->u.tk_wait.expires);
98 list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
102 * Add new request to a priority queue.
104 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
105 struct rpc_task *task,
106 unsigned char queue_priority)
111 INIT_LIST_HEAD(&task->u.tk_wait.links);
112 q = &queue->tasks[queue_priority];
113 if (unlikely(queue_priority > queue->maxpriority))
114 q = &queue->tasks[queue->maxpriority];
115 list_for_each_entry(t, q, u.tk_wait.list) {
116 if (t->tk_owner == task->tk_owner) {
117 list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
121 list_add_tail(&task->u.tk_wait.list, q);
125 * Add new request to wait queue.
127 * Swapper tasks always get inserted at the head of the queue.
128 * This should avoid many nasty memory deadlocks and hopefully
129 * improve overall performance.
130 * Everyone else gets appended to the queue to ensure proper FIFO behavior.
132 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
133 struct rpc_task *task,
134 unsigned char queue_priority)
136 BUG_ON (RPC_IS_QUEUED(task));
138 if (RPC_IS_PRIORITY(queue))
139 __rpc_add_wait_queue_priority(queue, task, queue_priority);
140 else if (RPC_IS_SWAPPER(task))
141 list_add(&task->u.tk_wait.list, &queue->tasks[0]);
143 list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
144 task->tk_waitqueue = queue;
146 rpc_set_queued(task);
148 dprintk("RPC: %5u added to queue %p \"%s\"\n",
149 task->tk_pid, queue, rpc_qname(queue));
153 * Remove request from a priority queue.
155 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
159 if (!list_empty(&task->u.tk_wait.links)) {
160 t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
161 list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
162 list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
167 * Remove request from queue.
168 * Note: must be called with spin lock held.
170 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
172 __rpc_disable_timer(queue, task);
173 if (RPC_IS_PRIORITY(queue))
174 __rpc_remove_wait_queue_priority(task);
175 list_del(&task->u.tk_wait.list);
177 dprintk("RPC: %5u removed from queue %p \"%s\"\n",
178 task->tk_pid, queue, rpc_qname(queue));
181 static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
183 queue->priority = priority;
184 queue->count = 1 << (priority * 2);
187 static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
190 queue->nr = RPC_BATCH_COUNT;
193 static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
195 rpc_set_waitqueue_priority(queue, queue->maxpriority);
196 rpc_set_waitqueue_owner(queue, 0);
199 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
203 spin_lock_init(&queue->lock);
204 for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
205 INIT_LIST_HEAD(&queue->tasks[i]);
206 queue->maxpriority = nr_queues - 1;
207 rpc_reset_waitqueue_priority(queue);
209 setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
210 INIT_LIST_HEAD(&queue->timer_list.list);
211 rpc_assign_waitqueue_name(queue, qname);
214 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
216 __rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
218 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
220 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
222 __rpc_init_priority_wait_queue(queue, qname, 1);
224 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
226 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
228 del_timer_sync(&queue->timer_list.timer);
230 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
232 static int rpc_wait_bit_killable(void *word)
234 if (fatal_signal_pending(current))
236 freezable_schedule();
241 static void rpc_task_set_debuginfo(struct rpc_task *task)
243 static atomic_t rpc_pid;
245 task->tk_pid = atomic_inc_return(&rpc_pid);
248 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
253 static void rpc_set_active(struct rpc_task *task)
255 trace_rpc_task_begin(task->tk_client, task, NULL);
257 rpc_task_set_debuginfo(task);
258 set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
262 * Mark an RPC call as having completed by clearing the 'active' bit
263 * and then waking up all tasks that were sleeping.
265 static int rpc_complete_task(struct rpc_task *task)
267 void *m = &task->tk_runstate;
268 wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
269 struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
273 trace_rpc_task_complete(task->tk_client, task, NULL);
275 spin_lock_irqsave(&wq->lock, flags);
276 clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
277 ret = atomic_dec_and_test(&task->tk_count);
278 if (waitqueue_active(wq))
279 __wake_up_locked_key(wq, TASK_NORMAL, &k);
280 spin_unlock_irqrestore(&wq->lock, flags);
285 * Allow callers to wait for completion of an RPC call
287 * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
288 * to enforce taking of the wq->lock and hence avoid races with
289 * rpc_complete_task().
291 int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
294 action = rpc_wait_bit_killable;
295 return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
296 action, TASK_KILLABLE);
298 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
301 * Make an RPC task runnable.
303 * Note: If the task is ASYNC, and is being made runnable after sitting on an
304 * rpc_wait_queue, this must be called with the queue spinlock held to protect
305 * the wait queue operation.
307 static void rpc_make_runnable(struct rpc_task *task)
309 rpc_clear_queued(task);
310 if (rpc_test_and_set_running(task))
312 if (RPC_IS_ASYNC(task)) {
313 INIT_WORK(&task->u.tk_work, rpc_async_schedule);
314 queue_work(rpciod_workqueue, &task->u.tk_work);
316 wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
320 * Prepare for sleeping on a wait queue.
321 * By always appending tasks to the list we ensure FIFO behavior.
322 * NB: An RPC task will only receive interrupt-driven events as long
323 * as it's on a wait queue.
325 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
326 struct rpc_task *task,
328 unsigned char queue_priority)
330 dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
331 task->tk_pid, rpc_qname(q), jiffies);
333 trace_rpc_task_sleep(task->tk_client, task, q);
335 __rpc_add_wait_queue(q, task, queue_priority);
337 BUG_ON(task->tk_callback != NULL);
338 task->tk_callback = action;
339 __rpc_add_timer(q, task);
342 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
345 /* We shouldn't ever put an inactive task to sleep */
346 BUG_ON(!RPC_IS_ACTIVATED(task));
349 * Protect the queue operations.
351 spin_lock_bh(&q->lock);
352 __rpc_sleep_on_priority(q, task, action, task->tk_priority);
353 spin_unlock_bh(&q->lock);
355 EXPORT_SYMBOL_GPL(rpc_sleep_on);
357 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
358 rpc_action action, int priority)
360 /* We shouldn't ever put an inactive task to sleep */
361 BUG_ON(!RPC_IS_ACTIVATED(task));
364 * Protect the queue operations.
366 spin_lock_bh(&q->lock);
367 __rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
368 spin_unlock_bh(&q->lock);
372 * __rpc_do_wake_up_task - wake up a single rpc_task
374 * @task: task to be woken up
376 * Caller must hold queue->lock, and have cleared the task queued flag.
378 static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
380 dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
381 task->tk_pid, jiffies);
383 /* Has the task been executed yet? If not, we cannot wake it up! */
384 if (!RPC_IS_ACTIVATED(task)) {
385 printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
389 trace_rpc_task_wakeup(task->tk_client, task, queue);
391 __rpc_remove_wait_queue(queue, task);
393 rpc_make_runnable(task);
395 dprintk("RPC: __rpc_wake_up_task done\n");
399 * Wake up a queued task while the queue lock is being held
401 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
403 if (RPC_IS_QUEUED(task) && task->tk_waitqueue == queue)
404 __rpc_do_wake_up_task(queue, task);
408 * Tests whether rpc queue is empty
410 int rpc_queue_empty(struct rpc_wait_queue *queue)
414 spin_lock_bh(&queue->lock);
416 spin_unlock_bh(&queue->lock);
419 EXPORT_SYMBOL_GPL(rpc_queue_empty);
422 * Wake up a task on a specific queue
424 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
426 spin_lock_bh(&queue->lock);
427 rpc_wake_up_task_queue_locked(queue, task);
428 spin_unlock_bh(&queue->lock);
430 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
433 * Wake up the next task on a priority queue.
435 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
438 struct rpc_task *task;
441 * Service a batch of tasks from a single owner.
443 q = &queue->tasks[queue->priority];
444 if (!list_empty(q)) {
445 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
446 if (queue->owner == task->tk_owner) {
449 list_move_tail(&task->u.tk_wait.list, q);
452 * Check if we need to switch queues.
459 * Service the next queue.
462 if (q == &queue->tasks[0])
463 q = &queue->tasks[queue->maxpriority];
466 if (!list_empty(q)) {
467 task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
470 } while (q != &queue->tasks[queue->priority]);
472 rpc_reset_waitqueue_priority(queue);
476 rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
478 rpc_set_waitqueue_owner(queue, task->tk_owner);
483 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
485 if (RPC_IS_PRIORITY(queue))
486 return __rpc_find_next_queued_priority(queue);
487 if (!list_empty(&queue->tasks[0]))
488 return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
493 * Wake up the first task on the wait queue.
495 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
496 bool (*func)(struct rpc_task *, void *), void *data)
498 struct rpc_task *task = NULL;
500 dprintk("RPC: wake_up_first(%p \"%s\")\n",
501 queue, rpc_qname(queue));
502 spin_lock_bh(&queue->lock);
503 task = __rpc_find_next_queued(queue);
505 if (func(task, data))
506 rpc_wake_up_task_queue_locked(queue, task);
510 spin_unlock_bh(&queue->lock);
514 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
516 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
522 * Wake up the next task on the wait queue.
524 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
526 return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
528 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
531 * rpc_wake_up - wake up all rpc_tasks
532 * @queue: rpc_wait_queue on which the tasks are sleeping
536 void rpc_wake_up(struct rpc_wait_queue *queue)
538 struct list_head *head;
540 spin_lock_bh(&queue->lock);
541 head = &queue->tasks[queue->maxpriority];
543 while (!list_empty(head)) {
544 struct rpc_task *task;
545 task = list_first_entry(head,
548 rpc_wake_up_task_queue_locked(queue, task);
550 if (head == &queue->tasks[0])
554 spin_unlock_bh(&queue->lock);
556 EXPORT_SYMBOL_GPL(rpc_wake_up);
559 * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
560 * @queue: rpc_wait_queue on which the tasks are sleeping
561 * @status: status value to set
565 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
567 struct list_head *head;
569 spin_lock_bh(&queue->lock);
570 head = &queue->tasks[queue->maxpriority];
572 while (!list_empty(head)) {
573 struct rpc_task *task;
574 task = list_first_entry(head,
577 task->tk_status = status;
578 rpc_wake_up_task_queue_locked(queue, task);
580 if (head == &queue->tasks[0])
584 spin_unlock_bh(&queue->lock);
586 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
588 static void __rpc_queue_timer_fn(unsigned long ptr)
590 struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
591 struct rpc_task *task, *n;
592 unsigned long expires, now, timeo;
594 spin_lock(&queue->lock);
595 expires = now = jiffies;
596 list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
597 timeo = task->u.tk_wait.expires;
598 if (time_after_eq(now, timeo)) {
599 dprintk("RPC: %5u timeout\n", task->tk_pid);
600 task->tk_status = -ETIMEDOUT;
601 rpc_wake_up_task_queue_locked(queue, task);
604 if (expires == now || time_after(expires, timeo))
607 if (!list_empty(&queue->timer_list.list))
608 rpc_set_queue_timer(queue, expires);
609 spin_unlock(&queue->lock);
612 static void __rpc_atrun(struct rpc_task *task)
618 * Run a task at a later time
620 void rpc_delay(struct rpc_task *task, unsigned long delay)
622 task->tk_timeout = delay;
623 rpc_sleep_on(&delay_queue, task, __rpc_atrun);
625 EXPORT_SYMBOL_GPL(rpc_delay);
628 * Helper to call task->tk_ops->rpc_call_prepare
630 void rpc_prepare_task(struct rpc_task *task)
632 task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
636 rpc_init_task_statistics(struct rpc_task *task)
638 /* Initialize retry counters */
639 task->tk_garb_retry = 2;
640 task->tk_cred_retry = 2;
641 task->tk_rebind_retry = 2;
643 /* starting timestamp */
644 task->tk_start = ktime_get();
648 rpc_reset_task_statistics(struct rpc_task *task)
650 task->tk_timeouts = 0;
651 task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
653 rpc_init_task_statistics(task);
657 * Helper that calls task->tk_ops->rpc_call_done if it exists
659 void rpc_exit_task(struct rpc_task *task)
661 task->tk_action = NULL;
662 if (task->tk_ops->rpc_call_done != NULL) {
663 task->tk_ops->rpc_call_done(task, task->tk_calldata);
664 if (task->tk_action != NULL) {
665 WARN_ON(RPC_ASSASSINATED(task));
666 /* Always release the RPC slot and buffer memory */
668 rpc_reset_task_statistics(task);
673 void rpc_exit(struct rpc_task *task, int status)
675 task->tk_status = status;
676 task->tk_action = rpc_exit_task;
677 if (RPC_IS_QUEUED(task))
678 rpc_wake_up_queued_task(task->tk_waitqueue, task);
680 EXPORT_SYMBOL_GPL(rpc_exit);
682 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
684 if (ops->rpc_release != NULL)
685 ops->rpc_release(calldata);
689 * This is the RPC `scheduler' (or rather, the finite state machine).
691 static void __rpc_execute(struct rpc_task *task)
693 struct rpc_wait_queue *queue;
694 int task_is_async = RPC_IS_ASYNC(task);
697 dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
698 task->tk_pid, task->tk_flags);
700 BUG_ON(RPC_IS_QUEUED(task));
703 void (*do_action)(struct rpc_task *);
706 * Execute any pending callback first.
708 do_action = task->tk_callback;
709 task->tk_callback = NULL;
710 if (do_action == NULL) {
712 * Perform the next FSM step.
713 * tk_action may be NULL if the task has been killed.
714 * In particular, note that rpc_killall_tasks may
715 * do this at any time, so beware when dereferencing.
717 do_action = task->tk_action;
718 if (do_action == NULL)
721 trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
725 * Lockless check for whether task is sleeping or not.
727 if (!RPC_IS_QUEUED(task))
730 * The queue->lock protects against races with
731 * rpc_make_runnable().
733 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
734 * rpc_task, rpc_make_runnable() can assign it to a
735 * different workqueue. We therefore cannot assume that the
736 * rpc_task pointer may still be dereferenced.
738 queue = task->tk_waitqueue;
739 spin_lock_bh(&queue->lock);
740 if (!RPC_IS_QUEUED(task)) {
741 spin_unlock_bh(&queue->lock);
744 rpc_clear_running(task);
745 spin_unlock_bh(&queue->lock);
749 /* sync task: sleep here */
750 dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
751 status = out_of_line_wait_on_bit(&task->tk_runstate,
752 RPC_TASK_QUEUED, rpc_wait_bit_killable,
754 if (status == -ERESTARTSYS) {
756 * When a sync task receives a signal, it exits with
757 * -ERESTARTSYS. In order to catch any callbacks that
758 * clean up after sleeping on some queue, we don't
759 * break the loop here, but go around once more.
761 dprintk("RPC: %5u got signal\n", task->tk_pid);
762 task->tk_flags |= RPC_TASK_KILLED;
763 rpc_exit(task, -ERESTARTSYS);
765 rpc_set_running(task);
766 dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
769 dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
771 /* Release all resources associated with the task */
772 rpc_release_task(task);
776 * User-visible entry point to the scheduler.
778 * This may be called recursively if e.g. an async NFS task updates
779 * the attributes and finds that dirty pages must be flushed.
780 * NOTE: Upon exit of this function the task is guaranteed to be
781 * released. In particular note that tk_release() will have
782 * been called, so your task memory may have been freed.
784 void rpc_execute(struct rpc_task *task)
786 rpc_set_active(task);
787 rpc_make_runnable(task);
788 if (!RPC_IS_ASYNC(task))
792 static void rpc_async_schedule(struct work_struct *work)
794 current->flags |= PF_FSTRANS;
795 __rpc_execute(container_of(work, struct rpc_task, u.tk_work));
796 current->flags &= ~PF_FSTRANS;
800 * rpc_malloc - allocate an RPC buffer
801 * @task: RPC task that will use this buffer
802 * @size: requested byte size
804 * To prevent rpciod from hanging, this allocator never sleeps,
805 * returning NULL if the request cannot be serviced immediately.
806 * The caller can arrange to sleep in a way that is safe for rpciod.
808 * Most requests are 'small' (under 2KiB) and can be serviced from a
809 * mempool, ensuring that NFS reads and writes can always proceed,
810 * and that there is good locality of reference for these buffers.
812 * In order to avoid memory starvation triggering more writebacks of
813 * NFS requests, we avoid using GFP_KERNEL.
815 void *rpc_malloc(struct rpc_task *task, size_t size)
817 struct rpc_buffer *buf;
818 gfp_t gfp = GFP_NOWAIT;
820 if (RPC_IS_SWAPPER(task))
821 gfp |= __GFP_MEMALLOC;
823 size += sizeof(struct rpc_buffer);
824 if (size <= RPC_BUFFER_MAXSIZE)
825 buf = mempool_alloc(rpc_buffer_mempool, gfp);
827 buf = kmalloc(size, gfp);
833 dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
834 task->tk_pid, size, buf);
837 EXPORT_SYMBOL_GPL(rpc_malloc);
840 * rpc_free - free buffer allocated via rpc_malloc
841 * @buffer: buffer to free
844 void rpc_free(void *buffer)
847 struct rpc_buffer *buf;
852 buf = container_of(buffer, struct rpc_buffer, data);
855 dprintk("RPC: freeing buffer of size %zu at %p\n",
858 if (size <= RPC_BUFFER_MAXSIZE)
859 mempool_free(buf, rpc_buffer_mempool);
863 EXPORT_SYMBOL_GPL(rpc_free);
866 * Creation and deletion of RPC task structures
868 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
870 memset(task, 0, sizeof(*task));
871 atomic_set(&task->tk_count, 1);
872 task->tk_flags = task_setup_data->flags;
873 task->tk_ops = task_setup_data->callback_ops;
874 task->tk_calldata = task_setup_data->callback_data;
875 INIT_LIST_HEAD(&task->tk_task);
877 task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
878 task->tk_owner = current->tgid;
880 /* Initialize workqueue for async tasks */
881 task->tk_workqueue = task_setup_data->workqueue;
883 if (task->tk_ops->rpc_call_prepare != NULL)
884 task->tk_action = rpc_prepare_task;
886 rpc_init_task_statistics(task);
888 dprintk("RPC: new task initialized, procpid %u\n",
889 task_pid_nr(current));
892 static struct rpc_task *
895 return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOIO);
899 * Create a new task for the specified client.
901 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
903 struct rpc_task *task = setup_data->task;
904 unsigned short flags = 0;
907 task = rpc_alloc_task();
909 rpc_release_calldata(setup_data->callback_ops,
910 setup_data->callback_data);
911 return ERR_PTR(-ENOMEM);
913 flags = RPC_TASK_DYNAMIC;
916 rpc_init_task(task, setup_data);
917 task->tk_flags |= flags;
918 dprintk("RPC: allocated task %p\n", task);
922 static void rpc_free_task(struct rpc_task *task)
924 const struct rpc_call_ops *tk_ops = task->tk_ops;
925 void *calldata = task->tk_calldata;
927 if (task->tk_flags & RPC_TASK_DYNAMIC) {
928 dprintk("RPC: %5u freeing task\n", task->tk_pid);
929 mempool_free(task, rpc_task_mempool);
931 rpc_release_calldata(tk_ops, calldata);
934 static void rpc_async_release(struct work_struct *work)
936 rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
939 static void rpc_release_resources_task(struct rpc_task *task)
943 if (task->tk_msg.rpc_cred) {
944 put_rpccred(task->tk_msg.rpc_cred);
945 task->tk_msg.rpc_cred = NULL;
947 rpc_task_release_client(task);
950 static void rpc_final_put_task(struct rpc_task *task,
951 struct workqueue_struct *q)
954 INIT_WORK(&task->u.tk_work, rpc_async_release);
955 queue_work(q, &task->u.tk_work);
960 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
962 if (atomic_dec_and_test(&task->tk_count)) {
963 rpc_release_resources_task(task);
964 rpc_final_put_task(task, q);
968 void rpc_put_task(struct rpc_task *task)
970 rpc_do_put_task(task, NULL);
972 EXPORT_SYMBOL_GPL(rpc_put_task);
974 void rpc_put_task_async(struct rpc_task *task)
976 rpc_do_put_task(task, task->tk_workqueue);
978 EXPORT_SYMBOL_GPL(rpc_put_task_async);
980 static void rpc_release_task(struct rpc_task *task)
982 dprintk("RPC: %5u release task\n", task->tk_pid);
984 BUG_ON (RPC_IS_QUEUED(task));
986 rpc_release_resources_task(task);
989 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
990 * so it should be safe to use task->tk_count as a test for whether
991 * or not any other processes still hold references to our rpc_task.
993 if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
994 /* Wake up anyone who may be waiting for task completion */
995 if (!rpc_complete_task(task))
998 if (!atomic_dec_and_test(&task->tk_count))
1001 rpc_final_put_task(task, task->tk_workqueue);
1006 return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1009 void rpciod_down(void)
1011 module_put(THIS_MODULE);
1015 * Start up the rpciod workqueue.
1017 static int rpciod_start(void)
1019 struct workqueue_struct *wq;
1022 * Create the rpciod thread and wait for it to start.
1024 dprintk("RPC: creating workqueue rpciod\n");
1025 wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
1026 rpciod_workqueue = wq;
1027 return rpciod_workqueue != NULL;
1030 static void rpciod_stop(void)
1032 struct workqueue_struct *wq = NULL;
1034 if (rpciod_workqueue == NULL)
1036 dprintk("RPC: destroying workqueue rpciod\n");
1038 wq = rpciod_workqueue;
1039 rpciod_workqueue = NULL;
1040 destroy_workqueue(wq);
1044 rpc_destroy_mempool(void)
1047 if (rpc_buffer_mempool)
1048 mempool_destroy(rpc_buffer_mempool);
1049 if (rpc_task_mempool)
1050 mempool_destroy(rpc_task_mempool);
1052 kmem_cache_destroy(rpc_task_slabp);
1053 if (rpc_buffer_slabp)
1054 kmem_cache_destroy(rpc_buffer_slabp);
1055 rpc_destroy_wait_queue(&delay_queue);
1059 rpc_init_mempool(void)
1062 * The following is not strictly a mempool initialisation,
1063 * but there is no harm in doing it here
1065 rpc_init_wait_queue(&delay_queue, "delayq");
1066 if (!rpciod_start())
1069 rpc_task_slabp = kmem_cache_create("rpc_tasks",
1070 sizeof(struct rpc_task),
1071 0, SLAB_HWCACHE_ALIGN,
1073 if (!rpc_task_slabp)
1075 rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1077 0, SLAB_HWCACHE_ALIGN,
1079 if (!rpc_buffer_slabp)
1081 rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1083 if (!rpc_task_mempool)
1085 rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1087 if (!rpc_buffer_mempool)
1091 rpc_destroy_mempool();