Merge branch 'nfs-for-next' of git://linux-nfs.org/~trondmy/nfs-2.6 into for-3.10
[platform/adaptation/renesas_rcar/renesas_kernel.git] / net / sunrpc / cache.c
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
8  *
9  * Released under terms in GPL version 2.  See COPYING.
10  *
11  */
12
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
35 #include <linux/sunrpc/rpc_pipe_fs.h>
36 #include "netns.h"
37
38 #define  RPCDBG_FACILITY RPCDBG_CACHE
39
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42
43 static void cache_init(struct cache_head *h)
44 {
45         time_t now = seconds_since_boot();
46         h->next = NULL;
47         h->flags = 0;
48         kref_init(&h->ref);
49         h->expiry_time = now + CACHE_NEW_EXPIRY;
50         h->last_refresh = now;
51 }
52
53 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54 {
55         return  (h->expiry_time < seconds_since_boot()) ||
56                 (detail->flush_time > h->last_refresh);
57 }
58
59 struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
60                                        struct cache_head *key, int hash)
61 {
62         struct cache_head **head,  **hp;
63         struct cache_head *new = NULL, *freeme = NULL;
64
65         head = &detail->hash_table[hash];
66
67         read_lock(&detail->hash_lock);
68
69         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70                 struct cache_head *tmp = *hp;
71                 if (detail->match(tmp, key)) {
72                         if (cache_is_expired(detail, tmp))
73                                 /* This entry is expired, we will discard it. */
74                                 break;
75                         cache_get(tmp);
76                         read_unlock(&detail->hash_lock);
77                         return tmp;
78                 }
79         }
80         read_unlock(&detail->hash_lock);
81         /* Didn't find anything, insert an empty entry */
82
83         new = detail->alloc();
84         if (!new)
85                 return NULL;
86         /* must fully initialise 'new', else
87          * we might get lose if we need to
88          * cache_put it soon.
89          */
90         cache_init(new);
91         detail->init(new, key);
92
93         write_lock(&detail->hash_lock);
94
95         /* check if entry appeared while we slept */
96         for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97                 struct cache_head *tmp = *hp;
98                 if (detail->match(tmp, key)) {
99                         if (cache_is_expired(detail, tmp)) {
100                                 *hp = tmp->next;
101                                 tmp->next = NULL;
102                                 detail->entries --;
103                                 freeme = tmp;
104                                 break;
105                         }
106                         cache_get(tmp);
107                         write_unlock(&detail->hash_lock);
108                         cache_put(new, detail);
109                         return tmp;
110                 }
111         }
112         new->next = *head;
113         *head = new;
114         detail->entries++;
115         cache_get(new);
116         write_unlock(&detail->hash_lock);
117
118         if (freeme)
119                 cache_put(freeme, detail);
120         return new;
121 }
122 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup);
123
124
125 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126
127 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128 {
129         head->expiry_time = expiry;
130         head->last_refresh = seconds_since_boot();
131         smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
132         set_bit(CACHE_VALID, &head->flags);
133 }
134
135 static void cache_fresh_unlocked(struct cache_head *head,
136                                  struct cache_detail *detail)
137 {
138         if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139                 cache_revisit_request(head);
140                 cache_dequeue(detail, head);
141         }
142 }
143
144 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
145                                        struct cache_head *new, struct cache_head *old, int hash)
146 {
147         /* The 'old' entry is to be replaced by 'new'.
148          * If 'old' is not VALID, we update it directly,
149          * otherwise we need to replace it
150          */
151         struct cache_head **head;
152         struct cache_head *tmp;
153
154         if (!test_bit(CACHE_VALID, &old->flags)) {
155                 write_lock(&detail->hash_lock);
156                 if (!test_bit(CACHE_VALID, &old->flags)) {
157                         if (test_bit(CACHE_NEGATIVE, &new->flags))
158                                 set_bit(CACHE_NEGATIVE, &old->flags);
159                         else
160                                 detail->update(old, new);
161                         cache_fresh_locked(old, new->expiry_time);
162                         write_unlock(&detail->hash_lock);
163                         cache_fresh_unlocked(old, detail);
164                         return old;
165                 }
166                 write_unlock(&detail->hash_lock);
167         }
168         /* We need to insert a new entry */
169         tmp = detail->alloc();
170         if (!tmp) {
171                 cache_put(old, detail);
172                 return NULL;
173         }
174         cache_init(tmp);
175         detail->init(tmp, old);
176         head = &detail->hash_table[hash];
177
178         write_lock(&detail->hash_lock);
179         if (test_bit(CACHE_NEGATIVE, &new->flags))
180                 set_bit(CACHE_NEGATIVE, &tmp->flags);
181         else
182                 detail->update(tmp, new);
183         tmp->next = *head;
184         *head = tmp;
185         detail->entries++;
186         cache_get(tmp);
187         cache_fresh_locked(tmp, new->expiry_time);
188         cache_fresh_locked(old, 0);
189         write_unlock(&detail->hash_lock);
190         cache_fresh_unlocked(tmp, detail);
191         cache_fresh_unlocked(old, detail);
192         cache_put(old, detail);
193         return tmp;
194 }
195 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
196
197 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
198 {
199         if (cd->cache_upcall)
200                 return cd->cache_upcall(cd, h);
201         return sunrpc_cache_pipe_upcall(cd, h);
202 }
203
204 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
205 {
206         if (!test_bit(CACHE_VALID, &h->flags))
207                 return -EAGAIN;
208         else {
209                 /* entry is valid */
210                 if (test_bit(CACHE_NEGATIVE, &h->flags))
211                         return -ENOENT;
212                 else {
213                         /*
214                          * In combination with write barrier in
215                          * sunrpc_cache_update, ensures that anyone
216                          * using the cache entry after this sees the
217                          * updated contents:
218                          */
219                         smp_rmb();
220                         return 0;
221                 }
222         }
223 }
224
225 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
226 {
227         int rv;
228
229         write_lock(&detail->hash_lock);
230         rv = cache_is_valid(detail, h);
231         if (rv != -EAGAIN) {
232                 write_unlock(&detail->hash_lock);
233                 return rv;
234         }
235         set_bit(CACHE_NEGATIVE, &h->flags);
236         cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
237         write_unlock(&detail->hash_lock);
238         cache_fresh_unlocked(h, detail);
239         return -ENOENT;
240 }
241
242 /*
243  * This is the generic cache management routine for all
244  * the authentication caches.
245  * It checks the currency of a cache item and will (later)
246  * initiate an upcall to fill it if needed.
247  *
248  *
249  * Returns 0 if the cache_head can be used, or cache_puts it and returns
250  * -EAGAIN if upcall is pending and request has been queued
251  * -ETIMEDOUT if upcall failed or request could not be queue or
252  *           upcall completed but item is still invalid (implying that
253  *           the cache item has been replaced with a newer one).
254  * -ENOENT if cache entry was negative
255  */
256 int cache_check(struct cache_detail *detail,
257                     struct cache_head *h, struct cache_req *rqstp)
258 {
259         int rv;
260         long refresh_age, age;
261
262         /* First decide return status as best we can */
263         rv = cache_is_valid(detail, h);
264
265         /* now see if we want to start an upcall */
266         refresh_age = (h->expiry_time - h->last_refresh);
267         age = seconds_since_boot() - h->last_refresh;
268
269         if (rqstp == NULL) {
270                 if (rv == -EAGAIN)
271                         rv = -ENOENT;
272         } else if (rv == -EAGAIN || age > refresh_age/2) {
273                 dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
274                                 refresh_age, age);
275                 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
276                         switch (cache_make_upcall(detail, h)) {
277                         case -EINVAL:
278                                 clear_bit(CACHE_PENDING, &h->flags);
279                                 cache_revisit_request(h);
280                                 rv = try_to_negate_entry(detail, h);
281                                 break;
282                         case -EAGAIN:
283                                 clear_bit(CACHE_PENDING, &h->flags);
284                                 cache_revisit_request(h);
285                                 break;
286                         }
287                 }
288         }
289
290         if (rv == -EAGAIN) {
291                 if (!cache_defer_req(rqstp, h)) {
292                         /*
293                          * Request was not deferred; handle it as best
294                          * we can ourselves:
295                          */
296                         rv = cache_is_valid(detail, h);
297                         if (rv == -EAGAIN)
298                                 rv = -ETIMEDOUT;
299                 }
300         }
301         if (rv)
302                 cache_put(h, detail);
303         return rv;
304 }
305 EXPORT_SYMBOL_GPL(cache_check);
306
307 /*
308  * caches need to be periodically cleaned.
309  * For this we maintain a list of cache_detail and
310  * a current pointer into that list and into the table
311  * for that entry.
312  *
313  * Each time clean_cache is called it finds the next non-empty entry
314  * in the current table and walks the list in that entry
315  * looking for entries that can be removed.
316  *
317  * An entry gets removed if:
318  * - The expiry is before current time
319  * - The last_refresh time is before the flush_time for that cache
320  *
321  * later we might drop old entries with non-NEVER expiry if that table
322  * is getting 'full' for some definition of 'full'
323  *
324  * The question of "how often to scan a table" is an interesting one
325  * and is answered in part by the use of the "nextcheck" field in the
326  * cache_detail.
327  * When a scan of a table begins, the nextcheck field is set to a time
328  * that is well into the future.
329  * While scanning, if an expiry time is found that is earlier than the
330  * current nextcheck time, nextcheck is set to that expiry time.
331  * If the flush_time is ever set to a time earlier than the nextcheck
332  * time, the nextcheck time is then set to that flush_time.
333  *
334  * A table is then only scanned if the current time is at least
335  * the nextcheck time.
336  *
337  */
338
339 static LIST_HEAD(cache_list);
340 static DEFINE_SPINLOCK(cache_list_lock);
341 static struct cache_detail *current_detail;
342 static int current_index;
343
344 static void do_cache_clean(struct work_struct *work);
345 static struct delayed_work cache_cleaner;
346
347 void sunrpc_init_cache_detail(struct cache_detail *cd)
348 {
349         rwlock_init(&cd->hash_lock);
350         INIT_LIST_HEAD(&cd->queue);
351         spin_lock(&cache_list_lock);
352         cd->nextcheck = 0;
353         cd->entries = 0;
354         atomic_set(&cd->readers, 0);
355         cd->last_close = 0;
356         cd->last_warn = -1;
357         list_add(&cd->others, &cache_list);
358         spin_unlock(&cache_list_lock);
359
360         /* start the cleaning process */
361         schedule_delayed_work(&cache_cleaner, 0);
362 }
363 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
364
365 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
366 {
367         cache_purge(cd);
368         spin_lock(&cache_list_lock);
369         write_lock(&cd->hash_lock);
370         if (cd->entries || atomic_read(&cd->inuse)) {
371                 write_unlock(&cd->hash_lock);
372                 spin_unlock(&cache_list_lock);
373                 goto out;
374         }
375         if (current_detail == cd)
376                 current_detail = NULL;
377         list_del_init(&cd->others);
378         write_unlock(&cd->hash_lock);
379         spin_unlock(&cache_list_lock);
380         if (list_empty(&cache_list)) {
381                 /* module must be being unloaded so its safe to kill the worker */
382                 cancel_delayed_work_sync(&cache_cleaner);
383         }
384         return;
385 out:
386         printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
387 }
388 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
389
390 /* clean cache tries to find something to clean
391  * and cleans it.
392  * It returns 1 if it cleaned something,
393  *            0 if it didn't find anything this time
394  *           -1 if it fell off the end of the list.
395  */
396 static int cache_clean(void)
397 {
398         int rv = 0;
399         struct list_head *next;
400
401         spin_lock(&cache_list_lock);
402
403         /* find a suitable table if we don't already have one */
404         while (current_detail == NULL ||
405             current_index >= current_detail->hash_size) {
406                 if (current_detail)
407                         next = current_detail->others.next;
408                 else
409                         next = cache_list.next;
410                 if (next == &cache_list) {
411                         current_detail = NULL;
412                         spin_unlock(&cache_list_lock);
413                         return -1;
414                 }
415                 current_detail = list_entry(next, struct cache_detail, others);
416                 if (current_detail->nextcheck > seconds_since_boot())
417                         current_index = current_detail->hash_size;
418                 else {
419                         current_index = 0;
420                         current_detail->nextcheck = seconds_since_boot()+30*60;
421                 }
422         }
423
424         /* find a non-empty bucket in the table */
425         while (current_detail &&
426                current_index < current_detail->hash_size &&
427                current_detail->hash_table[current_index] == NULL)
428                 current_index++;
429
430         /* find a cleanable entry in the bucket and clean it, or set to next bucket */
431
432         if (current_detail && current_index < current_detail->hash_size) {
433                 struct cache_head *ch, **cp;
434                 struct cache_detail *d;
435
436                 write_lock(&current_detail->hash_lock);
437
438                 /* Ok, now to clean this strand */
439
440                 cp = & current_detail->hash_table[current_index];
441                 for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
442                         if (current_detail->nextcheck > ch->expiry_time)
443                                 current_detail->nextcheck = ch->expiry_time+1;
444                         if (!cache_is_expired(current_detail, ch))
445                                 continue;
446
447                         *cp = ch->next;
448                         ch->next = NULL;
449                         current_detail->entries--;
450                         rv = 1;
451                         break;
452                 }
453
454                 write_unlock(&current_detail->hash_lock);
455                 d = current_detail;
456                 if (!ch)
457                         current_index ++;
458                 spin_unlock(&cache_list_lock);
459                 if (ch) {
460                         if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
461                                 cache_dequeue(current_detail, ch);
462                         cache_revisit_request(ch);
463                         cache_put(ch, d);
464                 }
465         } else
466                 spin_unlock(&cache_list_lock);
467
468         return rv;
469 }
470
471 /*
472  * We want to regularly clean the cache, so we need to schedule some work ...
473  */
474 static void do_cache_clean(struct work_struct *work)
475 {
476         int delay = 5;
477         if (cache_clean() == -1)
478                 delay = round_jiffies_relative(30*HZ);
479
480         if (list_empty(&cache_list))
481                 delay = 0;
482
483         if (delay)
484                 schedule_delayed_work(&cache_cleaner, delay);
485 }
486
487
488 /*
489  * Clean all caches promptly.  This just calls cache_clean
490  * repeatedly until we are sure that every cache has had a chance to
491  * be fully cleaned
492  */
493 void cache_flush(void)
494 {
495         while (cache_clean() != -1)
496                 cond_resched();
497         while (cache_clean() != -1)
498                 cond_resched();
499 }
500 EXPORT_SYMBOL_GPL(cache_flush);
501
502 void cache_purge(struct cache_detail *detail)
503 {
504         detail->flush_time = LONG_MAX;
505         detail->nextcheck = seconds_since_boot();
506         cache_flush();
507         detail->flush_time = 1;
508 }
509 EXPORT_SYMBOL_GPL(cache_purge);
510
511
512 /*
513  * Deferral and Revisiting of Requests.
514  *
515  * If a cache lookup finds a pending entry, we
516  * need to defer the request and revisit it later.
517  * All deferred requests are stored in a hash table,
518  * indexed by "struct cache_head *".
519  * As it may be wasteful to store a whole request
520  * structure, we allow the request to provide a
521  * deferred form, which must contain a
522  * 'struct cache_deferred_req'
523  * This cache_deferred_req contains a method to allow
524  * it to be revisited when cache info is available
525  */
526
527 #define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
528 #define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
529
530 #define DFR_MAX 300     /* ??? */
531
532 static DEFINE_SPINLOCK(cache_defer_lock);
533 static LIST_HEAD(cache_defer_list);
534 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
535 static int cache_defer_cnt;
536
537 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
538 {
539         hlist_del_init(&dreq->hash);
540         if (!list_empty(&dreq->recent)) {
541                 list_del_init(&dreq->recent);
542                 cache_defer_cnt--;
543         }
544 }
545
546 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
547 {
548         int hash = DFR_HASH(item);
549
550         INIT_LIST_HEAD(&dreq->recent);
551         hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
552 }
553
554 static void setup_deferral(struct cache_deferred_req *dreq,
555                            struct cache_head *item,
556                            int count_me)
557 {
558
559         dreq->item = item;
560
561         spin_lock(&cache_defer_lock);
562
563         __hash_deferred_req(dreq, item);
564
565         if (count_me) {
566                 cache_defer_cnt++;
567                 list_add(&dreq->recent, &cache_defer_list);
568         }
569
570         spin_unlock(&cache_defer_lock);
571
572 }
573
574 struct thread_deferred_req {
575         struct cache_deferred_req handle;
576         struct completion completion;
577 };
578
579 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
580 {
581         struct thread_deferred_req *dr =
582                 container_of(dreq, struct thread_deferred_req, handle);
583         complete(&dr->completion);
584 }
585
586 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
587 {
588         struct thread_deferred_req sleeper;
589         struct cache_deferred_req *dreq = &sleeper.handle;
590
591         sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
592         dreq->revisit = cache_restart_thread;
593
594         setup_deferral(dreq, item, 0);
595
596         if (!test_bit(CACHE_PENDING, &item->flags) ||
597             wait_for_completion_interruptible_timeout(
598                     &sleeper.completion, req->thread_wait) <= 0) {
599                 /* The completion wasn't completed, so we need
600                  * to clean up
601                  */
602                 spin_lock(&cache_defer_lock);
603                 if (!hlist_unhashed(&sleeper.handle.hash)) {
604                         __unhash_deferred_req(&sleeper.handle);
605                         spin_unlock(&cache_defer_lock);
606                 } else {
607                         /* cache_revisit_request already removed
608                          * this from the hash table, but hasn't
609                          * called ->revisit yet.  It will very soon
610                          * and we need to wait for it.
611                          */
612                         spin_unlock(&cache_defer_lock);
613                         wait_for_completion(&sleeper.completion);
614                 }
615         }
616 }
617
618 static void cache_limit_defers(void)
619 {
620         /* Make sure we haven't exceed the limit of allowed deferred
621          * requests.
622          */
623         struct cache_deferred_req *discard = NULL;
624
625         if (cache_defer_cnt <= DFR_MAX)
626                 return;
627
628         spin_lock(&cache_defer_lock);
629
630         /* Consider removing either the first or the last */
631         if (cache_defer_cnt > DFR_MAX) {
632                 if (net_random() & 1)
633                         discard = list_entry(cache_defer_list.next,
634                                              struct cache_deferred_req, recent);
635                 else
636                         discard = list_entry(cache_defer_list.prev,
637                                              struct cache_deferred_req, recent);
638                 __unhash_deferred_req(discard);
639         }
640         spin_unlock(&cache_defer_lock);
641         if (discard)
642                 discard->revisit(discard, 1);
643 }
644
645 /* Return true if and only if a deferred request is queued. */
646 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
647 {
648         struct cache_deferred_req *dreq;
649
650         if (req->thread_wait) {
651                 cache_wait_req(req, item);
652                 if (!test_bit(CACHE_PENDING, &item->flags))
653                         return false;
654         }
655         dreq = req->defer(req);
656         if (dreq == NULL)
657                 return false;
658         setup_deferral(dreq, item, 1);
659         if (!test_bit(CACHE_PENDING, &item->flags))
660                 /* Bit could have been cleared before we managed to
661                  * set up the deferral, so need to revisit just in case
662                  */
663                 cache_revisit_request(item);
664
665         cache_limit_defers();
666         return true;
667 }
668
669 static void cache_revisit_request(struct cache_head *item)
670 {
671         struct cache_deferred_req *dreq;
672         struct list_head pending;
673         struct hlist_node *tmp;
674         int hash = DFR_HASH(item);
675
676         INIT_LIST_HEAD(&pending);
677         spin_lock(&cache_defer_lock);
678
679         hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
680                 if (dreq->item == item) {
681                         __unhash_deferred_req(dreq);
682                         list_add(&dreq->recent, &pending);
683                 }
684
685         spin_unlock(&cache_defer_lock);
686
687         while (!list_empty(&pending)) {
688                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
689                 list_del_init(&dreq->recent);
690                 dreq->revisit(dreq, 0);
691         }
692 }
693
694 void cache_clean_deferred(void *owner)
695 {
696         struct cache_deferred_req *dreq, *tmp;
697         struct list_head pending;
698
699
700         INIT_LIST_HEAD(&pending);
701         spin_lock(&cache_defer_lock);
702
703         list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
704                 if (dreq->owner == owner) {
705                         __unhash_deferred_req(dreq);
706                         list_add(&dreq->recent, &pending);
707                 }
708         }
709         spin_unlock(&cache_defer_lock);
710
711         while (!list_empty(&pending)) {
712                 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
713                 list_del_init(&dreq->recent);
714                 dreq->revisit(dreq, 1);
715         }
716 }
717
718 /*
719  * communicate with user-space
720  *
721  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
722  * On read, you get a full request, or block.
723  * On write, an update request is processed.
724  * Poll works if anything to read, and always allows write.
725  *
726  * Implemented by linked list of requests.  Each open file has
727  * a ->private that also exists in this list.  New requests are added
728  * to the end and may wakeup and preceding readers.
729  * New readers are added to the head.  If, on read, an item is found with
730  * CACHE_UPCALLING clear, we free it from the list.
731  *
732  */
733
734 static DEFINE_SPINLOCK(queue_lock);
735 static DEFINE_MUTEX(queue_io_mutex);
736
737 struct cache_queue {
738         struct list_head        list;
739         int                     reader; /* if 0, then request */
740 };
741 struct cache_request {
742         struct cache_queue      q;
743         struct cache_head       *item;
744         char                    * buf;
745         int                     len;
746         int                     readers;
747 };
748 struct cache_reader {
749         struct cache_queue      q;
750         int                     offset; /* if non-0, we have a refcnt on next request */
751 };
752
753 static int cache_request(struct cache_detail *detail,
754                                struct cache_request *crq)
755 {
756         char *bp = crq->buf;
757         int len = PAGE_SIZE;
758
759         detail->cache_request(detail, crq->item, &bp, &len);
760         if (len < 0)
761                 return -EAGAIN;
762         return PAGE_SIZE - len;
763 }
764
765 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
766                           loff_t *ppos, struct cache_detail *cd)
767 {
768         struct cache_reader *rp = filp->private_data;
769         struct cache_request *rq;
770         struct inode *inode = file_inode(filp);
771         int err;
772
773         if (count == 0)
774                 return 0;
775
776         mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
777                               * readers on this file */
778  again:
779         spin_lock(&queue_lock);
780         /* need to find next request */
781         while (rp->q.list.next != &cd->queue &&
782                list_entry(rp->q.list.next, struct cache_queue, list)
783                ->reader) {
784                 struct list_head *next = rp->q.list.next;
785                 list_move(&rp->q.list, next);
786         }
787         if (rp->q.list.next == &cd->queue) {
788                 spin_unlock(&queue_lock);
789                 mutex_unlock(&inode->i_mutex);
790                 WARN_ON_ONCE(rp->offset);
791                 return 0;
792         }
793         rq = container_of(rp->q.list.next, struct cache_request, q.list);
794         WARN_ON_ONCE(rq->q.reader);
795         if (rp->offset == 0)
796                 rq->readers++;
797         spin_unlock(&queue_lock);
798
799         if (rq->len == 0) {
800                 err = cache_request(cd, rq);
801                 if (err < 0)
802                         goto out;
803                 rq->len = err;
804         }
805
806         if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
807                 err = -EAGAIN;
808                 spin_lock(&queue_lock);
809                 list_move(&rp->q.list, &rq->q.list);
810                 spin_unlock(&queue_lock);
811         } else {
812                 if (rp->offset + count > rq->len)
813                         count = rq->len - rp->offset;
814                 err = -EFAULT;
815                 if (copy_to_user(buf, rq->buf + rp->offset, count))
816                         goto out;
817                 rp->offset += count;
818                 if (rp->offset >= rq->len) {
819                         rp->offset = 0;
820                         spin_lock(&queue_lock);
821                         list_move(&rp->q.list, &rq->q.list);
822                         spin_unlock(&queue_lock);
823                 }
824                 err = 0;
825         }
826  out:
827         if (rp->offset == 0) {
828                 /* need to release rq */
829                 spin_lock(&queue_lock);
830                 rq->readers--;
831                 if (rq->readers == 0 &&
832                     !test_bit(CACHE_PENDING, &rq->item->flags)) {
833                         list_del(&rq->q.list);
834                         spin_unlock(&queue_lock);
835                         cache_put(rq->item, cd);
836                         kfree(rq->buf);
837                         kfree(rq);
838                 } else
839                         spin_unlock(&queue_lock);
840         }
841         if (err == -EAGAIN)
842                 goto again;
843         mutex_unlock(&inode->i_mutex);
844         return err ? err :  count;
845 }
846
847 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
848                                  size_t count, struct cache_detail *cd)
849 {
850         ssize_t ret;
851
852         if (count == 0)
853                 return -EINVAL;
854         if (copy_from_user(kaddr, buf, count))
855                 return -EFAULT;
856         kaddr[count] = '\0';
857         ret = cd->cache_parse(cd, kaddr, count);
858         if (!ret)
859                 ret = count;
860         return ret;
861 }
862
863 static ssize_t cache_slow_downcall(const char __user *buf,
864                                    size_t count, struct cache_detail *cd)
865 {
866         static char write_buf[8192]; /* protected by queue_io_mutex */
867         ssize_t ret = -EINVAL;
868
869         if (count >= sizeof(write_buf))
870                 goto out;
871         mutex_lock(&queue_io_mutex);
872         ret = cache_do_downcall(write_buf, buf, count, cd);
873         mutex_unlock(&queue_io_mutex);
874 out:
875         return ret;
876 }
877
878 static ssize_t cache_downcall(struct address_space *mapping,
879                               const char __user *buf,
880                               size_t count, struct cache_detail *cd)
881 {
882         struct page *page;
883         char *kaddr;
884         ssize_t ret = -ENOMEM;
885
886         if (count >= PAGE_CACHE_SIZE)
887                 goto out_slow;
888
889         page = find_or_create_page(mapping, 0, GFP_KERNEL);
890         if (!page)
891                 goto out_slow;
892
893         kaddr = kmap(page);
894         ret = cache_do_downcall(kaddr, buf, count, cd);
895         kunmap(page);
896         unlock_page(page);
897         page_cache_release(page);
898         return ret;
899 out_slow:
900         return cache_slow_downcall(buf, count, cd);
901 }
902
903 static ssize_t cache_write(struct file *filp, const char __user *buf,
904                            size_t count, loff_t *ppos,
905                            struct cache_detail *cd)
906 {
907         struct address_space *mapping = filp->f_mapping;
908         struct inode *inode = file_inode(filp);
909         ssize_t ret = -EINVAL;
910
911         if (!cd->cache_parse)
912                 goto out;
913
914         mutex_lock(&inode->i_mutex);
915         ret = cache_downcall(mapping, buf, count, cd);
916         mutex_unlock(&inode->i_mutex);
917 out:
918         return ret;
919 }
920
921 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
922
923 static unsigned int cache_poll(struct file *filp, poll_table *wait,
924                                struct cache_detail *cd)
925 {
926         unsigned int mask;
927         struct cache_reader *rp = filp->private_data;
928         struct cache_queue *cq;
929
930         poll_wait(filp, &queue_wait, wait);
931
932         /* alway allow write */
933         mask = POLL_OUT | POLLWRNORM;
934
935         if (!rp)
936                 return mask;
937
938         spin_lock(&queue_lock);
939
940         for (cq= &rp->q; &cq->list != &cd->queue;
941              cq = list_entry(cq->list.next, struct cache_queue, list))
942                 if (!cq->reader) {
943                         mask |= POLLIN | POLLRDNORM;
944                         break;
945                 }
946         spin_unlock(&queue_lock);
947         return mask;
948 }
949
950 static int cache_ioctl(struct inode *ino, struct file *filp,
951                        unsigned int cmd, unsigned long arg,
952                        struct cache_detail *cd)
953 {
954         int len = 0;
955         struct cache_reader *rp = filp->private_data;
956         struct cache_queue *cq;
957
958         if (cmd != FIONREAD || !rp)
959                 return -EINVAL;
960
961         spin_lock(&queue_lock);
962
963         /* only find the length remaining in current request,
964          * or the length of the next request
965          */
966         for (cq= &rp->q; &cq->list != &cd->queue;
967              cq = list_entry(cq->list.next, struct cache_queue, list))
968                 if (!cq->reader) {
969                         struct cache_request *cr =
970                                 container_of(cq, struct cache_request, q);
971                         len = cr->len - rp->offset;
972                         break;
973                 }
974         spin_unlock(&queue_lock);
975
976         return put_user(len, (int __user *)arg);
977 }
978
979 static int cache_open(struct inode *inode, struct file *filp,
980                       struct cache_detail *cd)
981 {
982         struct cache_reader *rp = NULL;
983
984         if (!cd || !try_module_get(cd->owner))
985                 return -EACCES;
986         nonseekable_open(inode, filp);
987         if (filp->f_mode & FMODE_READ) {
988                 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
989                 if (!rp) {
990                         module_put(cd->owner);
991                         return -ENOMEM;
992                 }
993                 rp->offset = 0;
994                 rp->q.reader = 1;
995                 atomic_inc(&cd->readers);
996                 spin_lock(&queue_lock);
997                 list_add(&rp->q.list, &cd->queue);
998                 spin_unlock(&queue_lock);
999         }
1000         filp->private_data = rp;
1001         return 0;
1002 }
1003
1004 static int cache_release(struct inode *inode, struct file *filp,
1005                          struct cache_detail *cd)
1006 {
1007         struct cache_reader *rp = filp->private_data;
1008
1009         if (rp) {
1010                 spin_lock(&queue_lock);
1011                 if (rp->offset) {
1012                         struct cache_queue *cq;
1013                         for (cq= &rp->q; &cq->list != &cd->queue;
1014                              cq = list_entry(cq->list.next, struct cache_queue, list))
1015                                 if (!cq->reader) {
1016                                         container_of(cq, struct cache_request, q)
1017                                                 ->readers--;
1018                                         break;
1019                                 }
1020                         rp->offset = 0;
1021                 }
1022                 list_del(&rp->q.list);
1023                 spin_unlock(&queue_lock);
1024
1025                 filp->private_data = NULL;
1026                 kfree(rp);
1027
1028                 cd->last_close = seconds_since_boot();
1029                 atomic_dec(&cd->readers);
1030         }
1031         module_put(cd->owner);
1032         return 0;
1033 }
1034
1035
1036
1037 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1038 {
1039         struct cache_queue *cq;
1040         spin_lock(&queue_lock);
1041         list_for_each_entry(cq, &detail->queue, list)
1042                 if (!cq->reader) {
1043                         struct cache_request *cr = container_of(cq, struct cache_request, q);
1044                         if (cr->item != ch)
1045                                 continue;
1046                         if (cr->readers != 0)
1047                                 continue;
1048                         list_del(&cr->q.list);
1049                         spin_unlock(&queue_lock);
1050                         cache_put(cr->item, detail);
1051                         kfree(cr->buf);
1052                         kfree(cr);
1053                         return;
1054                 }
1055         spin_unlock(&queue_lock);
1056 }
1057
1058 /*
1059  * Support routines for text-based upcalls.
1060  * Fields are separated by spaces.
1061  * Fields are either mangled to quote space tab newline slosh with slosh
1062  * or a hexified with a leading \x
1063  * Record is terminated with newline.
1064  *
1065  */
1066
1067 void qword_add(char **bpp, int *lp, char *str)
1068 {
1069         char *bp = *bpp;
1070         int len = *lp;
1071         char c;
1072
1073         if (len < 0) return;
1074
1075         while ((c=*str++) && len)
1076                 switch(c) {
1077                 case ' ':
1078                 case '\t':
1079                 case '\n':
1080                 case '\\':
1081                         if (len >= 4) {
1082                                 *bp++ = '\\';
1083                                 *bp++ = '0' + ((c & 0300)>>6);
1084                                 *bp++ = '0' + ((c & 0070)>>3);
1085                                 *bp++ = '0' + ((c & 0007)>>0);
1086                         }
1087                         len -= 4;
1088                         break;
1089                 default:
1090                         *bp++ = c;
1091                         len--;
1092                 }
1093         if (c || len <1) len = -1;
1094         else {
1095                 *bp++ = ' ';
1096                 len--;
1097         }
1098         *bpp = bp;
1099         *lp = len;
1100 }
1101 EXPORT_SYMBOL_GPL(qword_add);
1102
1103 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1104 {
1105         char *bp = *bpp;
1106         int len = *lp;
1107
1108         if (len < 0) return;
1109
1110         if (len > 2) {
1111                 *bp++ = '\\';
1112                 *bp++ = 'x';
1113                 len -= 2;
1114                 while (blen && len >= 2) {
1115                         unsigned char c = *buf++;
1116                         *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1117                         *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1118                         len -= 2;
1119                         blen--;
1120                 }
1121         }
1122         if (blen || len<1) len = -1;
1123         else {
1124                 *bp++ = ' ';
1125                 len--;
1126         }
1127         *bpp = bp;
1128         *lp = len;
1129 }
1130 EXPORT_SYMBOL_GPL(qword_addhex);
1131
1132 static void warn_no_listener(struct cache_detail *detail)
1133 {
1134         if (detail->last_warn != detail->last_close) {
1135                 detail->last_warn = detail->last_close;
1136                 if (detail->warn_no_listener)
1137                         detail->warn_no_listener(detail, detail->last_close != 0);
1138         }
1139 }
1140
1141 static bool cache_listeners_exist(struct cache_detail *detail)
1142 {
1143         if (atomic_read(&detail->readers))
1144                 return true;
1145         if (detail->last_close == 0)
1146                 /* This cache was never opened */
1147                 return false;
1148         if (detail->last_close < seconds_since_boot() - 30)
1149                 /*
1150                  * We allow for the possibility that someone might
1151                  * restart a userspace daemon without restarting the
1152                  * server; but after 30 seconds, we give up.
1153                  */
1154                  return false;
1155         return true;
1156 }
1157
1158 /*
1159  * register an upcall request to user-space and queue it up for read() by the
1160  * upcall daemon.
1161  *
1162  * Each request is at most one page long.
1163  */
1164 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1165 {
1166
1167         char *buf;
1168         struct cache_request *crq;
1169
1170         if (!detail->cache_request)
1171                 return -EINVAL;
1172
1173         if (!cache_listeners_exist(detail)) {
1174                 warn_no_listener(detail);
1175                 return -EINVAL;
1176         }
1177
1178         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1179         if (!buf)
1180                 return -EAGAIN;
1181
1182         crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1183         if (!crq) {
1184                 kfree(buf);
1185                 return -EAGAIN;
1186         }
1187
1188         crq->q.reader = 0;
1189         crq->item = cache_get(h);
1190         crq->buf = buf;
1191         crq->len = 0;
1192         crq->readers = 0;
1193         spin_lock(&queue_lock);
1194         list_add_tail(&crq->q.list, &detail->queue);
1195         spin_unlock(&queue_lock);
1196         wake_up(&queue_wait);
1197         return 0;
1198 }
1199 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1200
1201 /*
1202  * parse a message from user-space and pass it
1203  * to an appropriate cache
1204  * Messages are, like requests, separated into fields by
1205  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1206  *
1207  * Message is
1208  *   reply cachename expiry key ... content....
1209  *
1210  * key and content are both parsed by cache
1211  */
1212
1213 #define isodigit(c) (isdigit(c) && c <= '7')
1214 int qword_get(char **bpp, char *dest, int bufsize)
1215 {
1216         /* return bytes copied, or -1 on error */
1217         char *bp = *bpp;
1218         int len = 0;
1219
1220         while (*bp == ' ') bp++;
1221
1222         if (bp[0] == '\\' && bp[1] == 'x') {
1223                 /* HEX STRING */
1224                 bp += 2;
1225                 while (len < bufsize) {
1226                         int h, l;
1227
1228                         h = hex_to_bin(bp[0]);
1229                         if (h < 0)
1230                                 break;
1231
1232                         l = hex_to_bin(bp[1]);
1233                         if (l < 0)
1234                                 break;
1235
1236                         *dest++ = (h << 4) | l;
1237                         bp += 2;
1238                         len++;
1239                 }
1240         } else {
1241                 /* text with \nnn octal quoting */
1242                 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1243                         if (*bp == '\\' &&
1244                             isodigit(bp[1]) && (bp[1] <= '3') &&
1245                             isodigit(bp[2]) &&
1246                             isodigit(bp[3])) {
1247                                 int byte = (*++bp -'0');
1248                                 bp++;
1249                                 byte = (byte << 3) | (*bp++ - '0');
1250                                 byte = (byte << 3) | (*bp++ - '0');
1251                                 *dest++ = byte;
1252                                 len++;
1253                         } else {
1254                                 *dest++ = *bp++;
1255                                 len++;
1256                         }
1257                 }
1258         }
1259
1260         if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1261                 return -1;
1262         while (*bp == ' ') bp++;
1263         *bpp = bp;
1264         *dest = '\0';
1265         return len;
1266 }
1267 EXPORT_SYMBOL_GPL(qword_get);
1268
1269
1270 /*
1271  * support /proc/sunrpc/cache/$CACHENAME/content
1272  * as a seqfile.
1273  * We call ->cache_show passing NULL for the item to
1274  * get a header, then pass each real item in the cache
1275  */
1276
1277 struct handle {
1278         struct cache_detail *cd;
1279 };
1280
1281 static void *c_start(struct seq_file *m, loff_t *pos)
1282         __acquires(cd->hash_lock)
1283 {
1284         loff_t n = *pos;
1285         unsigned int hash, entry;
1286         struct cache_head *ch;
1287         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1288
1289
1290         read_lock(&cd->hash_lock);
1291         if (!n--)
1292                 return SEQ_START_TOKEN;
1293         hash = n >> 32;
1294         entry = n & ((1LL<<32) - 1);
1295
1296         for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1297                 if (!entry--)
1298                         return ch;
1299         n &= ~((1LL<<32) - 1);
1300         do {
1301                 hash++;
1302                 n += 1LL<<32;
1303         } while(hash < cd->hash_size &&
1304                 cd->hash_table[hash]==NULL);
1305         if (hash >= cd->hash_size)
1306                 return NULL;
1307         *pos = n+1;
1308         return cd->hash_table[hash];
1309 }
1310
1311 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1312 {
1313         struct cache_head *ch = p;
1314         int hash = (*pos >> 32);
1315         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1316
1317         if (p == SEQ_START_TOKEN)
1318                 hash = 0;
1319         else if (ch->next == NULL) {
1320                 hash++;
1321                 *pos += 1LL<<32;
1322         } else {
1323                 ++*pos;
1324                 return ch->next;
1325         }
1326         *pos &= ~((1LL<<32) - 1);
1327         while (hash < cd->hash_size &&
1328                cd->hash_table[hash] == NULL) {
1329                 hash++;
1330                 *pos += 1LL<<32;
1331         }
1332         if (hash >= cd->hash_size)
1333                 return NULL;
1334         ++*pos;
1335         return cd->hash_table[hash];
1336 }
1337
1338 static void c_stop(struct seq_file *m, void *p)
1339         __releases(cd->hash_lock)
1340 {
1341         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1342         read_unlock(&cd->hash_lock);
1343 }
1344
1345 static int c_show(struct seq_file *m, void *p)
1346 {
1347         struct cache_head *cp = p;
1348         struct cache_detail *cd = ((struct handle*)m->private)->cd;
1349
1350         if (p == SEQ_START_TOKEN)
1351                 return cd->cache_show(m, cd, NULL);
1352
1353         ifdebug(CACHE)
1354                 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1355                            convert_to_wallclock(cp->expiry_time),
1356                            atomic_read(&cp->ref.refcount), cp->flags);
1357         cache_get(cp);
1358         if (cache_check(cd, cp, NULL))
1359                 /* cache_check does a cache_put on failure */
1360                 seq_printf(m, "# ");
1361         else {
1362                 if (cache_is_expired(cd, cp))
1363                         seq_printf(m, "# ");
1364                 cache_put(cp, cd);
1365         }
1366
1367         return cd->cache_show(m, cd, cp);
1368 }
1369
1370 static const struct seq_operations cache_content_op = {
1371         .start  = c_start,
1372         .next   = c_next,
1373         .stop   = c_stop,
1374         .show   = c_show,
1375 };
1376
1377 static int content_open(struct inode *inode, struct file *file,
1378                         struct cache_detail *cd)
1379 {
1380         struct handle *han;
1381
1382         if (!cd || !try_module_get(cd->owner))
1383                 return -EACCES;
1384         han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1385         if (han == NULL) {
1386                 module_put(cd->owner);
1387                 return -ENOMEM;
1388         }
1389
1390         han->cd = cd;
1391         return 0;
1392 }
1393
1394 static int content_release(struct inode *inode, struct file *file,
1395                 struct cache_detail *cd)
1396 {
1397         int ret = seq_release_private(inode, file);
1398         module_put(cd->owner);
1399         return ret;
1400 }
1401
1402 static int open_flush(struct inode *inode, struct file *file,
1403                         struct cache_detail *cd)
1404 {
1405         if (!cd || !try_module_get(cd->owner))
1406                 return -EACCES;
1407         return nonseekable_open(inode, file);
1408 }
1409
1410 static int release_flush(struct inode *inode, struct file *file,
1411                         struct cache_detail *cd)
1412 {
1413         module_put(cd->owner);
1414         return 0;
1415 }
1416
1417 static ssize_t read_flush(struct file *file, char __user *buf,
1418                           size_t count, loff_t *ppos,
1419                           struct cache_detail *cd)
1420 {
1421         char tbuf[22];
1422         unsigned long p = *ppos;
1423         size_t len;
1424
1425         snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1426         len = strlen(tbuf);
1427         if (p >= len)
1428                 return 0;
1429         len -= p;
1430         if (len > count)
1431                 len = count;
1432         if (copy_to_user(buf, (void*)(tbuf+p), len))
1433                 return -EFAULT;
1434         *ppos += len;
1435         return len;
1436 }
1437
1438 static ssize_t write_flush(struct file *file, const char __user *buf,
1439                            size_t count, loff_t *ppos,
1440                            struct cache_detail *cd)
1441 {
1442         char tbuf[20];
1443         char *bp, *ep;
1444
1445         if (*ppos || count > sizeof(tbuf)-1)
1446                 return -EINVAL;
1447         if (copy_from_user(tbuf, buf, count))
1448                 return -EFAULT;
1449         tbuf[count] = 0;
1450         simple_strtoul(tbuf, &ep, 0);
1451         if (*ep && *ep != '\n')
1452                 return -EINVAL;
1453
1454         bp = tbuf;
1455         cd->flush_time = get_expiry(&bp);
1456         cd->nextcheck = seconds_since_boot();
1457         cache_flush();
1458
1459         *ppos += count;
1460         return count;
1461 }
1462
1463 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1464                                  size_t count, loff_t *ppos)
1465 {
1466         struct cache_detail *cd = PDE(file_inode(filp))->data;
1467
1468         return cache_read(filp, buf, count, ppos, cd);
1469 }
1470
1471 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1472                                   size_t count, loff_t *ppos)
1473 {
1474         struct cache_detail *cd = PDE(file_inode(filp))->data;
1475
1476         return cache_write(filp, buf, count, ppos, cd);
1477 }
1478
1479 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1480 {
1481         struct cache_detail *cd = PDE(file_inode(filp))->data;
1482
1483         return cache_poll(filp, wait, cd);
1484 }
1485
1486 static long cache_ioctl_procfs(struct file *filp,
1487                                unsigned int cmd, unsigned long arg)
1488 {
1489         struct inode *inode = file_inode(filp);
1490         struct cache_detail *cd = PDE(inode)->data;
1491
1492         return cache_ioctl(inode, filp, cmd, arg, cd);
1493 }
1494
1495 static int cache_open_procfs(struct inode *inode, struct file *filp)
1496 {
1497         struct cache_detail *cd = PDE(inode)->data;
1498
1499         return cache_open(inode, filp, cd);
1500 }
1501
1502 static int cache_release_procfs(struct inode *inode, struct file *filp)
1503 {
1504         struct cache_detail *cd = PDE(inode)->data;
1505
1506         return cache_release(inode, filp, cd);
1507 }
1508
1509 static const struct file_operations cache_file_operations_procfs = {
1510         .owner          = THIS_MODULE,
1511         .llseek         = no_llseek,
1512         .read           = cache_read_procfs,
1513         .write          = cache_write_procfs,
1514         .poll           = cache_poll_procfs,
1515         .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1516         .open           = cache_open_procfs,
1517         .release        = cache_release_procfs,
1518 };
1519
1520 static int content_open_procfs(struct inode *inode, struct file *filp)
1521 {
1522         struct cache_detail *cd = PDE(inode)->data;
1523
1524         return content_open(inode, filp, cd);
1525 }
1526
1527 static int content_release_procfs(struct inode *inode, struct file *filp)
1528 {
1529         struct cache_detail *cd = PDE(inode)->data;
1530
1531         return content_release(inode, filp, cd);
1532 }
1533
1534 static const struct file_operations content_file_operations_procfs = {
1535         .open           = content_open_procfs,
1536         .read           = seq_read,
1537         .llseek         = seq_lseek,
1538         .release        = content_release_procfs,
1539 };
1540
1541 static int open_flush_procfs(struct inode *inode, struct file *filp)
1542 {
1543         struct cache_detail *cd = PDE(inode)->data;
1544
1545         return open_flush(inode, filp, cd);
1546 }
1547
1548 static int release_flush_procfs(struct inode *inode, struct file *filp)
1549 {
1550         struct cache_detail *cd = PDE(inode)->data;
1551
1552         return release_flush(inode, filp, cd);
1553 }
1554
1555 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1556                             size_t count, loff_t *ppos)
1557 {
1558         struct cache_detail *cd = PDE(file_inode(filp))->data;
1559
1560         return read_flush(filp, buf, count, ppos, cd);
1561 }
1562
1563 static ssize_t write_flush_procfs(struct file *filp,
1564                                   const char __user *buf,
1565                                   size_t count, loff_t *ppos)
1566 {
1567         struct cache_detail *cd = PDE(file_inode(filp))->data;
1568
1569         return write_flush(filp, buf, count, ppos, cd);
1570 }
1571
1572 static const struct file_operations cache_flush_operations_procfs = {
1573         .open           = open_flush_procfs,
1574         .read           = read_flush_procfs,
1575         .write          = write_flush_procfs,
1576         .release        = release_flush_procfs,
1577         .llseek         = no_llseek,
1578 };
1579
1580 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1581 {
1582         struct sunrpc_net *sn;
1583
1584         if (cd->u.procfs.proc_ent == NULL)
1585                 return;
1586         if (cd->u.procfs.flush_ent)
1587                 remove_proc_entry("flush", cd->u.procfs.proc_ent);
1588         if (cd->u.procfs.channel_ent)
1589                 remove_proc_entry("channel", cd->u.procfs.proc_ent);
1590         if (cd->u.procfs.content_ent)
1591                 remove_proc_entry("content", cd->u.procfs.proc_ent);
1592         cd->u.procfs.proc_ent = NULL;
1593         sn = net_generic(net, sunrpc_net_id);
1594         remove_proc_entry(cd->name, sn->proc_net_rpc);
1595 }
1596
1597 #ifdef CONFIG_PROC_FS
1598 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1599 {
1600         struct proc_dir_entry *p;
1601         struct sunrpc_net *sn;
1602
1603         sn = net_generic(net, sunrpc_net_id);
1604         cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1605         if (cd->u.procfs.proc_ent == NULL)
1606                 goto out_nomem;
1607         cd->u.procfs.channel_ent = NULL;
1608         cd->u.procfs.content_ent = NULL;
1609
1610         p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1611                              cd->u.procfs.proc_ent,
1612                              &cache_flush_operations_procfs, cd);
1613         cd->u.procfs.flush_ent = p;
1614         if (p == NULL)
1615                 goto out_nomem;
1616
1617         if (cd->cache_request || cd->cache_parse) {
1618                 p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1619                                      cd->u.procfs.proc_ent,
1620                                      &cache_file_operations_procfs, cd);
1621                 cd->u.procfs.channel_ent = p;
1622                 if (p == NULL)
1623                         goto out_nomem;
1624         }
1625         if (cd->cache_show) {
1626                 p = proc_create_data("content", S_IFREG|S_IRUSR,
1627                                 cd->u.procfs.proc_ent,
1628                                 &content_file_operations_procfs, cd);
1629                 cd->u.procfs.content_ent = p;
1630                 if (p == NULL)
1631                         goto out_nomem;
1632         }
1633         return 0;
1634 out_nomem:
1635         remove_cache_proc_entries(cd, net);
1636         return -ENOMEM;
1637 }
1638 #else /* CONFIG_PROC_FS */
1639 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1640 {
1641         return 0;
1642 }
1643 #endif
1644
1645 void __init cache_initialize(void)
1646 {
1647         INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1648 }
1649
1650 int cache_register_net(struct cache_detail *cd, struct net *net)
1651 {
1652         int ret;
1653
1654         sunrpc_init_cache_detail(cd);
1655         ret = create_cache_proc_entries(cd, net);
1656         if (ret)
1657                 sunrpc_destroy_cache_detail(cd);
1658         return ret;
1659 }
1660 EXPORT_SYMBOL_GPL(cache_register_net);
1661
1662 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1663 {
1664         remove_cache_proc_entries(cd, net);
1665         sunrpc_destroy_cache_detail(cd);
1666 }
1667 EXPORT_SYMBOL_GPL(cache_unregister_net);
1668
1669 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1670 {
1671         struct cache_detail *cd;
1672
1673         cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1674         if (cd == NULL)
1675                 return ERR_PTR(-ENOMEM);
1676
1677         cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1678                                  GFP_KERNEL);
1679         if (cd->hash_table == NULL) {
1680                 kfree(cd);
1681                 return ERR_PTR(-ENOMEM);
1682         }
1683         cd->net = net;
1684         return cd;
1685 }
1686 EXPORT_SYMBOL_GPL(cache_create_net);
1687
1688 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1689 {
1690         kfree(cd->hash_table);
1691         kfree(cd);
1692 }
1693 EXPORT_SYMBOL_GPL(cache_destroy_net);
1694
1695 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1696                                  size_t count, loff_t *ppos)
1697 {
1698         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1699
1700         return cache_read(filp, buf, count, ppos, cd);
1701 }
1702
1703 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1704                                   size_t count, loff_t *ppos)
1705 {
1706         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1707
1708         return cache_write(filp, buf, count, ppos, cd);
1709 }
1710
1711 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1712 {
1713         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1714
1715         return cache_poll(filp, wait, cd);
1716 }
1717
1718 static long cache_ioctl_pipefs(struct file *filp,
1719                               unsigned int cmd, unsigned long arg)
1720 {
1721         struct inode *inode = file_inode(filp);
1722         struct cache_detail *cd = RPC_I(inode)->private;
1723
1724         return cache_ioctl(inode, filp, cmd, arg, cd);
1725 }
1726
1727 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1728 {
1729         struct cache_detail *cd = RPC_I(inode)->private;
1730
1731         return cache_open(inode, filp, cd);
1732 }
1733
1734 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1735 {
1736         struct cache_detail *cd = RPC_I(inode)->private;
1737
1738         return cache_release(inode, filp, cd);
1739 }
1740
1741 const struct file_operations cache_file_operations_pipefs = {
1742         .owner          = THIS_MODULE,
1743         .llseek         = no_llseek,
1744         .read           = cache_read_pipefs,
1745         .write          = cache_write_pipefs,
1746         .poll           = cache_poll_pipefs,
1747         .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1748         .open           = cache_open_pipefs,
1749         .release        = cache_release_pipefs,
1750 };
1751
1752 static int content_open_pipefs(struct inode *inode, struct file *filp)
1753 {
1754         struct cache_detail *cd = RPC_I(inode)->private;
1755
1756         return content_open(inode, filp, cd);
1757 }
1758
1759 static int content_release_pipefs(struct inode *inode, struct file *filp)
1760 {
1761         struct cache_detail *cd = RPC_I(inode)->private;
1762
1763         return content_release(inode, filp, cd);
1764 }
1765
1766 const struct file_operations content_file_operations_pipefs = {
1767         .open           = content_open_pipefs,
1768         .read           = seq_read,
1769         .llseek         = seq_lseek,
1770         .release        = content_release_pipefs,
1771 };
1772
1773 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1774 {
1775         struct cache_detail *cd = RPC_I(inode)->private;
1776
1777         return open_flush(inode, filp, cd);
1778 }
1779
1780 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1781 {
1782         struct cache_detail *cd = RPC_I(inode)->private;
1783
1784         return release_flush(inode, filp, cd);
1785 }
1786
1787 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1788                             size_t count, loff_t *ppos)
1789 {
1790         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1791
1792         return read_flush(filp, buf, count, ppos, cd);
1793 }
1794
1795 static ssize_t write_flush_pipefs(struct file *filp,
1796                                   const char __user *buf,
1797                                   size_t count, loff_t *ppos)
1798 {
1799         struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1800
1801         return write_flush(filp, buf, count, ppos, cd);
1802 }
1803
1804 const struct file_operations cache_flush_operations_pipefs = {
1805         .open           = open_flush_pipefs,
1806         .read           = read_flush_pipefs,
1807         .write          = write_flush_pipefs,
1808         .release        = release_flush_pipefs,
1809         .llseek         = no_llseek,
1810 };
1811
1812 int sunrpc_cache_register_pipefs(struct dentry *parent,
1813                                  const char *name, umode_t umode,
1814                                  struct cache_detail *cd)
1815 {
1816         struct qstr q;
1817         struct dentry *dir;
1818         int ret = 0;
1819
1820         q.name = name;
1821         q.len = strlen(name);
1822         q.hash = full_name_hash(q.name, q.len);
1823         dir = rpc_create_cache_dir(parent, &q, umode, cd);
1824         if (!IS_ERR(dir))
1825                 cd->u.pipefs.dir = dir;
1826         else
1827                 ret = PTR_ERR(dir);
1828         return ret;
1829 }
1830 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1831
1832 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1833 {
1834         rpc_remove_cache_dir(cd->u.pipefs.dir);
1835         cd->u.pipefs.dir = NULL;
1836 }
1837 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1838