1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET An implementation of the SOCKET network access protocol.
5 * Version: @(#)socket.c 1.1.93 18/02/95
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
49 * This module is effectively the top level interface to the BSD socket
52 * Based upon Swansea University Computer Society NET3.039
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/net.h>
61 #include <linux/interrupt.h>
62 #include <linux/thread_info.h>
63 #include <linux/rcupdate.h>
64 #include <linux/netdevice.h>
65 #include <linux/proc_fs.h>
66 #include <linux/seq_file.h>
67 #include <linux/mutex.h>
68 #include <linux/if_bridge.h>
69 #include <linux/if_vlan.h>
70 #include <linux/ptp_classify.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/cache.h>
74 #include <linux/module.h>
75 #include <linux/highmem.h>
76 #include <linux/mount.h>
77 #include <linux/pseudo_fs.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/compat.h>
81 #include <linux/kmod.h>
82 #include <linux/audit.h>
83 #include <linux/wireless.h>
84 #include <linux/nsproxy.h>
85 #include <linux/magic.h>
86 #include <linux/slab.h>
87 #include <linux/xattr.h>
88 #include <linux/nospec.h>
89 #include <linux/indirect_call_wrapper.h>
91 #include <linux/uaccess.h>
92 #include <asm/unistd.h>
94 #include <net/compat.h>
96 #include <net/cls_cgroup.h>
99 #include <linux/netfilter.h>
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/termios.h>
105 #include <linux/sockios.h>
106 #include <net/busy_poll.h>
107 #include <linux/errqueue.h>
108 #include <linux/ptp_clock_kernel.h>
109 #include <trace/events/sock.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
135 #ifdef CONFIG_PROC_FS
136 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138 struct socket *sock = f->private_data;
140 if (sock->ops->show_fdinfo)
141 sock->ops->show_fdinfo(m, sock);
144 #define sock_show_fdinfo NULL
148 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
149 * in the operation structures but are done directly via the socketcall() multiplexor.
152 static const struct file_operations socket_file_ops = {
153 .owner = THIS_MODULE,
155 .read_iter = sock_read_iter,
156 .write_iter = sock_write_iter,
158 .unlocked_ioctl = sock_ioctl,
160 .compat_ioctl = compat_sock_ioctl,
163 .release = sock_close,
164 .fasync = sock_fasync,
165 .sendpage = sock_sendpage,
166 .splice_write = generic_splice_sendpage,
167 .splice_read = sock_splice_read,
168 .show_fdinfo = sock_show_fdinfo,
171 static const char * const pf_family_names[] = {
172 [PF_UNSPEC] = "PF_UNSPEC",
173 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
174 [PF_INET] = "PF_INET",
175 [PF_AX25] = "PF_AX25",
177 [PF_APPLETALK] = "PF_APPLETALK",
178 [PF_NETROM] = "PF_NETROM",
179 [PF_BRIDGE] = "PF_BRIDGE",
180 [PF_ATMPVC] = "PF_ATMPVC",
182 [PF_INET6] = "PF_INET6",
183 [PF_ROSE] = "PF_ROSE",
184 [PF_DECnet] = "PF_DECnet",
185 [PF_NETBEUI] = "PF_NETBEUI",
186 [PF_SECURITY] = "PF_SECURITY",
188 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
189 [PF_PACKET] = "PF_PACKET",
191 [PF_ECONET] = "PF_ECONET",
192 [PF_ATMSVC] = "PF_ATMSVC",
195 [PF_IRDA] = "PF_IRDA",
196 [PF_PPPOX] = "PF_PPPOX",
197 [PF_WANPIPE] = "PF_WANPIPE",
200 [PF_MPLS] = "PF_MPLS",
202 [PF_TIPC] = "PF_TIPC",
203 [PF_BLUETOOTH] = "PF_BLUETOOTH",
204 [PF_IUCV] = "PF_IUCV",
205 [PF_RXRPC] = "PF_RXRPC",
206 [PF_ISDN] = "PF_ISDN",
207 [PF_PHONET] = "PF_PHONET",
208 [PF_IEEE802154] = "PF_IEEE802154",
209 [PF_CAIF] = "PF_CAIF",
212 [PF_VSOCK] = "PF_VSOCK",
214 [PF_QIPCRTR] = "PF_QIPCRTR",
217 [PF_MCTP] = "PF_MCTP",
221 * The protocol list. Each protocol is registered in here.
224 static DEFINE_SPINLOCK(net_family_lock);
225 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
229 * Move socket addresses back and forth across the kernel/user
230 * divide and look after the messy bits.
234 * move_addr_to_kernel - copy a socket address into kernel space
235 * @uaddr: Address in user space
236 * @kaddr: Address in kernel space
237 * @ulen: Length in user space
239 * The address is copied into kernel space. If the provided address is
240 * too long an error code of -EINVAL is returned. If the copy gives
241 * invalid addresses -EFAULT is returned. On a success 0 is returned.
244 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
246 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
250 if (copy_from_user(kaddr, uaddr, ulen))
252 return audit_sockaddr(ulen, kaddr);
256 * move_addr_to_user - copy an address to user space
257 * @kaddr: kernel space address
258 * @klen: length of address in kernel
259 * @uaddr: user space address
260 * @ulen: pointer to user length field
262 * The value pointed to by ulen on entry is the buffer length available.
263 * This is overwritten with the buffer space used. -EINVAL is returned
264 * if an overlong buffer is specified or a negative buffer size. -EFAULT
265 * is returned if either the buffer or the length field are not
267 * After copying the data up to the limit the user specifies, the true
268 * length of the data is written over the length limit the user
269 * specified. Zero is returned for a success.
272 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
273 void __user *uaddr, int __user *ulen)
278 BUG_ON(klen > sizeof(struct sockaddr_storage));
279 err = get_user(len, ulen);
287 if (audit_sockaddr(klen, kaddr))
289 if (copy_to_user(uaddr, kaddr, len))
293 * "fromlen shall refer to the value before truncation.."
296 return __put_user(klen, ulen);
299 static struct kmem_cache *sock_inode_cachep __ro_after_init;
301 static struct inode *sock_alloc_inode(struct super_block *sb)
303 struct socket_alloc *ei;
305 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
308 init_waitqueue_head(&ei->socket.wq.wait);
309 ei->socket.wq.fasync_list = NULL;
310 ei->socket.wq.flags = 0;
312 ei->socket.state = SS_UNCONNECTED;
313 ei->socket.flags = 0;
314 ei->socket.ops = NULL;
315 ei->socket.sk = NULL;
316 ei->socket.file = NULL;
318 return &ei->vfs_inode;
321 static void sock_free_inode(struct inode *inode)
323 struct socket_alloc *ei;
325 ei = container_of(inode, struct socket_alloc, vfs_inode);
326 kmem_cache_free(sock_inode_cachep, ei);
329 static void init_once(void *foo)
331 struct socket_alloc *ei = (struct socket_alloc *)foo;
333 inode_init_once(&ei->vfs_inode);
336 static void init_inodecache(void)
338 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
339 sizeof(struct socket_alloc),
341 (SLAB_HWCACHE_ALIGN |
342 SLAB_RECLAIM_ACCOUNT |
343 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
345 BUG_ON(sock_inode_cachep == NULL);
348 static const struct super_operations sockfs_ops = {
349 .alloc_inode = sock_alloc_inode,
350 .free_inode = sock_free_inode,
351 .statfs = simple_statfs,
355 * sockfs_dname() is called from d_path().
357 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
359 return dynamic_dname(buffer, buflen, "socket:[%lu]",
360 d_inode(dentry)->i_ino);
363 static const struct dentry_operations sockfs_dentry_operations = {
364 .d_dname = sockfs_dname,
367 static int sockfs_xattr_get(const struct xattr_handler *handler,
368 struct dentry *dentry, struct inode *inode,
369 const char *suffix, void *value, size_t size)
372 if (dentry->d_name.len + 1 > size)
374 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
376 return dentry->d_name.len + 1;
379 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
380 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
381 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
383 static const struct xattr_handler sockfs_xattr_handler = {
384 .name = XATTR_NAME_SOCKPROTONAME,
385 .get = sockfs_xattr_get,
388 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
389 struct mnt_idmap *idmap,
390 struct dentry *dentry, struct inode *inode,
391 const char *suffix, const void *value,
392 size_t size, int flags)
394 /* Handled by LSM. */
398 static const struct xattr_handler sockfs_security_xattr_handler = {
399 .prefix = XATTR_SECURITY_PREFIX,
400 .set = sockfs_security_xattr_set,
403 static const struct xattr_handler *sockfs_xattr_handlers[] = {
404 &sockfs_xattr_handler,
405 &sockfs_security_xattr_handler,
409 static int sockfs_init_fs_context(struct fs_context *fc)
411 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
414 ctx->ops = &sockfs_ops;
415 ctx->dops = &sockfs_dentry_operations;
416 ctx->xattr = sockfs_xattr_handlers;
420 static struct vfsmount *sock_mnt __read_mostly;
422 static struct file_system_type sock_fs_type = {
424 .init_fs_context = sockfs_init_fs_context,
425 .kill_sb = kill_anon_super,
429 * Obtains the first available file descriptor and sets it up for use.
431 * These functions create file structures and maps them to fd space
432 * of the current process. On success it returns file descriptor
433 * and file struct implicitly stored in sock->file.
434 * Note that another thread may close file descriptor before we return
435 * from this function. We use the fact that now we do not refer
436 * to socket after mapping. If one day we will need it, this
437 * function will increment ref. count on file by 1.
439 * In any case returned fd MAY BE not valid!
440 * This race condition is unavoidable
441 * with shared fd spaces, we cannot solve it inside kernel,
442 * but we take care of internal coherence yet.
446 * sock_alloc_file - Bind a &socket to a &file
448 * @flags: file status flags
449 * @dname: protocol name
451 * Returns the &file bound with @sock, implicitly storing it
452 * in sock->file. If dname is %NULL, sets to "".
453 * On failure the return is a ERR pointer (see linux/err.h).
454 * This function uses GFP_KERNEL internally.
457 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
462 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
464 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
465 O_RDWR | (flags & O_NONBLOCK),
473 file->private_data = sock;
474 stream_open(SOCK_INODE(sock), file);
477 EXPORT_SYMBOL(sock_alloc_file);
479 static int sock_map_fd(struct socket *sock, int flags)
481 struct file *newfile;
482 int fd = get_unused_fd_flags(flags);
483 if (unlikely(fd < 0)) {
488 newfile = sock_alloc_file(sock, flags, NULL);
489 if (!IS_ERR(newfile)) {
490 fd_install(fd, newfile);
495 return PTR_ERR(newfile);
499 * sock_from_file - Return the &socket bounded to @file.
502 * On failure returns %NULL.
505 struct socket *sock_from_file(struct file *file)
507 if (file->f_op == &socket_file_ops)
508 return file->private_data; /* set in sock_alloc_file */
512 EXPORT_SYMBOL(sock_from_file);
515 * sockfd_lookup - Go from a file number to its socket slot
517 * @err: pointer to an error code return
519 * The file handle passed in is locked and the socket it is bound
520 * to is returned. If an error occurs the err pointer is overwritten
521 * with a negative errno code and NULL is returned. The function checks
522 * for both invalid handles and passing a handle which is not a socket.
524 * On a success the socket object pointer is returned.
527 struct socket *sockfd_lookup(int fd, int *err)
538 sock = sock_from_file(file);
545 EXPORT_SYMBOL(sockfd_lookup);
547 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
549 struct fd f = fdget(fd);
554 sock = sock_from_file(f.file);
556 *fput_needed = f.flags & FDPUT_FPUT;
565 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
571 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
581 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
586 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
593 static int sockfs_setattr(struct mnt_idmap *idmap,
594 struct dentry *dentry, struct iattr *iattr)
596 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
598 if (!err && (iattr->ia_valid & ATTR_UID)) {
599 struct socket *sock = SOCKET_I(d_inode(dentry));
602 sock->sk->sk_uid = iattr->ia_uid;
610 static const struct inode_operations sockfs_inode_ops = {
611 .listxattr = sockfs_listxattr,
612 .setattr = sockfs_setattr,
616 * sock_alloc - allocate a socket
618 * Allocate a new inode and socket object. The two are bound together
619 * and initialised. The socket is then returned. If we are out of inodes
620 * NULL is returned. This functions uses GFP_KERNEL internally.
623 struct socket *sock_alloc(void)
628 inode = new_inode_pseudo(sock_mnt->mnt_sb);
632 sock = SOCKET_I(inode);
634 inode->i_ino = get_next_ino();
635 inode->i_mode = S_IFSOCK | S_IRWXUGO;
636 inode->i_uid = current_fsuid();
637 inode->i_gid = current_fsgid();
638 inode->i_op = &sockfs_inode_ops;
642 EXPORT_SYMBOL(sock_alloc);
644 static void __sock_release(struct socket *sock, struct inode *inode)
647 struct module *owner = sock->ops->owner;
651 sock->ops->release(sock);
659 if (sock->wq.fasync_list)
660 pr_err("%s: fasync list not empty!\n", __func__);
663 iput(SOCK_INODE(sock));
670 * sock_release - close a socket
671 * @sock: socket to close
673 * The socket is released from the protocol stack if it has a release
674 * callback, and the inode is then released if the socket is bound to
675 * an inode not a file.
677 void sock_release(struct socket *sock)
679 __sock_release(sock, NULL);
681 EXPORT_SYMBOL(sock_release);
683 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
685 u8 flags = *tx_flags;
687 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
688 flags |= SKBTX_HW_TSTAMP;
690 /* PTP hardware clocks can provide a free running cycle counter
691 * as a time base for virtual clocks. Tell driver to use the
692 * free running cycle counter for timestamp if socket is bound
695 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
696 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
699 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
700 flags |= SKBTX_SW_TSTAMP;
702 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
703 flags |= SKBTX_SCHED_TSTAMP;
707 EXPORT_SYMBOL(__sock_tx_timestamp);
709 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
711 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
714 static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
717 trace_sock_send_length(sk, ret, 0);
720 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
722 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
723 inet_sendmsg, sock, msg,
725 BUG_ON(ret == -EIOCBQUEUED);
727 if (trace_sock_send_length_enabled())
728 call_trace_sock_send_length(sock->sk, ret, 0);
733 * sock_sendmsg - send a message through @sock
735 * @msg: message to send
737 * Sends @msg through @sock, passing through LSM.
738 * Returns the number of bytes sent, or an error code.
740 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
742 int err = security_socket_sendmsg(sock, msg,
745 return err ?: sock_sendmsg_nosec(sock, msg);
747 EXPORT_SYMBOL(sock_sendmsg);
750 * kernel_sendmsg - send a message through @sock (kernel-space)
752 * @msg: message header
754 * @num: vec array length
755 * @size: total message data size
757 * Builds the message data with @vec and sends it through @sock.
758 * Returns the number of bytes sent, or an error code.
761 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
762 struct kvec *vec, size_t num, size_t size)
764 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
765 return sock_sendmsg(sock, msg);
767 EXPORT_SYMBOL(kernel_sendmsg);
770 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
772 * @msg: message header
773 * @vec: output s/g array
774 * @num: output s/g array length
775 * @size: total message data size
777 * Builds the message data with @vec and sends it through @sock.
778 * Returns the number of bytes sent, or an error code.
779 * Caller must hold @sk.
782 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
783 struct kvec *vec, size_t num, size_t size)
785 struct socket *sock = sk->sk_socket;
787 if (!sock->ops->sendmsg_locked)
788 return sock_no_sendmsg_locked(sk, msg, size);
790 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
792 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
794 EXPORT_SYMBOL(kernel_sendmsg_locked);
796 static bool skb_is_err_queue(const struct sk_buff *skb)
798 /* pkt_type of skbs enqueued on the error queue are set to
799 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
800 * in recvmsg, since skbs received on a local socket will never
801 * have a pkt_type of PACKET_OUTGOING.
803 return skb->pkt_type == PACKET_OUTGOING;
806 /* On transmit, software and hardware timestamps are returned independently.
807 * As the two skb clones share the hardware timestamp, which may be updated
808 * before the software timestamp is received, a hardware TX timestamp may be
809 * returned only if there is no software TX timestamp. Ignore false software
810 * timestamps, which may be made in the __sock_recv_timestamp() call when the
811 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
812 * hardware timestamp.
814 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
816 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
819 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
821 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
822 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
823 struct net_device *orig_dev;
827 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
829 *if_index = orig_dev->ifindex;
830 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
832 hwtstamp = shhwtstamps->hwtstamp;
839 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
842 struct scm_ts_pktinfo ts_pktinfo;
843 struct net_device *orig_dev;
845 if (!skb_mac_header_was_set(skb))
848 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
852 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
854 if_index = orig_dev->ifindex;
857 ts_pktinfo.if_index = if_index;
859 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
860 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
861 sizeof(ts_pktinfo), &ts_pktinfo);
865 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
867 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
870 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
871 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
872 struct scm_timestamping_internal tss;
874 int empty = 1, false_tstamp = 0;
875 struct skb_shared_hwtstamps *shhwtstamps =
880 /* Race occurred between timestamp enabling and packet
881 receiving. Fill in the current time for now. */
882 if (need_software_tstamp && skb->tstamp == 0) {
883 __net_timestamp(skb);
887 if (need_software_tstamp) {
888 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
890 struct __kernel_sock_timeval tv;
892 skb_get_new_timestamp(skb, &tv);
893 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
896 struct __kernel_old_timeval tv;
898 skb_get_timestamp(skb, &tv);
899 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
904 struct __kernel_timespec ts;
906 skb_get_new_timestampns(skb, &ts);
907 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
910 struct __kernel_old_timespec ts;
912 skb_get_timestampns(skb, &ts);
913 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
919 memset(&tss, 0, sizeof(tss));
920 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
921 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
924 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
925 !skb_is_swtx_tstamp(skb, false_tstamp)) {
927 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
928 hwtstamp = get_timestamp(sk, skb, &if_index);
930 hwtstamp = shhwtstamps->hwtstamp;
932 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
933 hwtstamp = ptp_convert_timestamp(&hwtstamp,
936 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
939 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
940 !skb_is_err_queue(skb))
941 put_ts_pktinfo(msg, skb, if_index);
945 if (sock_flag(sk, SOCK_TSTAMP_NEW))
946 put_cmsg_scm_timestamping64(msg, &tss);
948 put_cmsg_scm_timestamping(msg, &tss);
950 if (skb_is_err_queue(skb) && skb->len &&
951 SKB_EXT_ERR(skb)->opt_stats)
952 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
953 skb->len, skb->data);
956 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
958 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
963 if (!sock_flag(sk, SOCK_WIFI_STATUS))
965 if (!skb->wifi_acked_valid)
968 ack = skb->wifi_acked;
970 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
972 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
974 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
977 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
978 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
979 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
982 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
985 if (sock_flag(sk, SOCK_RCVMARK) && skb) {
986 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
987 __u32 mark = skb->mark;
989 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32), &mark);
993 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
996 sock_recv_timestamp(msg, sk, skb);
997 sock_recv_drops(msg, sk, skb);
998 sock_recv_mark(msg, sk, skb);
1000 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1002 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1004 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1007 static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1009 trace_sock_recv_length(sk, ret, flags);
1012 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1015 int ret = INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
1016 inet_recvmsg, sock, msg,
1017 msg_data_left(msg), flags);
1018 if (trace_sock_recv_length_enabled())
1019 call_trace_sock_recv_length(sock->sk, ret, flags);
1024 * sock_recvmsg - receive a message from @sock
1026 * @msg: message to receive
1027 * @flags: message flags
1029 * Receives @msg from @sock, passing through LSM. Returns the total number
1030 * of bytes received, or an error.
1032 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1034 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1036 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1038 EXPORT_SYMBOL(sock_recvmsg);
1041 * kernel_recvmsg - Receive a message from a socket (kernel space)
1042 * @sock: The socket to receive the message from
1043 * @msg: Received message
1044 * @vec: Input s/g array for message data
1045 * @num: Size of input s/g array
1046 * @size: Number of bytes to read
1047 * @flags: Message flags (MSG_DONTWAIT, etc...)
1049 * On return the msg structure contains the scatter/gather array passed in the
1050 * vec argument. The array is modified so that it consists of the unfilled
1051 * portion of the original array.
1053 * The returned value is the total number of bytes received, or an error.
1056 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1057 struct kvec *vec, size_t num, size_t size, int flags)
1059 msg->msg_control_is_user = false;
1060 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1061 return sock_recvmsg(sock, msg, flags);
1063 EXPORT_SYMBOL(kernel_recvmsg);
1065 static ssize_t sock_sendpage(struct file *file, struct page *page,
1066 int offset, size_t size, loff_t *ppos, int more)
1068 struct socket *sock;
1072 sock = file->private_data;
1074 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1075 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1078 ret = kernel_sendpage(sock, page, offset, size, flags);
1080 if (trace_sock_send_length_enabled())
1081 call_trace_sock_send_length(sock->sk, ret, 0);
1085 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1086 struct pipe_inode_info *pipe, size_t len,
1089 struct socket *sock = file->private_data;
1091 if (unlikely(!sock->ops->splice_read))
1092 return generic_file_splice_read(file, ppos, pipe, len, flags);
1094 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1097 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1099 struct file *file = iocb->ki_filp;
1100 struct socket *sock = file->private_data;
1101 struct msghdr msg = {.msg_iter = *to,
1105 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1106 msg.msg_flags = MSG_DONTWAIT;
1108 if (iocb->ki_pos != 0)
1111 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1114 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1119 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1121 struct file *file = iocb->ki_filp;
1122 struct socket *sock = file->private_data;
1123 struct msghdr msg = {.msg_iter = *from,
1127 if (iocb->ki_pos != 0)
1130 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1131 msg.msg_flags = MSG_DONTWAIT;
1133 if (sock->type == SOCK_SEQPACKET)
1134 msg.msg_flags |= MSG_EOR;
1136 res = sock_sendmsg(sock, &msg);
1137 *from = msg.msg_iter;
1142 * Atomic setting of ioctl hooks to avoid race
1143 * with module unload.
1146 static DEFINE_MUTEX(br_ioctl_mutex);
1147 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1148 unsigned int cmd, struct ifreq *ifr,
1151 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1152 unsigned int cmd, struct ifreq *ifr,
1155 mutex_lock(&br_ioctl_mutex);
1156 br_ioctl_hook = hook;
1157 mutex_unlock(&br_ioctl_mutex);
1159 EXPORT_SYMBOL(brioctl_set);
1161 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1162 struct ifreq *ifr, void __user *uarg)
1167 request_module("bridge");
1169 mutex_lock(&br_ioctl_mutex);
1171 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1172 mutex_unlock(&br_ioctl_mutex);
1177 static DEFINE_MUTEX(vlan_ioctl_mutex);
1178 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1180 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1182 mutex_lock(&vlan_ioctl_mutex);
1183 vlan_ioctl_hook = hook;
1184 mutex_unlock(&vlan_ioctl_mutex);
1186 EXPORT_SYMBOL(vlan_ioctl_set);
1188 static long sock_do_ioctl(struct net *net, struct socket *sock,
1189 unsigned int cmd, unsigned long arg)
1194 void __user *argp = (void __user *)arg;
1197 err = sock->ops->ioctl(sock, cmd, arg);
1200 * If this ioctl is unknown try to hand it down
1201 * to the NIC driver.
1203 if (err != -ENOIOCTLCMD)
1206 if (!is_socket_ioctl_cmd(cmd))
1209 if (get_user_ifreq(&ifr, &data, argp))
1211 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1212 if (!err && need_copyout)
1213 if (put_user_ifreq(&ifr, argp))
1220 * With an ioctl, arg may well be a user mode pointer, but we don't know
1221 * what to do with it - that's up to the protocol still.
1224 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1226 struct socket *sock;
1228 void __user *argp = (void __user *)arg;
1232 sock = file->private_data;
1235 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1239 if (get_user_ifreq(&ifr, &data, argp))
1241 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1242 if (!err && need_copyout)
1243 if (put_user_ifreq(&ifr, argp))
1246 #ifdef CONFIG_WEXT_CORE
1247 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1248 err = wext_handle_ioctl(net, cmd, argp);
1255 if (get_user(pid, (int __user *)argp))
1257 err = f_setown(sock->file, pid, 1);
1261 err = put_user(f_getown(sock->file),
1262 (int __user *)argp);
1268 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1273 if (!vlan_ioctl_hook)
1274 request_module("8021q");
1276 mutex_lock(&vlan_ioctl_mutex);
1277 if (vlan_ioctl_hook)
1278 err = vlan_ioctl_hook(net, argp);
1279 mutex_unlock(&vlan_ioctl_mutex);
1283 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1286 err = open_related_ns(&net->ns, get_net_ns);
1288 case SIOCGSTAMP_OLD:
1289 case SIOCGSTAMPNS_OLD:
1290 if (!sock->ops->gettstamp) {
1294 err = sock->ops->gettstamp(sock, argp,
1295 cmd == SIOCGSTAMP_OLD,
1296 !IS_ENABLED(CONFIG_64BIT));
1298 case SIOCGSTAMP_NEW:
1299 case SIOCGSTAMPNS_NEW:
1300 if (!sock->ops->gettstamp) {
1304 err = sock->ops->gettstamp(sock, argp,
1305 cmd == SIOCGSTAMP_NEW,
1310 err = dev_ifconf(net, argp);
1314 err = sock_do_ioctl(net, sock, cmd, arg);
1321 * sock_create_lite - creates a socket
1322 * @family: protocol family (AF_INET, ...)
1323 * @type: communication type (SOCK_STREAM, ...)
1324 * @protocol: protocol (0, ...)
1327 * Creates a new socket and assigns it to @res, passing through LSM.
1328 * The new socket initialization is not complete, see kernel_accept().
1329 * Returns 0 or an error. On failure @res is set to %NULL.
1330 * This function internally uses GFP_KERNEL.
1333 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1336 struct socket *sock = NULL;
1338 err = security_socket_create(family, type, protocol, 1);
1342 sock = sock_alloc();
1349 err = security_socket_post_create(sock, family, type, protocol, 1);
1361 EXPORT_SYMBOL(sock_create_lite);
1363 /* No kernel lock held - perfect */
1364 static __poll_t sock_poll(struct file *file, poll_table *wait)
1366 struct socket *sock = file->private_data;
1367 __poll_t events = poll_requested_events(wait), flag = 0;
1369 if (!sock->ops->poll)
1372 if (sk_can_busy_loop(sock->sk)) {
1373 /* poll once if requested by the syscall */
1374 if (events & POLL_BUSY_LOOP)
1375 sk_busy_loop(sock->sk, 1);
1377 /* if this socket can poll_ll, tell the system call */
1378 flag = POLL_BUSY_LOOP;
1381 return sock->ops->poll(file, sock, wait) | flag;
1384 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1386 struct socket *sock = file->private_data;
1388 return sock->ops->mmap(file, sock, vma);
1391 static int sock_close(struct inode *inode, struct file *filp)
1393 __sock_release(SOCKET_I(inode), inode);
1398 * Update the socket async list
1400 * Fasync_list locking strategy.
1402 * 1. fasync_list is modified only under process context socket lock
1403 * i.e. under semaphore.
1404 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1405 * or under socket lock
1408 static int sock_fasync(int fd, struct file *filp, int on)
1410 struct socket *sock = filp->private_data;
1411 struct sock *sk = sock->sk;
1412 struct socket_wq *wq = &sock->wq;
1418 fasync_helper(fd, filp, on, &wq->fasync_list);
1420 if (!wq->fasync_list)
1421 sock_reset_flag(sk, SOCK_FASYNC);
1423 sock_set_flag(sk, SOCK_FASYNC);
1429 /* This function may be called only under rcu_lock */
1431 int sock_wake_async(struct socket_wq *wq, int how, int band)
1433 if (!wq || !wq->fasync_list)
1437 case SOCK_WAKE_WAITD:
1438 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1441 case SOCK_WAKE_SPACE:
1442 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1447 kill_fasync(&wq->fasync_list, SIGIO, band);
1450 kill_fasync(&wq->fasync_list, SIGURG, band);
1455 EXPORT_SYMBOL(sock_wake_async);
1458 * __sock_create - creates a socket
1459 * @net: net namespace
1460 * @family: protocol family (AF_INET, ...)
1461 * @type: communication type (SOCK_STREAM, ...)
1462 * @protocol: protocol (0, ...)
1464 * @kern: boolean for kernel space sockets
1466 * Creates a new socket and assigns it to @res, passing through LSM.
1467 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1468 * be set to true if the socket resides in kernel space.
1469 * This function internally uses GFP_KERNEL.
1472 int __sock_create(struct net *net, int family, int type, int protocol,
1473 struct socket **res, int kern)
1476 struct socket *sock;
1477 const struct net_proto_family *pf;
1480 * Check protocol is in range
1482 if (family < 0 || family >= NPROTO)
1483 return -EAFNOSUPPORT;
1484 if (type < 0 || type >= SOCK_MAX)
1489 This uglymoron is moved from INET layer to here to avoid
1490 deadlock in module load.
1492 if (family == PF_INET && type == SOCK_PACKET) {
1493 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1498 err = security_socket_create(family, type, protocol, kern);
1503 * Allocate the socket and allow the family to set things up. if
1504 * the protocol is 0, the family is instructed to select an appropriate
1507 sock = sock_alloc();
1509 net_warn_ratelimited("socket: no more sockets\n");
1510 return -ENFILE; /* Not exactly a match, but its the
1511 closest posix thing */
1516 #ifdef CONFIG_MODULES
1517 /* Attempt to load a protocol module if the find failed.
1519 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1520 * requested real, full-featured networking support upon configuration.
1521 * Otherwise module support will break!
1523 if (rcu_access_pointer(net_families[family]) == NULL)
1524 request_module("net-pf-%d", family);
1528 pf = rcu_dereference(net_families[family]);
1529 err = -EAFNOSUPPORT;
1534 * We will call the ->create function, that possibly is in a loadable
1535 * module, so we have to bump that loadable module refcnt first.
1537 if (!try_module_get(pf->owner))
1540 /* Now protected by module ref count */
1543 err = pf->create(net, sock, protocol, kern);
1545 goto out_module_put;
1548 * Now to bump the refcnt of the [loadable] module that owns this
1549 * socket at sock_release time we decrement its refcnt.
1551 if (!try_module_get(sock->ops->owner))
1552 goto out_module_busy;
1555 * Now that we're done with the ->create function, the [loadable]
1556 * module can have its refcnt decremented
1558 module_put(pf->owner);
1559 err = security_socket_post_create(sock, family, type, protocol, kern);
1561 goto out_sock_release;
1567 err = -EAFNOSUPPORT;
1570 module_put(pf->owner);
1577 goto out_sock_release;
1579 EXPORT_SYMBOL(__sock_create);
1582 * sock_create - creates a socket
1583 * @family: protocol family (AF_INET, ...)
1584 * @type: communication type (SOCK_STREAM, ...)
1585 * @protocol: protocol (0, ...)
1588 * A wrapper around __sock_create().
1589 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1592 int sock_create(int family, int type, int protocol, struct socket **res)
1594 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1596 EXPORT_SYMBOL(sock_create);
1599 * sock_create_kern - creates a socket (kernel space)
1600 * @net: net namespace
1601 * @family: protocol family (AF_INET, ...)
1602 * @type: communication type (SOCK_STREAM, ...)
1603 * @protocol: protocol (0, ...)
1606 * A wrapper around __sock_create().
1607 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1610 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1612 return __sock_create(net, family, type, protocol, res, 1);
1614 EXPORT_SYMBOL(sock_create_kern);
1616 static struct socket *__sys_socket_create(int family, int type, int protocol)
1618 struct socket *sock;
1621 /* Check the SOCK_* constants for consistency. */
1622 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1623 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1624 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1625 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1627 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1628 return ERR_PTR(-EINVAL);
1629 type &= SOCK_TYPE_MASK;
1631 retval = sock_create(family, type, protocol, &sock);
1633 return ERR_PTR(retval);
1638 struct file *__sys_socket_file(int family, int type, int protocol)
1640 struct socket *sock;
1644 sock = __sys_socket_create(family, type, protocol);
1646 return ERR_CAST(sock);
1648 flags = type & ~SOCK_TYPE_MASK;
1649 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1650 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1652 file = sock_alloc_file(sock, flags, NULL);
1659 int __sys_socket(int family, int type, int protocol)
1661 struct socket *sock;
1664 sock = __sys_socket_create(family, type, protocol);
1666 return PTR_ERR(sock);
1668 flags = type & ~SOCK_TYPE_MASK;
1669 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1670 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1672 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1675 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1677 return __sys_socket(family, type, protocol);
1681 * Create a pair of connected sockets.
1684 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1686 struct socket *sock1, *sock2;
1688 struct file *newfile1, *newfile2;
1691 flags = type & ~SOCK_TYPE_MASK;
1692 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1694 type &= SOCK_TYPE_MASK;
1696 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1697 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1700 * reserve descriptors and make sure we won't fail
1701 * to return them to userland.
1703 fd1 = get_unused_fd_flags(flags);
1704 if (unlikely(fd1 < 0))
1707 fd2 = get_unused_fd_flags(flags);
1708 if (unlikely(fd2 < 0)) {
1713 err = put_user(fd1, &usockvec[0]);
1717 err = put_user(fd2, &usockvec[1]);
1722 * Obtain the first socket and check if the underlying protocol
1723 * supports the socketpair call.
1726 err = sock_create(family, type, protocol, &sock1);
1727 if (unlikely(err < 0))
1730 err = sock_create(family, type, protocol, &sock2);
1731 if (unlikely(err < 0)) {
1732 sock_release(sock1);
1736 err = security_socket_socketpair(sock1, sock2);
1737 if (unlikely(err)) {
1738 sock_release(sock2);
1739 sock_release(sock1);
1743 err = sock1->ops->socketpair(sock1, sock2);
1744 if (unlikely(err < 0)) {
1745 sock_release(sock2);
1746 sock_release(sock1);
1750 newfile1 = sock_alloc_file(sock1, flags, NULL);
1751 if (IS_ERR(newfile1)) {
1752 err = PTR_ERR(newfile1);
1753 sock_release(sock2);
1757 newfile2 = sock_alloc_file(sock2, flags, NULL);
1758 if (IS_ERR(newfile2)) {
1759 err = PTR_ERR(newfile2);
1764 audit_fd_pair(fd1, fd2);
1766 fd_install(fd1, newfile1);
1767 fd_install(fd2, newfile2);
1776 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1777 int __user *, usockvec)
1779 return __sys_socketpair(family, type, protocol, usockvec);
1783 * Bind a name to a socket. Nothing much to do here since it's
1784 * the protocol's responsibility to handle the local address.
1786 * We move the socket address to kernel space before we call
1787 * the protocol layer (having also checked the address is ok).
1790 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1792 struct socket *sock;
1793 struct sockaddr_storage address;
1794 int err, fput_needed;
1796 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1798 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1800 err = security_socket_bind(sock,
1801 (struct sockaddr *)&address,
1804 err = sock->ops->bind(sock,
1808 fput_light(sock->file, fput_needed);
1813 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1815 return __sys_bind(fd, umyaddr, addrlen);
1819 * Perform a listen. Basically, we allow the protocol to do anything
1820 * necessary for a listen, and if that works, we mark the socket as
1821 * ready for listening.
1824 int __sys_listen(int fd, int backlog)
1826 struct socket *sock;
1827 int err, fput_needed;
1830 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1832 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1833 if ((unsigned int)backlog > somaxconn)
1834 backlog = somaxconn;
1836 err = security_socket_listen(sock, backlog);
1838 err = sock->ops->listen(sock, backlog);
1840 fput_light(sock->file, fput_needed);
1845 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1847 return __sys_listen(fd, backlog);
1850 struct file *do_accept(struct file *file, unsigned file_flags,
1851 struct sockaddr __user *upeer_sockaddr,
1852 int __user *upeer_addrlen, int flags)
1854 struct socket *sock, *newsock;
1855 struct file *newfile;
1857 struct sockaddr_storage address;
1859 sock = sock_from_file(file);
1861 return ERR_PTR(-ENOTSOCK);
1863 newsock = sock_alloc();
1865 return ERR_PTR(-ENFILE);
1867 newsock->type = sock->type;
1868 newsock->ops = sock->ops;
1871 * We don't need try_module_get here, as the listening socket (sock)
1872 * has the protocol module (sock->ops->owner) held.
1874 __module_get(newsock->ops->owner);
1876 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1877 if (IS_ERR(newfile))
1880 err = security_socket_accept(sock, newsock);
1884 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1889 if (upeer_sockaddr) {
1890 len = newsock->ops->getname(newsock,
1891 (struct sockaddr *)&address, 2);
1893 err = -ECONNABORTED;
1896 err = move_addr_to_user(&address,
1897 len, upeer_sockaddr, upeer_addrlen);
1902 /* File flags are not inherited via accept() unlike another OSes. */
1906 return ERR_PTR(err);
1909 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1910 int __user *upeer_addrlen, int flags)
1912 struct file *newfile;
1915 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1918 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1919 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1921 newfd = get_unused_fd_flags(flags);
1922 if (unlikely(newfd < 0))
1925 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1927 if (IS_ERR(newfile)) {
1928 put_unused_fd(newfd);
1929 return PTR_ERR(newfile);
1931 fd_install(newfd, newfile);
1936 * For accept, we attempt to create a new socket, set up the link
1937 * with the client, wake up the client, then return the new
1938 * connected fd. We collect the address of the connector in kernel
1939 * space and move it to user at the very end. This is unclean because
1940 * we open the socket then return an error.
1942 * 1003.1g adds the ability to recvmsg() to query connection pending
1943 * status to recvmsg. We need to add that support in a way thats
1944 * clean when we restructure accept also.
1947 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1948 int __user *upeer_addrlen, int flags)
1955 ret = __sys_accept4_file(f.file, upeer_sockaddr,
1956 upeer_addrlen, flags);
1963 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1964 int __user *, upeer_addrlen, int, flags)
1966 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1969 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1970 int __user *, upeer_addrlen)
1972 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1976 * Attempt to connect to a socket with the server address. The address
1977 * is in user space so we verify it is OK and move it to kernel space.
1979 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1982 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1983 * other SEQPACKET protocols that take time to connect() as it doesn't
1984 * include the -EINPROGRESS status for such sockets.
1987 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1988 int addrlen, int file_flags)
1990 struct socket *sock;
1993 sock = sock_from_file(file);
2000 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
2004 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
2005 sock->file->f_flags | file_flags);
2010 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2017 struct sockaddr_storage address;
2019 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
2021 ret = __sys_connect_file(f.file, &address, addrlen, 0);
2028 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2031 return __sys_connect(fd, uservaddr, addrlen);
2035 * Get the local address ('name') of a socket object. Move the obtained
2036 * name to user space.
2039 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2040 int __user *usockaddr_len)
2042 struct socket *sock;
2043 struct sockaddr_storage address;
2044 int err, fput_needed;
2046 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2050 err = security_socket_getsockname(sock);
2054 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2057 /* "err" is actually length in this case */
2058 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2061 fput_light(sock->file, fput_needed);
2066 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2067 int __user *, usockaddr_len)
2069 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2073 * Get the remote address ('name') of a socket object. Move the obtained
2074 * name to user space.
2077 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2078 int __user *usockaddr_len)
2080 struct socket *sock;
2081 struct sockaddr_storage address;
2082 int err, fput_needed;
2084 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2086 err = security_socket_getpeername(sock);
2088 fput_light(sock->file, fput_needed);
2092 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2094 /* "err" is actually length in this case */
2095 err = move_addr_to_user(&address, err, usockaddr,
2097 fput_light(sock->file, fput_needed);
2102 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2103 int __user *, usockaddr_len)
2105 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2109 * Send a datagram to a given address. We move the address into kernel
2110 * space and check the user space data area is readable before invoking
2113 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2114 struct sockaddr __user *addr, int addr_len)
2116 struct socket *sock;
2117 struct sockaddr_storage address;
2123 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2126 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2130 msg.msg_name = NULL;
2131 msg.msg_control = NULL;
2132 msg.msg_controllen = 0;
2133 msg.msg_namelen = 0;
2134 msg.msg_ubuf = NULL;
2136 err = move_addr_to_kernel(addr, addr_len, &address);
2139 msg.msg_name = (struct sockaddr *)&address;
2140 msg.msg_namelen = addr_len;
2142 if (sock->file->f_flags & O_NONBLOCK)
2143 flags |= MSG_DONTWAIT;
2144 msg.msg_flags = flags;
2145 err = sock_sendmsg(sock, &msg);
2148 fput_light(sock->file, fput_needed);
2153 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2154 unsigned int, flags, struct sockaddr __user *, addr,
2157 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2161 * Send a datagram down a socket.
2164 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2165 unsigned int, flags)
2167 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2171 * Receive a frame from the socket and optionally record the address of the
2172 * sender. We verify the buffers are writable and if needed move the
2173 * sender address from kernel to user space.
2175 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2176 struct sockaddr __user *addr, int __user *addr_len)
2178 struct sockaddr_storage address;
2179 struct msghdr msg = {
2180 /* Save some cycles and don't copy the address if not needed */
2181 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2183 struct socket *sock;
2188 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2191 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2195 if (sock->file->f_flags & O_NONBLOCK)
2196 flags |= MSG_DONTWAIT;
2197 err = sock_recvmsg(sock, &msg, flags);
2199 if (err >= 0 && addr != NULL) {
2200 err2 = move_addr_to_user(&address,
2201 msg.msg_namelen, addr, addr_len);
2206 fput_light(sock->file, fput_needed);
2211 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2212 unsigned int, flags, struct sockaddr __user *, addr,
2213 int __user *, addr_len)
2215 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2219 * Receive a datagram from a socket.
2222 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2223 unsigned int, flags)
2225 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2228 static bool sock_use_custom_sol_socket(const struct socket *sock)
2230 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2234 * Set a socket option. Because we don't know the option lengths we have
2235 * to pass the user mode parameter for the protocols to sort out.
2237 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2240 sockptr_t optval = USER_SOCKPTR(user_optval);
2241 char *kernel_optval = NULL;
2242 int err, fput_needed;
2243 struct socket *sock;
2248 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2252 err = security_socket_setsockopt(sock, level, optname);
2256 if (!in_compat_syscall())
2257 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2258 user_optval, &optlen,
2268 optval = KERNEL_SOCKPTR(kernel_optval);
2269 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2270 err = sock_setsockopt(sock, level, optname, optval, optlen);
2271 else if (unlikely(!sock->ops->setsockopt))
2274 err = sock->ops->setsockopt(sock, level, optname, optval,
2276 kfree(kernel_optval);
2278 fput_light(sock->file, fput_needed);
2282 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2283 char __user *, optval, int, optlen)
2285 return __sys_setsockopt(fd, level, optname, optval, optlen);
2288 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2292 * Get a socket option. Because we don't know the option lengths we have
2293 * to pass a user mode parameter for the protocols to sort out.
2295 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2298 int err, fput_needed;
2299 struct socket *sock;
2302 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2306 err = security_socket_getsockopt(sock, level, optname);
2310 if (!in_compat_syscall())
2311 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2313 if (level == SOL_SOCKET)
2314 err = sock_getsockopt(sock, level, optname, optval, optlen);
2315 else if (unlikely(!sock->ops->getsockopt))
2318 err = sock->ops->getsockopt(sock, level, optname, optval,
2321 if (!in_compat_syscall())
2322 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2323 optval, optlen, max_optlen,
2326 fput_light(sock->file, fput_needed);
2330 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2331 char __user *, optval, int __user *, optlen)
2333 return __sys_getsockopt(fd, level, optname, optval, optlen);
2337 * Shutdown a socket.
2340 int __sys_shutdown_sock(struct socket *sock, int how)
2344 err = security_socket_shutdown(sock, how);
2346 err = sock->ops->shutdown(sock, how);
2351 int __sys_shutdown(int fd, int how)
2353 int err, fput_needed;
2354 struct socket *sock;
2356 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2358 err = __sys_shutdown_sock(sock, how);
2359 fput_light(sock->file, fput_needed);
2364 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2366 return __sys_shutdown(fd, how);
2369 /* A couple of helpful macros for getting the address of the 32/64 bit
2370 * fields which are the same type (int / unsigned) on our platforms.
2372 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2373 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2374 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2376 struct used_address {
2377 struct sockaddr_storage name;
2378 unsigned int name_len;
2381 int __copy_msghdr(struct msghdr *kmsg,
2382 struct user_msghdr *msg,
2383 struct sockaddr __user **save_addr)
2387 kmsg->msg_control_is_user = true;
2388 kmsg->msg_get_inq = 0;
2389 kmsg->msg_control_user = msg->msg_control;
2390 kmsg->msg_controllen = msg->msg_controllen;
2391 kmsg->msg_flags = msg->msg_flags;
2393 kmsg->msg_namelen = msg->msg_namelen;
2395 kmsg->msg_namelen = 0;
2397 if (kmsg->msg_namelen < 0)
2400 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2401 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2404 *save_addr = msg->msg_name;
2406 if (msg->msg_name && kmsg->msg_namelen) {
2408 err = move_addr_to_kernel(msg->msg_name,
2415 kmsg->msg_name = NULL;
2416 kmsg->msg_namelen = 0;
2419 if (msg->msg_iovlen > UIO_MAXIOV)
2422 kmsg->msg_iocb = NULL;
2423 kmsg->msg_ubuf = NULL;
2427 static int copy_msghdr_from_user(struct msghdr *kmsg,
2428 struct user_msghdr __user *umsg,
2429 struct sockaddr __user **save_addr,
2432 struct user_msghdr msg;
2435 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2438 err = __copy_msghdr(kmsg, &msg, save_addr);
2442 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2443 msg.msg_iov, msg.msg_iovlen,
2444 UIO_FASTIOV, iov, &kmsg->msg_iter);
2445 return err < 0 ? err : 0;
2448 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2449 unsigned int flags, struct used_address *used_address,
2450 unsigned int allowed_msghdr_flags)
2452 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2453 __aligned(sizeof(__kernel_size_t));
2454 /* 20 is size of ipv6_pktinfo */
2455 unsigned char *ctl_buf = ctl;
2461 if (msg_sys->msg_controllen > INT_MAX)
2463 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2464 ctl_len = msg_sys->msg_controllen;
2465 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2467 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2471 ctl_buf = msg_sys->msg_control;
2472 ctl_len = msg_sys->msg_controllen;
2473 } else if (ctl_len) {
2474 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2475 CMSG_ALIGN(sizeof(struct cmsghdr)));
2476 if (ctl_len > sizeof(ctl)) {
2477 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2478 if (ctl_buf == NULL)
2482 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2484 msg_sys->msg_control = ctl_buf;
2485 msg_sys->msg_control_is_user = false;
2487 msg_sys->msg_flags = flags;
2489 if (sock->file->f_flags & O_NONBLOCK)
2490 msg_sys->msg_flags |= MSG_DONTWAIT;
2492 * If this is sendmmsg() and current destination address is same as
2493 * previously succeeded address, omit asking LSM's decision.
2494 * used_address->name_len is initialized to UINT_MAX so that the first
2495 * destination address never matches.
2497 if (used_address && msg_sys->msg_name &&
2498 used_address->name_len == msg_sys->msg_namelen &&
2499 !memcmp(&used_address->name, msg_sys->msg_name,
2500 used_address->name_len)) {
2501 err = sock_sendmsg_nosec(sock, msg_sys);
2504 err = sock_sendmsg(sock, msg_sys);
2506 * If this is sendmmsg() and sending to current destination address was
2507 * successful, remember it.
2509 if (used_address && err >= 0) {
2510 used_address->name_len = msg_sys->msg_namelen;
2511 if (msg_sys->msg_name)
2512 memcpy(&used_address->name, msg_sys->msg_name,
2513 used_address->name_len);
2518 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2523 int sendmsg_copy_msghdr(struct msghdr *msg,
2524 struct user_msghdr __user *umsg, unsigned flags,
2529 if (flags & MSG_CMSG_COMPAT) {
2530 struct compat_msghdr __user *msg_compat;
2532 msg_compat = (struct compat_msghdr __user *) umsg;
2533 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2535 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2543 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2544 struct msghdr *msg_sys, unsigned int flags,
2545 struct used_address *used_address,
2546 unsigned int allowed_msghdr_flags)
2548 struct sockaddr_storage address;
2549 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2552 msg_sys->msg_name = &address;
2554 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2558 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2559 allowed_msghdr_flags);
2565 * BSD sendmsg interface
2567 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2570 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2573 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2574 bool forbid_cmsg_compat)
2576 int fput_needed, err;
2577 struct msghdr msg_sys;
2578 struct socket *sock;
2580 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2583 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2587 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2589 fput_light(sock->file, fput_needed);
2594 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2596 return __sys_sendmsg(fd, msg, flags, true);
2600 * Linux sendmmsg interface
2603 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2604 unsigned int flags, bool forbid_cmsg_compat)
2606 int fput_needed, err, datagrams;
2607 struct socket *sock;
2608 struct mmsghdr __user *entry;
2609 struct compat_mmsghdr __user *compat_entry;
2610 struct msghdr msg_sys;
2611 struct used_address used_address;
2612 unsigned int oflags = flags;
2614 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2617 if (vlen > UIO_MAXIOV)
2622 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2626 used_address.name_len = UINT_MAX;
2628 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2632 while (datagrams < vlen) {
2633 if (datagrams == vlen - 1)
2636 if (MSG_CMSG_COMPAT & flags) {
2637 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2638 &msg_sys, flags, &used_address, MSG_EOR);
2641 err = __put_user(err, &compat_entry->msg_len);
2644 err = ___sys_sendmsg(sock,
2645 (struct user_msghdr __user *)entry,
2646 &msg_sys, flags, &used_address, MSG_EOR);
2649 err = put_user(err, &entry->msg_len);
2656 if (msg_data_left(&msg_sys))
2661 fput_light(sock->file, fput_needed);
2663 /* We only return an error if no datagrams were able to be sent */
2670 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2671 unsigned int, vlen, unsigned int, flags)
2673 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2676 int recvmsg_copy_msghdr(struct msghdr *msg,
2677 struct user_msghdr __user *umsg, unsigned flags,
2678 struct sockaddr __user **uaddr,
2683 if (MSG_CMSG_COMPAT & flags) {
2684 struct compat_msghdr __user *msg_compat;
2686 msg_compat = (struct compat_msghdr __user *) umsg;
2687 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2689 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2697 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2698 struct user_msghdr __user *msg,
2699 struct sockaddr __user *uaddr,
2700 unsigned int flags, int nosec)
2702 struct compat_msghdr __user *msg_compat =
2703 (struct compat_msghdr __user *) msg;
2704 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2705 struct sockaddr_storage addr;
2706 unsigned long cmsg_ptr;
2710 msg_sys->msg_name = &addr;
2711 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2712 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2714 /* We assume all kernel code knows the size of sockaddr_storage */
2715 msg_sys->msg_namelen = 0;
2717 if (sock->file->f_flags & O_NONBLOCK)
2718 flags |= MSG_DONTWAIT;
2720 if (unlikely(nosec))
2721 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2723 err = sock_recvmsg(sock, msg_sys, flags);
2729 if (uaddr != NULL) {
2730 err = move_addr_to_user(&addr,
2731 msg_sys->msg_namelen, uaddr,
2736 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2740 if (MSG_CMSG_COMPAT & flags)
2741 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2742 &msg_compat->msg_controllen);
2744 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2745 &msg->msg_controllen);
2753 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2754 struct msghdr *msg_sys, unsigned int flags, int nosec)
2756 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2757 /* user mode address pointers */
2758 struct sockaddr __user *uaddr;
2761 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2765 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2771 * BSD recvmsg interface
2774 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2775 struct user_msghdr __user *umsg,
2776 struct sockaddr __user *uaddr, unsigned int flags)
2778 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2781 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2782 bool forbid_cmsg_compat)
2784 int fput_needed, err;
2785 struct msghdr msg_sys;
2786 struct socket *sock;
2788 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2791 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2795 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2797 fput_light(sock->file, fput_needed);
2802 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2803 unsigned int, flags)
2805 return __sys_recvmsg(fd, msg, flags, true);
2809 * Linux recvmmsg interface
2812 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2813 unsigned int vlen, unsigned int flags,
2814 struct timespec64 *timeout)
2816 int fput_needed, err, datagrams;
2817 struct socket *sock;
2818 struct mmsghdr __user *entry;
2819 struct compat_mmsghdr __user *compat_entry;
2820 struct msghdr msg_sys;
2821 struct timespec64 end_time;
2822 struct timespec64 timeout64;
2825 poll_select_set_timeout(&end_time, timeout->tv_sec,
2831 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2835 if (likely(!(flags & MSG_ERRQUEUE))) {
2836 err = sock_error(sock->sk);
2844 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2846 while (datagrams < vlen) {
2848 * No need to ask LSM for more than the first datagram.
2850 if (MSG_CMSG_COMPAT & flags) {
2851 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2852 &msg_sys, flags & ~MSG_WAITFORONE,
2856 err = __put_user(err, &compat_entry->msg_len);
2859 err = ___sys_recvmsg(sock,
2860 (struct user_msghdr __user *)entry,
2861 &msg_sys, flags & ~MSG_WAITFORONE,
2865 err = put_user(err, &entry->msg_len);
2873 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2874 if (flags & MSG_WAITFORONE)
2875 flags |= MSG_DONTWAIT;
2878 ktime_get_ts64(&timeout64);
2879 *timeout = timespec64_sub(end_time, timeout64);
2880 if (timeout->tv_sec < 0) {
2881 timeout->tv_sec = timeout->tv_nsec = 0;
2885 /* Timeout, return less than vlen datagrams */
2886 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2890 /* Out of band data, return right away */
2891 if (msg_sys.msg_flags & MSG_OOB)
2899 if (datagrams == 0) {
2905 * We may return less entries than requested (vlen) if the
2906 * sock is non block and there aren't enough datagrams...
2908 if (err != -EAGAIN) {
2910 * ... or if recvmsg returns an error after we
2911 * received some datagrams, where we record the
2912 * error to return on the next call or if the
2913 * app asks about it using getsockopt(SO_ERROR).
2915 sock->sk->sk_err = -err;
2918 fput_light(sock->file, fput_needed);
2923 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2924 unsigned int vlen, unsigned int flags,
2925 struct __kernel_timespec __user *timeout,
2926 struct old_timespec32 __user *timeout32)
2929 struct timespec64 timeout_sys;
2931 if (timeout && get_timespec64(&timeout_sys, timeout))
2934 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2937 if (!timeout && !timeout32)
2938 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2940 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2945 if (timeout && put_timespec64(&timeout_sys, timeout))
2946 datagrams = -EFAULT;
2948 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2949 datagrams = -EFAULT;
2954 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2955 unsigned int, vlen, unsigned int, flags,
2956 struct __kernel_timespec __user *, timeout)
2958 if (flags & MSG_CMSG_COMPAT)
2961 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2964 #ifdef CONFIG_COMPAT_32BIT_TIME
2965 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2966 unsigned int, vlen, unsigned int, flags,
2967 struct old_timespec32 __user *, timeout)
2969 if (flags & MSG_CMSG_COMPAT)
2972 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2976 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2977 /* Argument list sizes for sys_socketcall */
2978 #define AL(x) ((x) * sizeof(unsigned long))
2979 static const unsigned char nargs[21] = {
2980 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2981 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2982 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2989 * System call vectors.
2991 * Argument checking cleaned up. Saved 20% in size.
2992 * This function doesn't need to set the kernel lock because
2993 * it is set by the callees.
2996 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2998 unsigned long a[AUDITSC_ARGS];
2999 unsigned long a0, a1;
3003 if (call < 1 || call > SYS_SENDMMSG)
3005 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3008 if (len > sizeof(a))
3011 /* copy_from_user should be SMP safe. */
3012 if (copy_from_user(a, args, len))
3015 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
3024 err = __sys_socket(a0, a1, a[2]);
3027 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3030 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3033 err = __sys_listen(a0, a1);
3036 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3037 (int __user *)a[2], 0);
3039 case SYS_GETSOCKNAME:
3041 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3042 (int __user *)a[2]);
3044 case SYS_GETPEERNAME:
3046 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3047 (int __user *)a[2]);
3049 case SYS_SOCKETPAIR:
3050 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3053 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3057 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3058 (struct sockaddr __user *)a[4], a[5]);
3061 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3065 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3066 (struct sockaddr __user *)a[4],
3067 (int __user *)a[5]);
3070 err = __sys_shutdown(a0, a1);
3072 case SYS_SETSOCKOPT:
3073 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3076 case SYS_GETSOCKOPT:
3078 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3079 (int __user *)a[4]);
3082 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3086 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3090 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3094 if (IS_ENABLED(CONFIG_64BIT))
3095 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3097 (struct __kernel_timespec __user *)a[4],
3100 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3102 (struct old_timespec32 __user *)a[4]);
3105 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3106 (int __user *)a[2], a[3]);
3115 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3118 * sock_register - add a socket protocol handler
3119 * @ops: description of protocol
3121 * This function is called by a protocol handler that wants to
3122 * advertise its address family, and have it linked into the
3123 * socket interface. The value ops->family corresponds to the
3124 * socket system call protocol family.
3126 int sock_register(const struct net_proto_family *ops)
3130 if (ops->family >= NPROTO) {
3131 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3135 spin_lock(&net_family_lock);
3136 if (rcu_dereference_protected(net_families[ops->family],
3137 lockdep_is_held(&net_family_lock)))
3140 rcu_assign_pointer(net_families[ops->family], ops);
3143 spin_unlock(&net_family_lock);
3145 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3148 EXPORT_SYMBOL(sock_register);
3151 * sock_unregister - remove a protocol handler
3152 * @family: protocol family to remove
3154 * This function is called by a protocol handler that wants to
3155 * remove its address family, and have it unlinked from the
3156 * new socket creation.
3158 * If protocol handler is a module, then it can use module reference
3159 * counts to protect against new references. If protocol handler is not
3160 * a module then it needs to provide its own protection in
3161 * the ops->create routine.
3163 void sock_unregister(int family)
3165 BUG_ON(family < 0 || family >= NPROTO);
3167 spin_lock(&net_family_lock);
3168 RCU_INIT_POINTER(net_families[family], NULL);
3169 spin_unlock(&net_family_lock);
3173 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3175 EXPORT_SYMBOL(sock_unregister);
3177 bool sock_is_registered(int family)
3179 return family < NPROTO && rcu_access_pointer(net_families[family]);
3182 static int __init sock_init(void)
3186 * Initialize the network sysctl infrastructure.
3188 err = net_sysctl_init();
3193 * Initialize skbuff SLAB cache
3198 * Initialize the protocols module.
3203 err = register_filesystem(&sock_fs_type);
3206 sock_mnt = kern_mount(&sock_fs_type);
3207 if (IS_ERR(sock_mnt)) {
3208 err = PTR_ERR(sock_mnt);
3212 /* The real protocol initialization is performed in later initcalls.
3215 #ifdef CONFIG_NETFILTER
3216 err = netfilter_init();
3221 ptp_classifier_init();
3227 unregister_filesystem(&sock_fs_type);
3231 core_initcall(sock_init); /* early initcall */
3233 #ifdef CONFIG_PROC_FS
3234 void socket_seq_show(struct seq_file *seq)
3236 seq_printf(seq, "sockets: used %d\n",
3237 sock_inuse_get(seq->private));
3239 #endif /* CONFIG_PROC_FS */
3241 /* Handle the fact that while struct ifreq has the same *layout* on
3242 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3243 * which are handled elsewhere, it still has different *size* due to
3244 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3245 * resulting in struct ifreq being 32 and 40 bytes respectively).
3246 * As a result, if the struct happens to be at the end of a page and
3247 * the next page isn't readable/writable, we get a fault. To prevent
3248 * that, copy back and forth to the full size.
3250 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3252 if (in_compat_syscall()) {
3253 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3255 memset(ifr, 0, sizeof(*ifr));
3256 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3260 *ifrdata = compat_ptr(ifr32->ifr_data);
3265 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3269 *ifrdata = ifr->ifr_data;
3273 EXPORT_SYMBOL(get_user_ifreq);
3275 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3277 size_t size = sizeof(*ifr);
3279 if (in_compat_syscall())
3280 size = sizeof(struct compat_ifreq);
3282 if (copy_to_user(arg, ifr, size))
3287 EXPORT_SYMBOL(put_user_ifreq);
3289 #ifdef CONFIG_COMPAT
3290 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3292 compat_uptr_t uptr32;
3297 if (get_user_ifreq(&ifr, NULL, uifr32))
3300 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3303 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3304 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3306 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3308 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3309 if (put_user_ifreq(&ifr, uifr32))
3315 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3316 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3317 struct compat_ifreq __user *u_ifreq32)
3322 if (!is_socket_ioctl_cmd(cmd))
3324 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3326 ifreq.ifr_data = data;
3328 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3331 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3332 unsigned int cmd, unsigned long arg)
3334 void __user *argp = compat_ptr(arg);
3335 struct sock *sk = sock->sk;
3336 struct net *net = sock_net(sk);
3338 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3339 return sock_ioctl(file, cmd, (unsigned long)argp);
3343 return compat_siocwandev(net, argp);
3344 case SIOCGSTAMP_OLD:
3345 case SIOCGSTAMPNS_OLD:
3346 if (!sock->ops->gettstamp)
3347 return -ENOIOCTLCMD;
3348 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3349 !COMPAT_USE_64BIT_TIME);
3352 case SIOCBONDSLAVEINFOQUERY:
3353 case SIOCBONDINFOQUERY:
3356 return compat_ifr_data_ioctl(net, cmd, argp);
3367 case SIOCGSTAMP_NEW:
3368 case SIOCGSTAMPNS_NEW:
3372 return sock_ioctl(file, cmd, arg);
3391 case SIOCSIFHWBROADCAST:
3393 case SIOCGIFBRDADDR:
3394 case SIOCSIFBRDADDR:
3395 case SIOCGIFDSTADDR:
3396 case SIOCSIFDSTADDR:
3397 case SIOCGIFNETMASK:
3398 case SIOCSIFNETMASK:
3410 case SIOCBONDENSLAVE:
3411 case SIOCBONDRELEASE:
3412 case SIOCBONDSETHWADDR:
3413 case SIOCBONDCHANGEACTIVE:
3420 return sock_do_ioctl(net, sock, cmd, arg);
3423 return -ENOIOCTLCMD;
3426 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3429 struct socket *sock = file->private_data;
3430 int ret = -ENOIOCTLCMD;
3437 if (sock->ops->compat_ioctl)
3438 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3440 if (ret == -ENOIOCTLCMD &&
3441 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3442 ret = compat_wext_handle_ioctl(net, cmd, arg);
3444 if (ret == -ENOIOCTLCMD)
3445 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3452 * kernel_bind - bind an address to a socket (kernel space)
3455 * @addrlen: length of address
3457 * Returns 0 or an error.
3460 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3462 return sock->ops->bind(sock, addr, addrlen);
3464 EXPORT_SYMBOL(kernel_bind);
3467 * kernel_listen - move socket to listening state (kernel space)
3469 * @backlog: pending connections queue size
3471 * Returns 0 or an error.
3474 int kernel_listen(struct socket *sock, int backlog)
3476 return sock->ops->listen(sock, backlog);
3478 EXPORT_SYMBOL(kernel_listen);
3481 * kernel_accept - accept a connection (kernel space)
3482 * @sock: listening socket
3483 * @newsock: new connected socket
3486 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3487 * If it fails, @newsock is guaranteed to be %NULL.
3488 * Returns 0 or an error.
3491 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3493 struct sock *sk = sock->sk;
3496 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3501 err = sock->ops->accept(sock, *newsock, flags, true);
3503 sock_release(*newsock);
3508 (*newsock)->ops = sock->ops;
3509 __module_get((*newsock)->ops->owner);
3514 EXPORT_SYMBOL(kernel_accept);
3517 * kernel_connect - connect a socket (kernel space)
3520 * @addrlen: address length
3521 * @flags: flags (O_NONBLOCK, ...)
3523 * For datagram sockets, @addr is the address to which datagrams are sent
3524 * by default, and the only address from which datagrams are received.
3525 * For stream sockets, attempts to connect to @addr.
3526 * Returns 0 or an error code.
3529 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3532 return sock->ops->connect(sock, addr, addrlen, flags);
3534 EXPORT_SYMBOL(kernel_connect);
3537 * kernel_getsockname - get the address which the socket is bound (kernel space)
3539 * @addr: address holder
3541 * Fills the @addr pointer with the address which the socket is bound.
3542 * Returns the length of the address in bytes or an error code.
3545 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3547 return sock->ops->getname(sock, addr, 0);
3549 EXPORT_SYMBOL(kernel_getsockname);
3552 * kernel_getpeername - get the address which the socket is connected (kernel space)
3554 * @addr: address holder
3556 * Fills the @addr pointer with the address which the socket is connected.
3557 * Returns the length of the address in bytes or an error code.
3560 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3562 return sock->ops->getname(sock, addr, 1);
3564 EXPORT_SYMBOL(kernel_getpeername);
3567 * kernel_sendpage - send a &page through a socket (kernel space)
3570 * @offset: page offset
3571 * @size: total size in bytes
3572 * @flags: flags (MSG_DONTWAIT, ...)
3574 * Returns the total amount sent in bytes or an error.
3577 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3578 size_t size, int flags)
3580 if (sock->ops->sendpage) {
3581 /* Warn in case the improper page to zero-copy send */
3582 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3583 return sock->ops->sendpage(sock, page, offset, size, flags);
3585 return sock_no_sendpage(sock, page, offset, size, flags);
3587 EXPORT_SYMBOL(kernel_sendpage);
3590 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3593 * @offset: page offset
3594 * @size: total size in bytes
3595 * @flags: flags (MSG_DONTWAIT, ...)
3597 * Returns the total amount sent in bytes or an error.
3598 * Caller must hold @sk.
3601 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3602 size_t size, int flags)
3604 struct socket *sock = sk->sk_socket;
3606 if (sock->ops->sendpage_locked)
3607 return sock->ops->sendpage_locked(sk, page, offset, size,
3610 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3612 EXPORT_SYMBOL(kernel_sendpage_locked);
3615 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3617 * @how: connection part
3619 * Returns 0 or an error.
3622 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3624 return sock->ops->shutdown(sock, how);
3626 EXPORT_SYMBOL(kernel_sock_shutdown);
3629 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3632 * This routine returns the IP overhead imposed by a socket i.e.
3633 * the length of the underlying IP header, depending on whether
3634 * this is an IPv4 or IPv6 socket and the length from IP options turned
3635 * on at the socket. Assumes that the caller has a lock on the socket.
3638 u32 kernel_sock_ip_overhead(struct sock *sk)
3640 struct inet_sock *inet;
3641 struct ip_options_rcu *opt;
3643 #if IS_ENABLED(CONFIG_IPV6)
3644 struct ipv6_pinfo *np;
3645 struct ipv6_txoptions *optv6 = NULL;
3646 #endif /* IS_ENABLED(CONFIG_IPV6) */
3651 switch (sk->sk_family) {
3654 overhead += sizeof(struct iphdr);
3655 opt = rcu_dereference_protected(inet->inet_opt,
3656 sock_owned_by_user(sk));
3658 overhead += opt->opt.optlen;
3660 #if IS_ENABLED(CONFIG_IPV6)
3663 overhead += sizeof(struct ipv6hdr);
3665 optv6 = rcu_dereference_protected(np->opt,
3666 sock_owned_by_user(sk));
3668 overhead += (optv6->opt_flen + optv6->opt_nflen);
3670 #endif /* IS_ENABLED(CONFIG_IPV6) */
3671 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3675 EXPORT_SYMBOL(kernel_sock_ip_overhead);