2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/rcupdate.h>
67 #include <linux/netdevice.h>
68 #include <linux/proc_fs.h>
69 #include <linux/seq_file.h>
70 #include <linux/mutex.h>
71 #include <linux/wanrouter.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/init.h>
76 #include <linux/poll.h>
77 #include <linux/cache.h>
78 #include <linux/module.h>
79 #include <linux/highmem.h>
80 #include <linux/mount.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/compat.h>
84 #include <linux/kmod.h>
85 #include <linux/audit.h>
86 #include <linux/wireless.h>
88 #include <asm/uaccess.h>
89 #include <asm/unistd.h>
91 #include <net/compat.h>
94 #include <linux/netfilter.h>
96 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
97 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
98 unsigned long nr_segs, loff_t pos);
99 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
100 unsigned long nr_segs, loff_t pos);
101 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
103 static int sock_close(struct inode *inode, struct file *file);
104 static unsigned int sock_poll(struct file *file,
105 struct poll_table_struct *wait);
106 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
108 static long compat_sock_ioctl(struct file *file,
109 unsigned int cmd, unsigned long arg);
111 static int sock_fasync(int fd, struct file *filp, int on);
112 static ssize_t sock_sendpage(struct file *file, struct page *page,
113 int offset, size_t size, loff_t *ppos, int more);
116 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
117 * in the operation structures but are done directly via the socketcall() multiplexor.
120 static const struct file_operations socket_file_ops = {
121 .owner = THIS_MODULE,
123 .aio_read = sock_aio_read,
124 .aio_write = sock_aio_write,
126 .unlocked_ioctl = sock_ioctl,
128 .compat_ioctl = compat_sock_ioctl,
131 .open = sock_no_open, /* special open code to disallow open via /proc */
132 .release = sock_close,
133 .fasync = sock_fasync,
134 .sendpage = sock_sendpage,
135 .splice_write = generic_splice_sendpage,
139 * The protocol list. Each protocol is registered in here.
142 static DEFINE_SPINLOCK(net_family_lock);
143 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
146 * Statistics counters of the socket lists
149 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
153 * Move socket addresses back and forth across the kernel/user
154 * divide and look after the messy bits.
157 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain -
158 16 for IP, 16 for IPX,
161 must be at least one bigger than
162 the AF_UNIX size (see net/unix/af_unix.c
167 * move_addr_to_kernel - copy a socket address into kernel space
168 * @uaddr: Address in user space
169 * @kaddr: Address in kernel space
170 * @ulen: Length in user space
172 * The address is copied into kernel space. If the provided address is
173 * too long an error code of -EINVAL is returned. If the copy gives
174 * invalid addresses -EFAULT is returned. On a success 0 is returned.
177 int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
179 if (ulen < 0 || ulen > MAX_SOCK_ADDR)
183 if (copy_from_user(kaddr, uaddr, ulen))
185 return audit_sockaddr(ulen, kaddr);
189 * move_addr_to_user - copy an address to user space
190 * @kaddr: kernel space address
191 * @klen: length of address in kernel
192 * @uaddr: user space address
193 * @ulen: pointer to user length field
195 * The value pointed to by ulen on entry is the buffer length available.
196 * This is overwritten with the buffer space used. -EINVAL is returned
197 * if an overlong buffer is specified or a negative buffer size. -EFAULT
198 * is returned if either the buffer or the length field are not
200 * After copying the data up to the limit the user specifies, the true
201 * length of the data is written over the length limit the user
202 * specified. Zero is returned for a success.
205 int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
211 err = get_user(len, ulen);
216 if (len < 0 || len > MAX_SOCK_ADDR)
219 if (audit_sockaddr(klen, kaddr))
221 if (copy_to_user(uaddr, kaddr, len))
225 * "fromlen shall refer to the value before truncation.."
228 return __put_user(klen, ulen);
231 #define SOCKFS_MAGIC 0x534F434B
233 static struct kmem_cache *sock_inode_cachep __read_mostly;
235 static struct inode *sock_alloc_inode(struct super_block *sb)
237 struct socket_alloc *ei;
239 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
242 init_waitqueue_head(&ei->socket.wait);
244 ei->socket.fasync_list = NULL;
245 ei->socket.state = SS_UNCONNECTED;
246 ei->socket.flags = 0;
247 ei->socket.ops = NULL;
248 ei->socket.sk = NULL;
249 ei->socket.file = NULL;
251 return &ei->vfs_inode;
254 static void sock_destroy_inode(struct inode *inode)
256 kmem_cache_free(sock_inode_cachep,
257 container_of(inode, struct socket_alloc, vfs_inode));
260 static void init_once(void *foo, struct kmem_cache *cachep, unsigned long flags)
262 struct socket_alloc *ei = (struct socket_alloc *)foo;
264 inode_init_once(&ei->vfs_inode);
267 static int init_inodecache(void)
269 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
270 sizeof(struct socket_alloc),
272 (SLAB_HWCACHE_ALIGN |
273 SLAB_RECLAIM_ACCOUNT |
276 if (sock_inode_cachep == NULL)
281 static struct super_operations sockfs_ops = {
282 .alloc_inode = sock_alloc_inode,
283 .destroy_inode =sock_destroy_inode,
284 .statfs = simple_statfs,
287 static int sockfs_get_sb(struct file_system_type *fs_type,
288 int flags, const char *dev_name, void *data,
289 struct vfsmount *mnt)
291 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
295 static struct vfsmount *sock_mnt __read_mostly;
297 static struct file_system_type sock_fs_type = {
299 .get_sb = sockfs_get_sb,
300 .kill_sb = kill_anon_super,
303 static int sockfs_delete_dentry(struct dentry *dentry)
306 * At creation time, we pretended this dentry was hashed
307 * (by clearing DCACHE_UNHASHED bit in d_flags)
308 * At delete time, we restore the truth : not hashed.
309 * (so that dput() can proceed correctly)
311 dentry->d_flags |= DCACHE_UNHASHED;
316 * sockfs_dname() is called from d_path().
318 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
320 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
321 dentry->d_inode->i_ino);
324 static struct dentry_operations sockfs_dentry_operations = {
325 .d_delete = sockfs_delete_dentry,
326 .d_dname = sockfs_dname,
330 * Obtains the first available file descriptor and sets it up for use.
332 * These functions create file structures and maps them to fd space
333 * of the current process. On success it returns file descriptor
334 * and file struct implicitly stored in sock->file.
335 * Note that another thread may close file descriptor before we return
336 * from this function. We use the fact that now we do not refer
337 * to socket after mapping. If one day we will need it, this
338 * function will increment ref. count on file by 1.
340 * In any case returned fd MAY BE not valid!
341 * This race condition is unavoidable
342 * with shared fd spaces, we cannot solve it inside kernel,
343 * but we take care of internal coherence yet.
346 static int sock_alloc_fd(struct file **filep)
350 fd = get_unused_fd();
351 if (likely(fd >= 0)) {
352 struct file *file = get_empty_filp();
355 if (unlikely(!file)) {
364 static int sock_attach_fd(struct socket *sock, struct file *file)
366 struct qstr name = { .name = "" };
368 file->f_path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
369 if (unlikely(!file->f_path.dentry))
372 file->f_path.dentry->d_op = &sockfs_dentry_operations;
374 * We dont want to push this dentry into global dentry hash table.
375 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
376 * This permits a working /proc/$pid/fd/XXX on sockets
378 file->f_path.dentry->d_flags &= ~DCACHE_UNHASHED;
379 d_instantiate(file->f_path.dentry, SOCK_INODE(sock));
380 file->f_path.mnt = mntget(sock_mnt);
381 file->f_mapping = file->f_path.dentry->d_inode->i_mapping;
384 file->f_op = SOCK_INODE(sock)->i_fop = &socket_file_ops;
385 file->f_mode = FMODE_READ | FMODE_WRITE;
386 file->f_flags = O_RDWR;
388 file->private_data = sock;
393 int sock_map_fd(struct socket *sock)
395 struct file *newfile;
396 int fd = sock_alloc_fd(&newfile);
398 if (likely(fd >= 0)) {
399 int err = sock_attach_fd(sock, newfile);
401 if (unlikely(err < 0)) {
406 fd_install(fd, newfile);
411 static struct socket *sock_from_file(struct file *file, int *err)
413 if (file->f_op == &socket_file_ops)
414 return file->private_data; /* set in sock_map_fd */
421 * sockfd_lookup - Go from a file number to its socket slot
423 * @err: pointer to an error code return
425 * The file handle passed in is locked and the socket it is bound
426 * too is returned. If an error occurs the err pointer is overwritten
427 * with a negative errno code and NULL is returned. The function checks
428 * for both invalid handles and passing a handle which is not a socket.
430 * On a success the socket object pointer is returned.
433 struct socket *sockfd_lookup(int fd, int *err)
444 sock = sock_from_file(file, err);
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
456 file = fget_light(fd, fput_needed);
458 sock = sock_from_file(file, err);
461 fput_light(file, *fput_needed);
467 * sock_alloc - allocate a socket
469 * Allocate a new inode and socket object. The two are bound together
470 * and initialised. The socket is then returned. If we are out of inodes
474 static struct socket *sock_alloc(void)
479 inode = new_inode(sock_mnt->mnt_sb);
483 sock = SOCKET_I(inode);
485 inode->i_mode = S_IFSOCK | S_IRWXUGO;
486 inode->i_uid = current->fsuid;
487 inode->i_gid = current->fsgid;
489 get_cpu_var(sockets_in_use)++;
490 put_cpu_var(sockets_in_use);
495 * In theory you can't get an open on this inode, but /proc provides
496 * a back door. Remember to keep it shut otherwise you'll let the
497 * creepy crawlies in.
500 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
505 const struct file_operations bad_sock_fops = {
506 .owner = THIS_MODULE,
507 .open = sock_no_open,
511 * sock_release - close a socket
512 * @sock: socket to close
514 * The socket is released from the protocol stack if it has a release
515 * callback, and the inode is then released if the socket is bound to
516 * an inode not a file.
519 void sock_release(struct socket *sock)
522 struct module *owner = sock->ops->owner;
524 sock->ops->release(sock);
529 if (sock->fasync_list)
530 printk(KERN_ERR "sock_release: fasync list not empty!\n");
532 get_cpu_var(sockets_in_use)--;
533 put_cpu_var(sockets_in_use);
535 iput(SOCK_INODE(sock));
541 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
542 struct msghdr *msg, size_t size)
544 struct sock_iocb *si = kiocb_to_siocb(iocb);
552 err = security_socket_sendmsg(sock, msg, size);
556 return sock->ops->sendmsg(iocb, sock, msg, size);
559 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
562 struct sock_iocb siocb;
565 init_sync_kiocb(&iocb, NULL);
566 iocb.private = &siocb;
567 ret = __sock_sendmsg(&iocb, sock, msg, size);
568 if (-EIOCBQUEUED == ret)
569 ret = wait_on_sync_kiocb(&iocb);
573 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
574 struct kvec *vec, size_t num, size_t size)
576 mm_segment_t oldfs = get_fs();
581 * the following is safe, since for compiler definitions of kvec and
582 * iovec are identical, yielding the same in-core layout and alignment
584 msg->msg_iov = (struct iovec *)vec;
585 msg->msg_iovlen = num;
586 result = sock_sendmsg(sock, msg, size);
592 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
594 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
597 ktime_t kt = skb->tstamp;
599 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
601 /* Race occurred between timestamp enabling and packet
602 receiving. Fill in the current time for now. */
604 kt = ktime_get_real();
606 tv = ktime_to_timeval(kt);
607 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
610 /* Race occurred between timestamp enabling and packet
611 receiving. Fill in the current time for now. */
613 kt = ktime_get_real();
615 ts = ktime_to_timespec(kt);
616 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
620 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
622 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
623 struct msghdr *msg, size_t size, int flags)
626 struct sock_iocb *si = kiocb_to_siocb(iocb);
634 err = security_socket_recvmsg(sock, msg, size, flags);
638 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
641 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
642 size_t size, int flags)
645 struct sock_iocb siocb;
648 init_sync_kiocb(&iocb, NULL);
649 iocb.private = &siocb;
650 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
651 if (-EIOCBQUEUED == ret)
652 ret = wait_on_sync_kiocb(&iocb);
656 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
657 struct kvec *vec, size_t num, size_t size, int flags)
659 mm_segment_t oldfs = get_fs();
664 * the following is safe, since for compiler definitions of kvec and
665 * iovec are identical, yielding the same in-core layout and alignment
667 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
668 result = sock_recvmsg(sock, msg, size, flags);
673 static void sock_aio_dtor(struct kiocb *iocb)
675 kfree(iocb->private);
678 static ssize_t sock_sendpage(struct file *file, struct page *page,
679 int offset, size_t size, loff_t *ppos, int more)
684 sock = file->private_data;
686 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
690 return sock->ops->sendpage(sock, page, offset, size, flags);
693 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
694 struct sock_iocb *siocb)
696 if (!is_sync_kiocb(iocb)) {
697 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
700 iocb->ki_dtor = sock_aio_dtor;
704 iocb->private = siocb;
708 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
709 struct file *file, const struct iovec *iov,
710 unsigned long nr_segs)
712 struct socket *sock = file->private_data;
716 for (i = 0; i < nr_segs; i++)
717 size += iov[i].iov_len;
719 msg->msg_name = NULL;
720 msg->msg_namelen = 0;
721 msg->msg_control = NULL;
722 msg->msg_controllen = 0;
723 msg->msg_iov = (struct iovec *)iov;
724 msg->msg_iovlen = nr_segs;
725 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
727 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
730 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
731 unsigned long nr_segs, loff_t pos)
733 struct sock_iocb siocb, *x;
738 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
742 x = alloc_sock_iocb(iocb, &siocb);
745 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
748 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
749 struct file *file, const struct iovec *iov,
750 unsigned long nr_segs)
752 struct socket *sock = file->private_data;
756 for (i = 0; i < nr_segs; i++)
757 size += iov[i].iov_len;
759 msg->msg_name = NULL;
760 msg->msg_namelen = 0;
761 msg->msg_control = NULL;
762 msg->msg_controllen = 0;
763 msg->msg_iov = (struct iovec *)iov;
764 msg->msg_iovlen = nr_segs;
765 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
766 if (sock->type == SOCK_SEQPACKET)
767 msg->msg_flags |= MSG_EOR;
769 return __sock_sendmsg(iocb, sock, msg, size);
772 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
773 unsigned long nr_segs, loff_t pos)
775 struct sock_iocb siocb, *x;
780 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
783 x = alloc_sock_iocb(iocb, &siocb);
787 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
791 * Atomic setting of ioctl hooks to avoid race
792 * with module unload.
795 static DEFINE_MUTEX(br_ioctl_mutex);
796 static int (*br_ioctl_hook) (unsigned int cmd, void __user *arg) = NULL;
798 void brioctl_set(int (*hook) (unsigned int, void __user *))
800 mutex_lock(&br_ioctl_mutex);
801 br_ioctl_hook = hook;
802 mutex_unlock(&br_ioctl_mutex);
805 EXPORT_SYMBOL(brioctl_set);
807 static DEFINE_MUTEX(vlan_ioctl_mutex);
808 static int (*vlan_ioctl_hook) (void __user *arg);
810 void vlan_ioctl_set(int (*hook) (void __user *))
812 mutex_lock(&vlan_ioctl_mutex);
813 vlan_ioctl_hook = hook;
814 mutex_unlock(&vlan_ioctl_mutex);
817 EXPORT_SYMBOL(vlan_ioctl_set);
819 static DEFINE_MUTEX(dlci_ioctl_mutex);
820 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
822 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
824 mutex_lock(&dlci_ioctl_mutex);
825 dlci_ioctl_hook = hook;
826 mutex_unlock(&dlci_ioctl_mutex);
829 EXPORT_SYMBOL(dlci_ioctl_set);
832 * With an ioctl, arg may well be a user mode pointer, but we don't know
833 * what to do with it - that's up to the protocol still.
836 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
839 void __user *argp = (void __user *)arg;
842 sock = file->private_data;
843 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
844 err = dev_ioctl(cmd, argp);
846 #ifdef CONFIG_WIRELESS_EXT
847 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
848 err = dev_ioctl(cmd, argp);
850 #endif /* CONFIG_WIRELESS_EXT */
855 if (get_user(pid, (int __user *)argp))
857 err = f_setown(sock->file, pid, 1);
861 err = put_user(f_getown(sock->file),
870 request_module("bridge");
872 mutex_lock(&br_ioctl_mutex);
874 err = br_ioctl_hook(cmd, argp);
875 mutex_unlock(&br_ioctl_mutex);
880 if (!vlan_ioctl_hook)
881 request_module("8021q");
883 mutex_lock(&vlan_ioctl_mutex);
885 err = vlan_ioctl_hook(argp);
886 mutex_unlock(&vlan_ioctl_mutex);
891 if (!dlci_ioctl_hook)
892 request_module("dlci");
894 if (dlci_ioctl_hook) {
895 mutex_lock(&dlci_ioctl_mutex);
896 err = dlci_ioctl_hook(cmd, argp);
897 mutex_unlock(&dlci_ioctl_mutex);
901 err = sock->ops->ioctl(sock, cmd, arg);
904 * If this ioctl is unknown try to hand it down
907 if (err == -ENOIOCTLCMD)
908 err = dev_ioctl(cmd, argp);
914 int sock_create_lite(int family, int type, int protocol, struct socket **res)
917 struct socket *sock = NULL;
919 err = security_socket_create(family, type, protocol, 1);
930 err = security_socket_post_create(sock, family, type, protocol, 1);
943 /* No kernel lock held - perfect */
944 static unsigned int sock_poll(struct file *file, poll_table *wait)
949 * We can't return errors to poll, so it's either yes or no.
951 sock = file->private_data;
952 return sock->ops->poll(file, sock, wait);
955 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
957 struct socket *sock = file->private_data;
959 return sock->ops->mmap(file, sock, vma);
962 static int sock_close(struct inode *inode, struct file *filp)
965 * It was possible the inode is NULL we were
966 * closing an unfinished socket.
970 printk(KERN_DEBUG "sock_close: NULL inode\n");
973 sock_fasync(-1, filp, 0);
974 sock_release(SOCKET_I(inode));
979 * Update the socket async list
981 * Fasync_list locking strategy.
983 * 1. fasync_list is modified only under process context socket lock
984 * i.e. under semaphore.
985 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
986 * or under socket lock.
987 * 3. fasync_list can be used from softirq context, so that
988 * modification under socket lock have to be enhanced with
989 * write_lock_bh(&sk->sk_callback_lock).
993 static int sock_fasync(int fd, struct file *filp, int on)
995 struct fasync_struct *fa, *fna = NULL, **prev;
1000 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1005 sock = filp->private_data;
1015 prev = &(sock->fasync_list);
1017 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1018 if (fa->fa_file == filp)
1023 write_lock_bh(&sk->sk_callback_lock);
1025 write_unlock_bh(&sk->sk_callback_lock);
1030 fna->fa_file = filp;
1032 fna->magic = FASYNC_MAGIC;
1033 fna->fa_next = sock->fasync_list;
1034 write_lock_bh(&sk->sk_callback_lock);
1035 sock->fasync_list = fna;
1036 write_unlock_bh(&sk->sk_callback_lock);
1039 write_lock_bh(&sk->sk_callback_lock);
1040 *prev = fa->fa_next;
1041 write_unlock_bh(&sk->sk_callback_lock);
1047 release_sock(sock->sk);
1051 /* This function may be called only under socket lock or callback_lock */
1053 int sock_wake_async(struct socket *sock, int how, int band)
1055 if (!sock || !sock->fasync_list)
1060 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1064 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1069 __kill_fasync(sock->fasync_list, SIGIO, band);
1072 __kill_fasync(sock->fasync_list, SIGURG, band);
1077 static int __sock_create(int family, int type, int protocol,
1078 struct socket **res, int kern)
1081 struct socket *sock;
1082 const struct net_proto_family *pf;
1085 * Check protocol is in range
1087 if (family < 0 || family >= NPROTO)
1088 return -EAFNOSUPPORT;
1089 if (type < 0 || type >= SOCK_MAX)
1094 This uglymoron is moved from INET layer to here to avoid
1095 deadlock in module load.
1097 if (family == PF_INET && type == SOCK_PACKET) {
1101 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1107 err = security_socket_create(family, type, protocol, kern);
1112 * Allocate the socket and allow the family to set things up. if
1113 * the protocol is 0, the family is instructed to select an appropriate
1116 sock = sock_alloc();
1118 if (net_ratelimit())
1119 printk(KERN_WARNING "socket: no more sockets\n");
1120 return -ENFILE; /* Not exactly a match, but its the
1121 closest posix thing */
1126 #if defined(CONFIG_KMOD)
1127 /* Attempt to load a protocol module if the find failed.
1129 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1130 * requested real, full-featured networking support upon configuration.
1131 * Otherwise module support will break!
1133 if (net_families[family] == NULL)
1134 request_module("net-pf-%d", family);
1138 pf = rcu_dereference(net_families[family]);
1139 err = -EAFNOSUPPORT;
1144 * We will call the ->create function, that possibly is in a loadable
1145 * module, so we have to bump that loadable module refcnt first.
1147 if (!try_module_get(pf->owner))
1150 /* Now protected by module ref count */
1153 err = pf->create(sock, protocol);
1155 goto out_module_put;
1158 * Now to bump the refcnt of the [loadable] module that owns this
1159 * socket at sock_release time we decrement its refcnt.
1161 if (!try_module_get(sock->ops->owner))
1162 goto out_module_busy;
1165 * Now that we're done with the ->create function, the [loadable]
1166 * module can have its refcnt decremented
1168 module_put(pf->owner);
1169 err = security_socket_post_create(sock, family, type, protocol, kern);
1171 goto out_sock_release;
1177 err = -EAFNOSUPPORT;
1180 module_put(pf->owner);
1187 goto out_sock_release;
1190 int sock_create(int family, int type, int protocol, struct socket **res)
1192 return __sock_create(family, type, protocol, res, 0);
1195 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1197 return __sock_create(family, type, protocol, res, 1);
1200 asmlinkage long sys_socket(int family, int type, int protocol)
1203 struct socket *sock;
1205 retval = sock_create(family, type, protocol, &sock);
1209 retval = sock_map_fd(sock);
1214 /* It may be already another descriptor 8) Not kernel problem. */
1223 * Create a pair of connected sockets.
1226 asmlinkage long sys_socketpair(int family, int type, int protocol,
1227 int __user *usockvec)
1229 struct socket *sock1, *sock2;
1231 struct file *newfile1, *newfile2;
1234 * Obtain the first socket and check if the underlying protocol
1235 * supports the socketpair call.
1238 err = sock_create(family, type, protocol, &sock1);
1242 err = sock_create(family, type, protocol, &sock2);
1246 err = sock1->ops->socketpair(sock1, sock2);
1248 goto out_release_both;
1250 fd1 = sock_alloc_fd(&newfile1);
1251 if (unlikely(fd1 < 0))
1252 goto out_release_both;
1254 fd2 = sock_alloc_fd(&newfile2);
1255 if (unlikely(fd2 < 0)) {
1258 goto out_release_both;
1261 err = sock_attach_fd(sock1, newfile1);
1262 if (unlikely(err < 0)) {
1266 err = sock_attach_fd(sock2, newfile2);
1267 if (unlikely(err < 0)) {
1272 err = audit_fd_pair(fd1, fd2);
1279 fd_install(fd1, newfile1);
1280 fd_install(fd2, newfile2);
1281 /* fd1 and fd2 may be already another descriptors.
1282 * Not kernel problem.
1285 err = put_user(fd1, &usockvec[0]);
1287 err = put_user(fd2, &usockvec[1]);
1296 sock_release(sock2);
1298 sock_release(sock1);
1304 sock_release(sock1);
1307 sock_release(sock2);
1315 * Bind a name to a socket. Nothing much to do here since it's
1316 * the protocol's responsibility to handle the local address.
1318 * We move the socket address to kernel space before we call
1319 * the protocol layer (having also checked the address is ok).
1322 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1324 struct socket *sock;
1325 char address[MAX_SOCK_ADDR];
1326 int err, fput_needed;
1328 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1330 err = move_addr_to_kernel(umyaddr, addrlen, address);
1332 err = security_socket_bind(sock,
1333 (struct sockaddr *)address,
1336 err = sock->ops->bind(sock,
1340 fput_light(sock->file, fput_needed);
1346 * Perform a listen. Basically, we allow the protocol to do anything
1347 * necessary for a listen, and if that works, we mark the socket as
1348 * ready for listening.
1351 int sysctl_somaxconn __read_mostly = SOMAXCONN;
1353 asmlinkage long sys_listen(int fd, int backlog)
1355 struct socket *sock;
1356 int err, fput_needed;
1358 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1360 if ((unsigned)backlog > sysctl_somaxconn)
1361 backlog = sysctl_somaxconn;
1363 err = security_socket_listen(sock, backlog);
1365 err = sock->ops->listen(sock, backlog);
1367 fput_light(sock->file, fput_needed);
1373 * For accept, we attempt to create a new socket, set up the link
1374 * with the client, wake up the client, then return the new
1375 * connected fd. We collect the address of the connector in kernel
1376 * space and move it to user at the very end. This is unclean because
1377 * we open the socket then return an error.
1379 * 1003.1g adds the ability to recvmsg() to query connection pending
1380 * status to recvmsg. We need to add that support in a way thats
1381 * clean when we restucture accept also.
1384 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1385 int __user *upeer_addrlen)
1387 struct socket *sock, *newsock;
1388 struct file *newfile;
1389 int err, len, newfd, fput_needed;
1390 char address[MAX_SOCK_ADDR];
1392 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1397 if (!(newsock = sock_alloc()))
1400 newsock->type = sock->type;
1401 newsock->ops = sock->ops;
1404 * We don't need try_module_get here, as the listening socket (sock)
1405 * has the protocol module (sock->ops->owner) held.
1407 __module_get(newsock->ops->owner);
1409 newfd = sock_alloc_fd(&newfile);
1410 if (unlikely(newfd < 0)) {
1412 sock_release(newsock);
1416 err = sock_attach_fd(newsock, newfile);
1420 err = security_socket_accept(sock, newsock);
1424 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1428 if (upeer_sockaddr) {
1429 if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1431 err = -ECONNABORTED;
1434 err = move_addr_to_user(address, len, upeer_sockaddr,
1440 /* File flags are not inherited via accept() unlike another OSes. */
1442 fd_install(newfd, newfile);
1445 security_socket_post_accept(sock, newsock);
1448 fput_light(sock->file, fput_needed);
1452 sock_release(newsock);
1454 put_unused_fd(newfd);
1458 put_unused_fd(newfd);
1463 * Attempt to connect to a socket with the server address. The address
1464 * is in user space so we verify it is OK and move it to kernel space.
1466 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1469 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1470 * other SEQPACKET protocols that take time to connect() as it doesn't
1471 * include the -EINPROGRESS status for such sockets.
1474 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1477 struct socket *sock;
1478 char address[MAX_SOCK_ADDR];
1479 int err, fput_needed;
1481 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1484 err = move_addr_to_kernel(uservaddr, addrlen, address);
1489 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1493 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1494 sock->file->f_flags);
1496 fput_light(sock->file, fput_needed);
1502 * Get the local address ('name') of a socket object. Move the obtained
1503 * name to user space.
1506 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1507 int __user *usockaddr_len)
1509 struct socket *sock;
1510 char address[MAX_SOCK_ADDR];
1511 int len, err, fput_needed;
1513 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1517 err = security_socket_getsockname(sock);
1521 err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1524 err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1527 fput_light(sock->file, fput_needed);
1533 * Get the remote address ('name') of a socket object. Move the obtained
1534 * name to user space.
1537 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1538 int __user *usockaddr_len)
1540 struct socket *sock;
1541 char address[MAX_SOCK_ADDR];
1542 int len, err, fput_needed;
1544 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1546 err = security_socket_getpeername(sock);
1548 fput_light(sock->file, fput_needed);
1553 sock->ops->getname(sock, (struct sockaddr *)address, &len,
1556 err = move_addr_to_user(address, len, usockaddr,
1558 fput_light(sock->file, fput_needed);
1564 * Send a datagram to a given address. We move the address into kernel
1565 * space and check the user space data area is readable before invoking
1569 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1570 unsigned flags, struct sockaddr __user *addr,
1573 struct socket *sock;
1574 char address[MAX_SOCK_ADDR];
1579 struct file *sock_file;
1581 sock_file = fget_light(fd, &fput_needed);
1586 sock = sock_from_file(sock_file, &err);
1589 iov.iov_base = buff;
1591 msg.msg_name = NULL;
1594 msg.msg_control = NULL;
1595 msg.msg_controllen = 0;
1596 msg.msg_namelen = 0;
1598 err = move_addr_to_kernel(addr, addr_len, address);
1601 msg.msg_name = address;
1602 msg.msg_namelen = addr_len;
1604 if (sock->file->f_flags & O_NONBLOCK)
1605 flags |= MSG_DONTWAIT;
1606 msg.msg_flags = flags;
1607 err = sock_sendmsg(sock, &msg, len);
1610 fput_light(sock_file, fput_needed);
1616 * Send a datagram down a socket.
1619 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1621 return sys_sendto(fd, buff, len, flags, NULL, 0);
1625 * Receive a frame from the socket and optionally record the address of the
1626 * sender. We verify the buffers are writable and if needed move the
1627 * sender address from kernel to user space.
1630 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1631 unsigned flags, struct sockaddr __user *addr,
1632 int __user *addr_len)
1634 struct socket *sock;
1637 char address[MAX_SOCK_ADDR];
1639 struct file *sock_file;
1642 sock_file = fget_light(fd, &fput_needed);
1647 sock = sock_from_file(sock_file, &err);
1651 msg.msg_control = NULL;
1652 msg.msg_controllen = 0;
1656 iov.iov_base = ubuf;
1657 msg.msg_name = address;
1658 msg.msg_namelen = MAX_SOCK_ADDR;
1659 if (sock->file->f_flags & O_NONBLOCK)
1660 flags |= MSG_DONTWAIT;
1661 err = sock_recvmsg(sock, &msg, size, flags);
1663 if (err >= 0 && addr != NULL) {
1664 err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1669 fput_light(sock_file, fput_needed);
1675 * Receive a datagram from a socket.
1678 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1681 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1685 * Set a socket option. Because we don't know the option lengths we have
1686 * to pass the user mode parameter for the protocols to sort out.
1689 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1690 char __user *optval, int optlen)
1692 int err, fput_needed;
1693 struct socket *sock;
1698 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1700 err = security_socket_setsockopt(sock, level, optname);
1704 if (level == SOL_SOCKET)
1706 sock_setsockopt(sock, level, optname, optval,
1710 sock->ops->setsockopt(sock, level, optname, optval,
1713 fput_light(sock->file, fput_needed);
1719 * Get a socket option. Because we don't know the option lengths we have
1720 * to pass a user mode parameter for the protocols to sort out.
1723 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1724 char __user *optval, int __user *optlen)
1726 int err, fput_needed;
1727 struct socket *sock;
1729 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1731 err = security_socket_getsockopt(sock, level, optname);
1735 if (level == SOL_SOCKET)
1737 sock_getsockopt(sock, level, optname, optval,
1741 sock->ops->getsockopt(sock, level, optname, optval,
1744 fput_light(sock->file, fput_needed);
1750 * Shutdown a socket.
1753 asmlinkage long sys_shutdown(int fd, int how)
1755 int err, fput_needed;
1756 struct socket *sock;
1758 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1760 err = security_socket_shutdown(sock, how);
1762 err = sock->ops->shutdown(sock, how);
1763 fput_light(sock->file, fput_needed);
1768 /* A couple of helpful macros for getting the address of the 32/64 bit
1769 * fields which are the same type (int / unsigned) on our platforms.
1771 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1772 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1773 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1776 * BSD sendmsg interface
1779 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1781 struct compat_msghdr __user *msg_compat =
1782 (struct compat_msghdr __user *)msg;
1783 struct socket *sock;
1784 char address[MAX_SOCK_ADDR];
1785 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1786 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1787 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1788 /* 20 is size of ipv6_pktinfo */
1789 unsigned char *ctl_buf = ctl;
1790 struct msghdr msg_sys;
1791 int err, ctl_len, iov_size, total_len;
1795 if (MSG_CMSG_COMPAT & flags) {
1796 if (get_compat_msghdr(&msg_sys, msg_compat))
1799 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1802 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1806 /* do not move before msg_sys is valid */
1808 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1811 /* Check whether to allocate the iovec area */
1813 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1814 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1815 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1820 /* This will also move the address data into kernel space */
1821 if (MSG_CMSG_COMPAT & flags) {
1822 err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1824 err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1831 if (msg_sys.msg_controllen > INT_MAX)
1833 ctl_len = msg_sys.msg_controllen;
1834 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1836 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1840 ctl_buf = msg_sys.msg_control;
1841 ctl_len = msg_sys.msg_controllen;
1842 } else if (ctl_len) {
1843 if (ctl_len > sizeof(ctl)) {
1844 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1845 if (ctl_buf == NULL)
1850 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1851 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1852 * checking falls down on this.
1854 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1857 msg_sys.msg_control = ctl_buf;
1859 msg_sys.msg_flags = flags;
1861 if (sock->file->f_flags & O_NONBLOCK)
1862 msg_sys.msg_flags |= MSG_DONTWAIT;
1863 err = sock_sendmsg(sock, &msg_sys, total_len);
1867 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1869 if (iov != iovstack)
1870 sock_kfree_s(sock->sk, iov, iov_size);
1872 fput_light(sock->file, fput_needed);
1878 * BSD recvmsg interface
1881 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1884 struct compat_msghdr __user *msg_compat =
1885 (struct compat_msghdr __user *)msg;
1886 struct socket *sock;
1887 struct iovec iovstack[UIO_FASTIOV];
1888 struct iovec *iov = iovstack;
1889 struct msghdr msg_sys;
1890 unsigned long cmsg_ptr;
1891 int err, iov_size, total_len, len;
1894 /* kernel mode address */
1895 char addr[MAX_SOCK_ADDR];
1897 /* user mode address pointers */
1898 struct sockaddr __user *uaddr;
1899 int __user *uaddr_len;
1901 if (MSG_CMSG_COMPAT & flags) {
1902 if (get_compat_msghdr(&msg_sys, msg_compat))
1905 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1908 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1913 if (msg_sys.msg_iovlen > UIO_MAXIOV)
1916 /* Check whether to allocate the iovec area */
1918 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1919 if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1920 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1926 * Save the user-mode address (verify_iovec will change the
1927 * kernel msghdr to use the kernel address space)
1930 uaddr = (void __user *)msg_sys.msg_name;
1931 uaddr_len = COMPAT_NAMELEN(msg);
1932 if (MSG_CMSG_COMPAT & flags) {
1933 err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1935 err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1940 cmsg_ptr = (unsigned long)msg_sys.msg_control;
1941 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1943 if (sock->file->f_flags & O_NONBLOCK)
1944 flags |= MSG_DONTWAIT;
1945 err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1950 if (uaddr != NULL) {
1951 err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1956 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1960 if (MSG_CMSG_COMPAT & flags)
1961 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1962 &msg_compat->msg_controllen);
1964 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1965 &msg->msg_controllen);
1971 if (iov != iovstack)
1972 sock_kfree_s(sock->sk, iov, iov_size);
1974 fput_light(sock->file, fput_needed);
1979 #ifdef __ARCH_WANT_SYS_SOCKETCALL
1981 /* Argument list sizes for sys_socketcall */
1982 #define AL(x) ((x) * sizeof(unsigned long))
1983 static const unsigned char nargs[18]={
1984 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1985 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1986 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1992 * System call vectors.
1994 * Argument checking cleaned up. Saved 20% in size.
1995 * This function doesn't need to set the kernel lock because
1996 * it is set by the callees.
1999 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2002 unsigned long a0, a1;
2005 if (call < 1 || call > SYS_RECVMSG)
2008 /* copy_from_user should be SMP safe. */
2009 if (copy_from_user(a, args, nargs[call]))
2012 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2021 err = sys_socket(a0, a1, a[2]);
2024 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2027 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2030 err = sys_listen(a0, a1);
2034 sys_accept(a0, (struct sockaddr __user *)a1,
2035 (int __user *)a[2]);
2037 case SYS_GETSOCKNAME:
2039 sys_getsockname(a0, (struct sockaddr __user *)a1,
2040 (int __user *)a[2]);
2042 case SYS_GETPEERNAME:
2044 sys_getpeername(a0, (struct sockaddr __user *)a1,
2045 (int __user *)a[2]);
2047 case SYS_SOCKETPAIR:
2048 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2051 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2054 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2055 (struct sockaddr __user *)a[4], a[5]);
2058 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2061 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2062 (struct sockaddr __user *)a[4],
2063 (int __user *)a[5]);
2066 err = sys_shutdown(a0, a1);
2068 case SYS_SETSOCKOPT:
2069 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2071 case SYS_GETSOCKOPT:
2073 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2074 (int __user *)a[4]);
2077 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2080 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2089 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2092 * sock_register - add a socket protocol handler
2093 * @ops: description of protocol
2095 * This function is called by a protocol handler that wants to
2096 * advertise its address family, and have it linked into the
2097 * socket interface. The value ops->family coresponds to the
2098 * socket system call protocol family.
2100 int sock_register(const struct net_proto_family *ops)
2104 if (ops->family >= NPROTO) {
2105 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2110 spin_lock(&net_family_lock);
2111 if (net_families[ops->family])
2114 net_families[ops->family] = ops;
2117 spin_unlock(&net_family_lock);
2119 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2124 * sock_unregister - remove a protocol handler
2125 * @family: protocol family to remove
2127 * This function is called by a protocol handler that wants to
2128 * remove its address family, and have it unlinked from the
2129 * new socket creation.
2131 * If protocol handler is a module, then it can use module reference
2132 * counts to protect against new references. If protocol handler is not
2133 * a module then it needs to provide its own protection in
2134 * the ops->create routine.
2136 void sock_unregister(int family)
2138 BUG_ON(family < 0 || family >= NPROTO);
2140 spin_lock(&net_family_lock);
2141 net_families[family] = NULL;
2142 spin_unlock(&net_family_lock);
2146 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2149 static int __init sock_init(void)
2152 * Initialize sock SLAB cache.
2158 * Initialize skbuff SLAB cache
2163 * Initialize the protocols module.
2167 register_filesystem(&sock_fs_type);
2168 sock_mnt = kern_mount(&sock_fs_type);
2170 /* The real protocol initialization is performed in later initcalls.
2173 #ifdef CONFIG_NETFILTER
2180 core_initcall(sock_init); /* early initcall */
2182 #ifdef CONFIG_PROC_FS
2183 void socket_seq_show(struct seq_file *seq)
2188 for_each_possible_cpu(cpu)
2189 counter += per_cpu(sockets_in_use, cpu);
2191 /* It can be negative, by the way. 8) */
2195 seq_printf(seq, "sockets: used %d\n", counter);
2197 #endif /* CONFIG_PROC_FS */
2199 #ifdef CONFIG_COMPAT
2200 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2203 struct socket *sock = file->private_data;
2204 int ret = -ENOIOCTLCMD;
2206 if (sock->ops->compat_ioctl)
2207 ret = sock->ops->compat_ioctl(sock, cmd, arg);
2213 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2215 return sock->ops->bind(sock, addr, addrlen);
2218 int kernel_listen(struct socket *sock, int backlog)
2220 return sock->ops->listen(sock, backlog);
2223 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2225 struct sock *sk = sock->sk;
2228 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2233 err = sock->ops->accept(sock, *newsock, flags);
2235 sock_release(*newsock);
2239 (*newsock)->ops = sock->ops;
2245 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2248 return sock->ops->connect(sock, addr, addrlen, flags);
2251 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2254 return sock->ops->getname(sock, addr, addrlen, 0);
2257 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2260 return sock->ops->getname(sock, addr, addrlen, 1);
2263 int kernel_getsockopt(struct socket *sock, int level, int optname,
2264 char *optval, int *optlen)
2266 mm_segment_t oldfs = get_fs();
2270 if (level == SOL_SOCKET)
2271 err = sock_getsockopt(sock, level, optname, optval, optlen);
2273 err = sock->ops->getsockopt(sock, level, optname, optval,
2279 int kernel_setsockopt(struct socket *sock, int level, int optname,
2280 char *optval, int optlen)
2282 mm_segment_t oldfs = get_fs();
2286 if (level == SOL_SOCKET)
2287 err = sock_setsockopt(sock, level, optname, optval, optlen);
2289 err = sock->ops->setsockopt(sock, level, optname, optval,
2295 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2296 size_t size, int flags)
2298 if (sock->ops->sendpage)
2299 return sock->ops->sendpage(sock, page, offset, size, flags);
2301 return sock_no_sendpage(sock, page, offset, size, flags);
2304 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2306 mm_segment_t oldfs = get_fs();
2310 err = sock->ops->ioctl(sock, cmd, arg);
2316 /* ABI emulation layers need these two */
2317 EXPORT_SYMBOL(move_addr_to_kernel);
2318 EXPORT_SYMBOL(move_addr_to_user);
2319 EXPORT_SYMBOL(sock_create);
2320 EXPORT_SYMBOL(sock_create_kern);
2321 EXPORT_SYMBOL(sock_create_lite);
2322 EXPORT_SYMBOL(sock_map_fd);
2323 EXPORT_SYMBOL(sock_recvmsg);
2324 EXPORT_SYMBOL(sock_register);
2325 EXPORT_SYMBOL(sock_release);
2326 EXPORT_SYMBOL(sock_sendmsg);
2327 EXPORT_SYMBOL(sock_unregister);
2328 EXPORT_SYMBOL(sock_wake_async);
2329 EXPORT_SYMBOL(sockfd_lookup);
2330 EXPORT_SYMBOL(kernel_sendmsg);
2331 EXPORT_SYMBOL(kernel_recvmsg);
2332 EXPORT_SYMBOL(kernel_bind);
2333 EXPORT_SYMBOL(kernel_listen);
2334 EXPORT_SYMBOL(kernel_accept);
2335 EXPORT_SYMBOL(kernel_connect);
2336 EXPORT_SYMBOL(kernel_getsockname);
2337 EXPORT_SYMBOL(kernel_getpeername);
2338 EXPORT_SYMBOL(kernel_getsockopt);
2339 EXPORT_SYMBOL(kernel_setsockopt);
2340 EXPORT_SYMBOL(kernel_sendpage);
2341 EXPORT_SYMBOL(kernel_sock_ioctl);