2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
146 .unlocked_ioctl = sock_ioctl,
148 .compat_ioctl = compat_sock_ioctl,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 * Statistics counters of the socket lists
169 static DEFINE_PER_CPU(int, sockets_in_use);
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 if (copy_from_user(kaddr, uaddr, ulen))
196 return audit_sockaddr(ulen, kaddr);
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
231 if (audit_sockaddr(klen, kaddr))
233 if (copy_to_user(uaddr, kaddr, len))
237 * "fromlen shall refer to the value before truncation.."
240 return __put_user(klen, ulen);
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
245 static struct inode *sock_alloc_inode(struct super_block *sb)
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
255 kmem_cache_free(sock_inode_cachep, ei);
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
269 return &ei->vfs_inode;
272 static void sock_destroy_inode(struct inode *inode)
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kmem_cache_free(sock_inode_cachep, ei);
283 static void init_once(void *foo)
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
287 inode_init_once(&ei->vfs_inode);
290 static void init_inodecache(void)
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
299 BUG_ON(sock_inode_cachep == NULL);
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
309 * sockfs_dname() is called from d_path().
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 d_inode(dentry)->i_ino);
317 static const struct dentry_operations sockfs_dentry_operations = {
318 .d_dname = sockfs_dname,
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 struct dentry *dentry, struct inode *inode,
323 const char *suffix, void *value, size_t size)
326 if (dentry->d_name.len + 1 > size)
328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
330 return dentry->d_name.len + 1;
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
337 static const struct xattr_handler sockfs_xattr_handler = {
338 .name = XATTR_NAME_SOCKPROTONAME,
339 .get = sockfs_xattr_get,
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 struct dentry *dentry, struct inode *inode,
344 const char *suffix, const void *value,
345 size_t size, int flags)
347 /* Handled by LSM. */
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 .prefix = XATTR_SECURITY_PREFIX,
353 .set = sockfs_security_xattr_set,
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 &sockfs_xattr_handler,
358 &sockfs_security_xattr_handler,
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 int flags, const char *dev_name, void *data)
365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 sockfs_xattr_handlers,
367 &sockfs_dentry_operations, SOCKFS_MAGIC);
370 static struct vfsmount *sock_mnt __read_mostly;
372 static struct file_system_type sock_fs_type = {
374 .mount = sockfs_mount,
375 .kill_sb = kill_anon_super,
379 * Obtains the first available file descriptor and sets it up for use.
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
397 struct qstr name = { .name = "" };
403 name.len = strlen(name.name);
404 } else if (sock->sk) {
405 name.name = sock->sk->sk_prot_creator->name;
406 name.len = strlen(name.name);
408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 if (unlikely(!path.dentry))
410 return ERR_PTR(-ENOMEM);
411 path.mnt = mntget(sock_mnt);
413 d_instantiate(path.dentry, SOCK_INODE(sock));
415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
418 /* drop dentry, keep inode */
419 ihold(d_inode(path.dentry));
425 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
426 file->private_data = sock;
429 EXPORT_SYMBOL(sock_alloc_file);
431 static int sock_map_fd(struct socket *sock, int flags)
433 struct file *newfile;
434 int fd = get_unused_fd_flags(flags);
435 if (unlikely(fd < 0))
438 newfile = sock_alloc_file(sock, flags, NULL);
439 if (likely(!IS_ERR(newfile))) {
440 fd_install(fd, newfile);
445 return PTR_ERR(newfile);
448 struct socket *sock_from_file(struct file *file, int *err)
450 if (file->f_op == &socket_file_ops)
451 return file->private_data; /* set in sock_map_fd */
456 EXPORT_SYMBOL(sock_from_file);
459 * sockfd_lookup - Go from a file number to its socket slot
461 * @err: pointer to an error code return
463 * The file handle passed in is locked and the socket it is bound
464 * to is returned. If an error occurs the err pointer is overwritten
465 * with a negative errno code and NULL is returned. The function checks
466 * for both invalid handles and passing a handle which is not a socket.
468 * On a success the socket object pointer is returned.
471 struct socket *sockfd_lookup(int fd, int *err)
482 sock = sock_from_file(file, err);
487 EXPORT_SYMBOL(sockfd_lookup);
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
491 struct fd f = fdget(fd);
496 sock = sock_from_file(f.file, err);
498 *fput_needed = f.flags;
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
512 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
536 int err = simple_setattr(dentry, iattr);
538 if (!err && (iattr->ia_valid & ATTR_UID)) {
539 struct socket *sock = SOCKET_I(d_inode(dentry));
541 sock->sk->sk_uid = iattr->ia_uid;
547 static const struct inode_operations sockfs_inode_ops = {
548 .listxattr = sockfs_listxattr,
549 .setattr = sockfs_setattr,
553 * sock_alloc - allocate a socket
555 * Allocate a new inode and socket object. The two are bound together
556 * and initialised. The socket is then returned. If we are out of inodes
560 struct socket *sock_alloc(void)
565 inode = new_inode_pseudo(sock_mnt->mnt_sb);
569 sock = SOCKET_I(inode);
571 kmemcheck_annotate_bitfield(sock, type);
572 inode->i_ino = get_next_ino();
573 inode->i_mode = S_IFSOCK | S_IRWXUGO;
574 inode->i_uid = current_fsuid();
575 inode->i_gid = current_fsgid();
576 inode->i_op = &sockfs_inode_ops;
578 this_cpu_add(sockets_in_use, 1);
581 EXPORT_SYMBOL(sock_alloc);
584 * sock_release - close a socket
585 * @sock: socket to close
587 * The socket is released from the protocol stack if it has a release
588 * callback, and the inode is then released if the socket is bound to
589 * an inode not a file.
592 void sock_release(struct socket *sock)
595 struct module *owner = sock->ops->owner;
597 sock->ops->release(sock);
602 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
603 pr_err("%s: fasync list not empty!\n", __func__);
605 this_cpu_sub(sockets_in_use, 1);
607 iput(SOCK_INODE(sock));
612 EXPORT_SYMBOL(sock_release);
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
616 u8 flags = *tx_flags;
618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 flags |= SKBTX_HW_TSTAMP;
621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 flags |= SKBTX_SW_TSTAMP;
624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 flags |= SKBTX_SCHED_TSTAMP;
629 EXPORT_SYMBOL(__sock_tx_timestamp);
631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
634 BUG_ON(ret == -EIOCBQUEUED);
638 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
640 int err = security_socket_sendmsg(sock, msg,
643 return err ?: sock_sendmsg_nosec(sock, msg);
645 EXPORT_SYMBOL(sock_sendmsg);
647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
648 struct kvec *vec, size_t num, size_t size)
650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
651 return sock_sendmsg(sock, msg);
653 EXPORT_SYMBOL(kernel_sendmsg);
655 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
656 struct kvec *vec, size_t num, size_t size)
658 struct socket *sock = sk->sk_socket;
660 if (!sock->ops->sendmsg_locked)
661 return sock_no_sendmsg_locked(sk, msg, size);
663 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
665 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
667 EXPORT_SYMBOL(kernel_sendmsg_locked);
669 static bool skb_is_err_queue(const struct sk_buff *skb)
671 /* pkt_type of skbs enqueued on the error queue are set to
672 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
673 * in recvmsg, since skbs received on a local socket will never
674 * have a pkt_type of PACKET_OUTGOING.
676 return skb->pkt_type == PACKET_OUTGOING;
679 /* On transmit, software and hardware timestamps are returned independently.
680 * As the two skb clones share the hardware timestamp, which may be updated
681 * before the software timestamp is received, a hardware TX timestamp may be
682 * returned only if there is no software TX timestamp. Ignore false software
683 * timestamps, which may be made in the __sock_recv_timestamp() call when the
684 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
685 * hardware timestamp.
687 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
689 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
692 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
694 struct scm_ts_pktinfo ts_pktinfo;
695 struct net_device *orig_dev;
697 if (!skb_mac_header_was_set(skb))
700 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
703 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
705 ts_pktinfo.if_index = orig_dev->ifindex;
708 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
709 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
710 sizeof(ts_pktinfo), &ts_pktinfo);
714 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
716 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
719 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
720 struct scm_timestamping tss;
721 int empty = 1, false_tstamp = 0;
722 struct skb_shared_hwtstamps *shhwtstamps =
725 /* Race occurred between timestamp enabling and packet
726 receiving. Fill in the current time for now. */
727 if (need_software_tstamp && skb->tstamp == 0) {
728 __net_timestamp(skb);
732 if (need_software_tstamp) {
733 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
735 skb_get_timestamp(skb, &tv);
736 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
740 skb_get_timestampns(skb, &ts);
741 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
746 memset(&tss, 0, sizeof(tss));
747 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
748 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
751 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
752 !skb_is_swtx_tstamp(skb, false_tstamp) &&
753 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
755 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
756 !skb_is_err_queue(skb))
757 put_ts_pktinfo(msg, skb);
760 put_cmsg(msg, SOL_SOCKET,
761 SCM_TIMESTAMPING, sizeof(tss), &tss);
763 if (skb_is_err_queue(skb) && skb->len &&
764 SKB_EXT_ERR(skb)->opt_stats)
765 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
766 skb->len, skb->data);
769 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
771 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
776 if (!sock_flag(sk, SOCK_WIFI_STATUS))
778 if (!skb->wifi_acked_valid)
781 ack = skb->wifi_acked;
783 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
785 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
787 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
790 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
791 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
792 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
795 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
798 sock_recv_timestamp(msg, sk, skb);
799 sock_recv_drops(msg, sk, skb);
801 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
803 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
806 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
809 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
811 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
813 return err ?: sock_recvmsg_nosec(sock, msg, flags);
815 EXPORT_SYMBOL(sock_recvmsg);
818 * kernel_recvmsg - Receive a message from a socket (kernel space)
819 * @sock: The socket to receive the message from
820 * @msg: Received message
821 * @vec: Input s/g array for message data
822 * @num: Size of input s/g array
823 * @size: Number of bytes to read
824 * @flags: Message flags (MSG_DONTWAIT, etc...)
826 * On return the msg structure contains the scatter/gather array passed in the
827 * vec argument. The array is modified so that it consists of the unfilled
828 * portion of the original array.
830 * The returned value is the total number of bytes received, or an error.
832 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
833 struct kvec *vec, size_t num, size_t size, int flags)
835 mm_segment_t oldfs = get_fs();
838 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
840 result = sock_recvmsg(sock, msg, flags);
844 EXPORT_SYMBOL(kernel_recvmsg);
846 static ssize_t sock_sendpage(struct file *file, struct page *page,
847 int offset, size_t size, loff_t *ppos, int more)
852 sock = file->private_data;
854 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
855 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
858 return kernel_sendpage(sock, page, offset, size, flags);
861 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
862 struct pipe_inode_info *pipe, size_t len,
865 struct socket *sock = file->private_data;
867 if (unlikely(!sock->ops->splice_read))
870 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
873 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
875 struct file *file = iocb->ki_filp;
876 struct socket *sock = file->private_data;
877 struct msghdr msg = {.msg_iter = *to,
881 if (file->f_flags & O_NONBLOCK)
882 msg.msg_flags = MSG_DONTWAIT;
884 if (iocb->ki_pos != 0)
887 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
890 res = sock_recvmsg(sock, &msg, msg.msg_flags);
895 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
897 struct file *file = iocb->ki_filp;
898 struct socket *sock = file->private_data;
899 struct msghdr msg = {.msg_iter = *from,
903 if (iocb->ki_pos != 0)
906 if (file->f_flags & O_NONBLOCK)
907 msg.msg_flags = MSG_DONTWAIT;
909 if (sock->type == SOCK_SEQPACKET)
910 msg.msg_flags |= MSG_EOR;
912 res = sock_sendmsg(sock, &msg);
913 *from = msg.msg_iter;
918 * Atomic setting of ioctl hooks to avoid race
919 * with module unload.
922 static DEFINE_MUTEX(br_ioctl_mutex);
923 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
925 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
927 mutex_lock(&br_ioctl_mutex);
928 br_ioctl_hook = hook;
929 mutex_unlock(&br_ioctl_mutex);
931 EXPORT_SYMBOL(brioctl_set);
933 static DEFINE_MUTEX(vlan_ioctl_mutex);
934 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
936 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
938 mutex_lock(&vlan_ioctl_mutex);
939 vlan_ioctl_hook = hook;
940 mutex_unlock(&vlan_ioctl_mutex);
942 EXPORT_SYMBOL(vlan_ioctl_set);
944 static DEFINE_MUTEX(dlci_ioctl_mutex);
945 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
947 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
949 mutex_lock(&dlci_ioctl_mutex);
950 dlci_ioctl_hook = hook;
951 mutex_unlock(&dlci_ioctl_mutex);
953 EXPORT_SYMBOL(dlci_ioctl_set);
955 static long sock_do_ioctl(struct net *net, struct socket *sock,
956 unsigned int cmd, unsigned long arg)
959 void __user *argp = (void __user *)arg;
961 err = sock->ops->ioctl(sock, cmd, arg);
964 * If this ioctl is unknown try to hand it down
967 if (err == -ENOIOCTLCMD)
968 err = dev_ioctl(net, cmd, argp);
974 * With an ioctl, arg may well be a user mode pointer, but we don't know
975 * what to do with it - that's up to the protocol still.
978 static struct ns_common *get_net_ns(struct ns_common *ns)
980 return &get_net(container_of(ns, struct net, ns))->ns;
983 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
987 void __user *argp = (void __user *)arg;
991 sock = file->private_data;
994 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
995 err = dev_ioctl(net, cmd, argp);
997 #ifdef CONFIG_WEXT_CORE
998 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
999 err = dev_ioctl(net, cmd, argp);
1006 if (get_user(pid, (int __user *)argp))
1008 err = f_setown(sock->file, pid, 1);
1012 err = put_user(f_getown(sock->file),
1013 (int __user *)argp);
1021 request_module("bridge");
1023 mutex_lock(&br_ioctl_mutex);
1025 err = br_ioctl_hook(net, cmd, argp);
1026 mutex_unlock(&br_ioctl_mutex);
1031 if (!vlan_ioctl_hook)
1032 request_module("8021q");
1034 mutex_lock(&vlan_ioctl_mutex);
1035 if (vlan_ioctl_hook)
1036 err = vlan_ioctl_hook(net, argp);
1037 mutex_unlock(&vlan_ioctl_mutex);
1042 if (!dlci_ioctl_hook)
1043 request_module("dlci");
1045 mutex_lock(&dlci_ioctl_mutex);
1046 if (dlci_ioctl_hook)
1047 err = dlci_ioctl_hook(cmd, argp);
1048 mutex_unlock(&dlci_ioctl_mutex);
1052 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1055 err = open_related_ns(&net->ns, get_net_ns);
1058 err = sock_do_ioctl(net, sock, cmd, arg);
1064 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1067 struct socket *sock = NULL;
1069 err = security_socket_create(family, type, protocol, 1);
1073 sock = sock_alloc();
1080 err = security_socket_post_create(sock, family, type, protocol, 1);
1092 EXPORT_SYMBOL(sock_create_lite);
1094 /* No kernel lock held - perfect */
1095 static unsigned int sock_poll(struct file *file, poll_table *wait)
1097 unsigned int busy_flag = 0;
1098 struct socket *sock;
1101 * We can't return errors to poll, so it's either yes or no.
1103 sock = file->private_data;
1105 if (sk_can_busy_loop(sock->sk)) {
1106 /* this socket can poll_ll so tell the system call */
1107 busy_flag = POLL_BUSY_LOOP;
1109 /* once, only if requested by syscall */
1110 if (wait && (wait->_key & POLL_BUSY_LOOP))
1111 sk_busy_loop(sock->sk, 1);
1114 return busy_flag | sock->ops->poll(file, sock, wait);
1117 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1119 struct socket *sock = file->private_data;
1121 return sock->ops->mmap(file, sock, vma);
1124 static int sock_close(struct inode *inode, struct file *filp)
1126 sock_release(SOCKET_I(inode));
1131 * Update the socket async list
1133 * Fasync_list locking strategy.
1135 * 1. fasync_list is modified only under process context socket lock
1136 * i.e. under semaphore.
1137 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1138 * or under socket lock
1141 static int sock_fasync(int fd, struct file *filp, int on)
1143 struct socket *sock = filp->private_data;
1144 struct sock *sk = sock->sk;
1145 struct socket_wq *wq;
1151 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1152 fasync_helper(fd, filp, on, &wq->fasync_list);
1154 if (!wq->fasync_list)
1155 sock_reset_flag(sk, SOCK_FASYNC);
1157 sock_set_flag(sk, SOCK_FASYNC);
1163 /* This function may be called only under rcu_lock */
1165 int sock_wake_async(struct socket_wq *wq, int how, int band)
1167 if (!wq || !wq->fasync_list)
1171 case SOCK_WAKE_WAITD:
1172 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1175 case SOCK_WAKE_SPACE:
1176 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1181 kill_fasync(&wq->fasync_list, SIGIO, band);
1184 kill_fasync(&wq->fasync_list, SIGURG, band);
1189 EXPORT_SYMBOL(sock_wake_async);
1191 int __sock_create(struct net *net, int family, int type, int protocol,
1192 struct socket **res, int kern)
1195 struct socket *sock;
1196 const struct net_proto_family *pf;
1199 * Check protocol is in range
1201 if (family < 0 || family >= NPROTO)
1202 return -EAFNOSUPPORT;
1203 if (type < 0 || type >= SOCK_MAX)
1208 This uglymoron is moved from INET layer to here to avoid
1209 deadlock in module load.
1211 if (family == PF_INET && type == SOCK_PACKET) {
1212 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1217 err = security_socket_create(family, type, protocol, kern);
1222 * Allocate the socket and allow the family to set things up. if
1223 * the protocol is 0, the family is instructed to select an appropriate
1226 sock = sock_alloc();
1228 net_warn_ratelimited("socket: no more sockets\n");
1229 return -ENFILE; /* Not exactly a match, but its the
1230 closest posix thing */
1235 #ifdef CONFIG_MODULES
1236 /* Attempt to load a protocol module if the find failed.
1238 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1239 * requested real, full-featured networking support upon configuration.
1240 * Otherwise module support will break!
1242 if (rcu_access_pointer(net_families[family]) == NULL)
1243 request_module("net-pf-%d", family);
1247 pf = rcu_dereference(net_families[family]);
1248 err = -EAFNOSUPPORT;
1253 * We will call the ->create function, that possibly is in a loadable
1254 * module, so we have to bump that loadable module refcnt first.
1256 if (!try_module_get(pf->owner))
1259 /* Now protected by module ref count */
1262 err = pf->create(net, sock, protocol, kern);
1264 goto out_module_put;
1267 * Now to bump the refcnt of the [loadable] module that owns this
1268 * socket at sock_release time we decrement its refcnt.
1270 if (!try_module_get(sock->ops->owner))
1271 goto out_module_busy;
1274 * Now that we're done with the ->create function, the [loadable]
1275 * module can have its refcnt decremented
1277 module_put(pf->owner);
1278 err = security_socket_post_create(sock, family, type, protocol, kern);
1280 goto out_sock_release;
1286 err = -EAFNOSUPPORT;
1289 module_put(pf->owner);
1296 goto out_sock_release;
1298 EXPORT_SYMBOL(__sock_create);
1300 int sock_create(int family, int type, int protocol, struct socket **res)
1302 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1304 EXPORT_SYMBOL(sock_create);
1306 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1308 return __sock_create(net, family, type, protocol, res, 1);
1310 EXPORT_SYMBOL(sock_create_kern);
1312 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1315 struct socket *sock;
1318 /* Check the SOCK_* constants for consistency. */
1319 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1320 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1321 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1322 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1324 flags = type & ~SOCK_TYPE_MASK;
1325 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1327 type &= SOCK_TYPE_MASK;
1329 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1330 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1332 retval = sock_create(family, type, protocol, &sock);
1336 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1341 /* It may be already another descriptor 8) Not kernel problem. */
1350 * Create a pair of connected sockets.
1353 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1354 int __user *, usockvec)
1356 struct socket *sock1, *sock2;
1358 struct file *newfile1, *newfile2;
1361 flags = type & ~SOCK_TYPE_MASK;
1362 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1364 type &= SOCK_TYPE_MASK;
1366 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1367 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1370 * Obtain the first socket and check if the underlying protocol
1371 * supports the socketpair call.
1374 err = sock_create(family, type, protocol, &sock1);
1378 err = sock_create(family, type, protocol, &sock2);
1382 err = sock1->ops->socketpair(sock1, sock2);
1384 goto out_release_both;
1386 fd1 = get_unused_fd_flags(flags);
1387 if (unlikely(fd1 < 0)) {
1389 goto out_release_both;
1392 fd2 = get_unused_fd_flags(flags);
1393 if (unlikely(fd2 < 0)) {
1395 goto out_put_unused_1;
1398 newfile1 = sock_alloc_file(sock1, flags, NULL);
1399 if (IS_ERR(newfile1)) {
1400 err = PTR_ERR(newfile1);
1401 goto out_put_unused_both;
1404 newfile2 = sock_alloc_file(sock2, flags, NULL);
1405 if (IS_ERR(newfile2)) {
1406 err = PTR_ERR(newfile2);
1410 err = put_user(fd1, &usockvec[0]);
1414 err = put_user(fd2, &usockvec[1]);
1418 audit_fd_pair(fd1, fd2);
1420 fd_install(fd1, newfile1);
1421 fd_install(fd2, newfile2);
1422 /* fd1 and fd2 may be already another descriptors.
1423 * Not kernel problem.
1439 sock_release(sock2);
1442 out_put_unused_both:
1447 sock_release(sock2);
1449 sock_release(sock1);
1455 * Bind a name to a socket. Nothing much to do here since it's
1456 * the protocol's responsibility to handle the local address.
1458 * We move the socket address to kernel space before we call
1459 * the protocol layer (having also checked the address is ok).
1462 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1464 struct socket *sock;
1465 struct sockaddr_storage address;
1466 int err, fput_needed;
1468 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1470 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1472 err = security_socket_bind(sock,
1473 (struct sockaddr *)&address,
1476 err = sock->ops->bind(sock,
1480 fput_light(sock->file, fput_needed);
1486 * Perform a listen. Basically, we allow the protocol to do anything
1487 * necessary for a listen, and if that works, we mark the socket as
1488 * ready for listening.
1491 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1493 struct socket *sock;
1494 int err, fput_needed;
1497 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1499 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1500 if ((unsigned int)backlog > somaxconn)
1501 backlog = somaxconn;
1503 err = security_socket_listen(sock, backlog);
1505 err = sock->ops->listen(sock, backlog);
1507 fput_light(sock->file, fput_needed);
1513 * For accept, we attempt to create a new socket, set up the link
1514 * with the client, wake up the client, then return the new
1515 * connected fd. We collect the address of the connector in kernel
1516 * space and move it to user at the very end. This is unclean because
1517 * we open the socket then return an error.
1519 * 1003.1g adds the ability to recvmsg() to query connection pending
1520 * status to recvmsg. We need to add that support in a way thats
1521 * clean when we restucture accept also.
1524 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1525 int __user *, upeer_addrlen, int, flags)
1527 struct socket *sock, *newsock;
1528 struct file *newfile;
1529 int err, len, newfd, fput_needed;
1530 struct sockaddr_storage address;
1532 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1535 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1536 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1538 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1543 newsock = sock_alloc();
1547 newsock->type = sock->type;
1548 newsock->ops = sock->ops;
1551 * We don't need try_module_get here, as the listening socket (sock)
1552 * has the protocol module (sock->ops->owner) held.
1554 __module_get(newsock->ops->owner);
1556 newfd = get_unused_fd_flags(flags);
1557 if (unlikely(newfd < 0)) {
1559 sock_release(newsock);
1562 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1563 if (IS_ERR(newfile)) {
1564 err = PTR_ERR(newfile);
1565 put_unused_fd(newfd);
1566 sock_release(newsock);
1570 err = security_socket_accept(sock, newsock);
1574 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1578 if (upeer_sockaddr) {
1579 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1581 err = -ECONNABORTED;
1584 err = move_addr_to_user(&address,
1585 len, upeer_sockaddr, upeer_addrlen);
1590 /* File flags are not inherited via accept() unlike another OSes. */
1592 fd_install(newfd, newfile);
1596 fput_light(sock->file, fput_needed);
1601 put_unused_fd(newfd);
1605 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1606 int __user *, upeer_addrlen)
1608 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1612 * Attempt to connect to a socket with the server address. The address
1613 * is in user space so we verify it is OK and move it to kernel space.
1615 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1618 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1619 * other SEQPACKET protocols that take time to connect() as it doesn't
1620 * include the -EINPROGRESS status for such sockets.
1623 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1626 struct socket *sock;
1627 struct sockaddr_storage address;
1628 int err, fput_needed;
1630 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1633 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1638 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1642 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1643 sock->file->f_flags);
1645 fput_light(sock->file, fput_needed);
1651 * Get the local address ('name') of a socket object. Move the obtained
1652 * name to user space.
1655 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1656 int __user *, usockaddr_len)
1658 struct socket *sock;
1659 struct sockaddr_storage address;
1660 int len, err, fput_needed;
1662 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1666 err = security_socket_getsockname(sock);
1670 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1673 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1676 fput_light(sock->file, fput_needed);
1682 * Get the remote address ('name') of a socket object. Move the obtained
1683 * name to user space.
1686 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1687 int __user *, usockaddr_len)
1689 struct socket *sock;
1690 struct sockaddr_storage address;
1691 int len, err, fput_needed;
1693 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1695 err = security_socket_getpeername(sock);
1697 fput_light(sock->file, fput_needed);
1702 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1705 err = move_addr_to_user(&address, len, usockaddr,
1707 fput_light(sock->file, fput_needed);
1713 * Send a datagram to a given address. We move the address into kernel
1714 * space and check the user space data area is readable before invoking
1718 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1719 unsigned int, flags, struct sockaddr __user *, addr,
1722 struct socket *sock;
1723 struct sockaddr_storage address;
1729 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1732 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1736 msg.msg_name = NULL;
1737 msg.msg_control = NULL;
1738 msg.msg_controllen = 0;
1739 msg.msg_namelen = 0;
1741 err = move_addr_to_kernel(addr, addr_len, &address);
1744 msg.msg_name = (struct sockaddr *)&address;
1745 msg.msg_namelen = addr_len;
1747 if (sock->file->f_flags & O_NONBLOCK)
1748 flags |= MSG_DONTWAIT;
1749 msg.msg_flags = flags;
1750 err = sock_sendmsg(sock, &msg);
1753 fput_light(sock->file, fput_needed);
1759 * Send a datagram down a socket.
1762 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1763 unsigned int, flags)
1765 return sys_sendto(fd, buff, len, flags, NULL, 0);
1769 * Receive a frame from the socket and optionally record the address of the
1770 * sender. We verify the buffers are writable and if needed move the
1771 * sender address from kernel to user space.
1774 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1775 unsigned int, flags, struct sockaddr __user *, addr,
1776 int __user *, addr_len)
1778 struct socket *sock;
1781 struct sockaddr_storage address;
1785 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1788 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1792 msg.msg_control = NULL;
1793 msg.msg_controllen = 0;
1794 /* Save some cycles and don't copy the address if not needed */
1795 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1796 /* We assume all kernel code knows the size of sockaddr_storage */
1797 msg.msg_namelen = 0;
1798 msg.msg_iocb = NULL;
1800 if (sock->file->f_flags & O_NONBLOCK)
1801 flags |= MSG_DONTWAIT;
1802 err = sock_recvmsg(sock, &msg, flags);
1804 if (err >= 0 && addr != NULL) {
1805 err2 = move_addr_to_user(&address,
1806 msg.msg_namelen, addr, addr_len);
1811 fput_light(sock->file, fput_needed);
1817 * Receive a datagram from a socket.
1820 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1821 unsigned int, flags)
1823 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1827 * Set a socket option. Because we don't know the option lengths we have
1828 * to pass the user mode parameter for the protocols to sort out.
1831 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1832 char __user *, optval, int, optlen)
1834 int err, fput_needed;
1835 struct socket *sock;
1840 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1842 err = security_socket_setsockopt(sock, level, optname);
1846 if (level == SOL_SOCKET)
1848 sock_setsockopt(sock, level, optname, optval,
1852 sock->ops->setsockopt(sock, level, optname, optval,
1855 fput_light(sock->file, fput_needed);
1861 * Get a socket option. Because we don't know the option lengths we have
1862 * to pass a user mode parameter for the protocols to sort out.
1865 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1866 char __user *, optval, int __user *, optlen)
1868 int err, fput_needed;
1869 struct socket *sock;
1871 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1873 err = security_socket_getsockopt(sock, level, optname);
1877 if (level == SOL_SOCKET)
1879 sock_getsockopt(sock, level, optname, optval,
1883 sock->ops->getsockopt(sock, level, optname, optval,
1886 fput_light(sock->file, fput_needed);
1892 * Shutdown a socket.
1895 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1897 int err, fput_needed;
1898 struct socket *sock;
1900 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1902 err = security_socket_shutdown(sock, how);
1904 err = sock->ops->shutdown(sock, how);
1905 fput_light(sock->file, fput_needed);
1910 /* A couple of helpful macros for getting the address of the 32/64 bit
1911 * fields which are the same type (int / unsigned) on our platforms.
1913 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1914 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1915 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1917 struct used_address {
1918 struct sockaddr_storage name;
1919 unsigned int name_len;
1922 static int copy_msghdr_from_user(struct msghdr *kmsg,
1923 struct user_msghdr __user *umsg,
1924 struct sockaddr __user **save_addr,
1927 struct user_msghdr msg;
1930 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1933 kmsg->msg_control = (void __force *)msg.msg_control;
1934 kmsg->msg_controllen = msg.msg_controllen;
1935 kmsg->msg_flags = msg.msg_flags;
1937 kmsg->msg_namelen = msg.msg_namelen;
1939 kmsg->msg_namelen = 0;
1941 if (kmsg->msg_namelen < 0)
1944 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1945 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1948 *save_addr = msg.msg_name;
1950 if (msg.msg_name && kmsg->msg_namelen) {
1952 err = move_addr_to_kernel(msg.msg_name,
1959 kmsg->msg_name = NULL;
1960 kmsg->msg_namelen = 0;
1963 if (msg.msg_iovlen > UIO_MAXIOV)
1966 kmsg->msg_iocb = NULL;
1968 return import_iovec(save_addr ? READ : WRITE,
1969 msg.msg_iov, msg.msg_iovlen,
1970 UIO_FASTIOV, iov, &kmsg->msg_iter);
1973 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1974 struct msghdr *msg_sys, unsigned int flags,
1975 struct used_address *used_address,
1976 unsigned int allowed_msghdr_flags)
1978 struct compat_msghdr __user *msg_compat =
1979 (struct compat_msghdr __user *)msg;
1980 struct sockaddr_storage address;
1981 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1982 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1983 __aligned(sizeof(__kernel_size_t));
1984 /* 20 is size of ipv6_pktinfo */
1985 unsigned char *ctl_buf = ctl;
1989 msg_sys->msg_name = &address;
1991 if (MSG_CMSG_COMPAT & flags)
1992 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1994 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2000 if (msg_sys->msg_controllen > INT_MAX)
2002 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2003 ctl_len = msg_sys->msg_controllen;
2004 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2006 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2010 ctl_buf = msg_sys->msg_control;
2011 ctl_len = msg_sys->msg_controllen;
2012 } else if (ctl_len) {
2013 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2014 CMSG_ALIGN(sizeof(struct cmsghdr)));
2015 if (ctl_len > sizeof(ctl)) {
2016 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2017 if (ctl_buf == NULL)
2022 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2023 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2024 * checking falls down on this.
2026 if (copy_from_user(ctl_buf,
2027 (void __user __force *)msg_sys->msg_control,
2030 msg_sys->msg_control = ctl_buf;
2032 msg_sys->msg_flags = flags;
2034 if (sock->file->f_flags & O_NONBLOCK)
2035 msg_sys->msg_flags |= MSG_DONTWAIT;
2037 * If this is sendmmsg() and current destination address is same as
2038 * previously succeeded address, omit asking LSM's decision.
2039 * used_address->name_len is initialized to UINT_MAX so that the first
2040 * destination address never matches.
2042 if (used_address && msg_sys->msg_name &&
2043 used_address->name_len == msg_sys->msg_namelen &&
2044 !memcmp(&used_address->name, msg_sys->msg_name,
2045 used_address->name_len)) {
2046 err = sock_sendmsg_nosec(sock, msg_sys);
2049 err = sock_sendmsg(sock, msg_sys);
2051 * If this is sendmmsg() and sending to current destination address was
2052 * successful, remember it.
2054 if (used_address && err >= 0) {
2055 used_address->name_len = msg_sys->msg_namelen;
2056 if (msg_sys->msg_name)
2057 memcpy(&used_address->name, msg_sys->msg_name,
2058 used_address->name_len);
2063 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2070 * BSD sendmsg interface
2073 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2075 int fput_needed, err;
2076 struct msghdr msg_sys;
2077 struct socket *sock;
2079 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2083 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2085 fput_light(sock->file, fput_needed);
2090 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2092 if (flags & MSG_CMSG_COMPAT)
2094 return __sys_sendmsg(fd, msg, flags);
2098 * Linux sendmmsg interface
2101 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2104 int fput_needed, err, datagrams;
2105 struct socket *sock;
2106 struct mmsghdr __user *entry;
2107 struct compat_mmsghdr __user *compat_entry;
2108 struct msghdr msg_sys;
2109 struct used_address used_address;
2110 unsigned int oflags = flags;
2112 if (vlen > UIO_MAXIOV)
2117 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2121 used_address.name_len = UINT_MAX;
2123 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2127 while (datagrams < vlen) {
2128 if (datagrams == vlen - 1)
2131 if (MSG_CMSG_COMPAT & flags) {
2132 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2133 &msg_sys, flags, &used_address, MSG_EOR);
2136 err = __put_user(err, &compat_entry->msg_len);
2139 err = ___sys_sendmsg(sock,
2140 (struct user_msghdr __user *)entry,
2141 &msg_sys, flags, &used_address, MSG_EOR);
2144 err = put_user(err, &entry->msg_len);
2151 if (msg_data_left(&msg_sys))
2156 fput_light(sock->file, fput_needed);
2158 /* We only return an error if no datagrams were able to be sent */
2165 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2166 unsigned int, vlen, unsigned int, flags)
2168 if (flags & MSG_CMSG_COMPAT)
2170 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2173 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2174 struct msghdr *msg_sys, unsigned int flags, int nosec)
2176 struct compat_msghdr __user *msg_compat =
2177 (struct compat_msghdr __user *)msg;
2178 struct iovec iovstack[UIO_FASTIOV];
2179 struct iovec *iov = iovstack;
2180 unsigned long cmsg_ptr;
2184 /* kernel mode address */
2185 struct sockaddr_storage addr;
2187 /* user mode address pointers */
2188 struct sockaddr __user *uaddr;
2189 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2191 msg_sys->msg_name = &addr;
2193 if (MSG_CMSG_COMPAT & flags)
2194 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2196 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2200 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2201 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2203 /* We assume all kernel code knows the size of sockaddr_storage */
2204 msg_sys->msg_namelen = 0;
2206 if (sock->file->f_flags & O_NONBLOCK)
2207 flags |= MSG_DONTWAIT;
2208 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2213 if (uaddr != NULL) {
2214 err = move_addr_to_user(&addr,
2215 msg_sys->msg_namelen, uaddr,
2220 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2224 if (MSG_CMSG_COMPAT & flags)
2225 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2226 &msg_compat->msg_controllen);
2228 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2229 &msg->msg_controllen);
2240 * BSD recvmsg interface
2243 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2245 int fput_needed, err;
2246 struct msghdr msg_sys;
2247 struct socket *sock;
2249 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2253 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2255 fput_light(sock->file, fput_needed);
2260 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2261 unsigned int, flags)
2263 if (flags & MSG_CMSG_COMPAT)
2265 return __sys_recvmsg(fd, msg, flags);
2269 * Linux recvmmsg interface
2272 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2273 unsigned int flags, struct timespec *timeout)
2275 int fput_needed, err, datagrams;
2276 struct socket *sock;
2277 struct mmsghdr __user *entry;
2278 struct compat_mmsghdr __user *compat_entry;
2279 struct msghdr msg_sys;
2280 struct timespec64 end_time;
2281 struct timespec64 timeout64;
2284 poll_select_set_timeout(&end_time, timeout->tv_sec,
2290 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2294 err = sock_error(sock->sk);
2301 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2303 while (datagrams < vlen) {
2305 * No need to ask LSM for more than the first datagram.
2307 if (MSG_CMSG_COMPAT & flags) {
2308 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2309 &msg_sys, flags & ~MSG_WAITFORONE,
2313 err = __put_user(err, &compat_entry->msg_len);
2316 err = ___sys_recvmsg(sock,
2317 (struct user_msghdr __user *)entry,
2318 &msg_sys, flags & ~MSG_WAITFORONE,
2322 err = put_user(err, &entry->msg_len);
2330 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2331 if (flags & MSG_WAITFORONE)
2332 flags |= MSG_DONTWAIT;
2335 ktime_get_ts64(&timeout64);
2336 *timeout = timespec64_to_timespec(
2337 timespec64_sub(end_time, timeout64));
2338 if (timeout->tv_sec < 0) {
2339 timeout->tv_sec = timeout->tv_nsec = 0;
2343 /* Timeout, return less than vlen datagrams */
2344 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2348 /* Out of band data, return right away */
2349 if (msg_sys.msg_flags & MSG_OOB)
2357 if (datagrams == 0) {
2363 * We may return less entries than requested (vlen) if the
2364 * sock is non block and there aren't enough datagrams...
2366 if (err != -EAGAIN) {
2368 * ... or if recvmsg returns an error after we
2369 * received some datagrams, where we record the
2370 * error to return on the next call or if the
2371 * app asks about it using getsockopt(SO_ERROR).
2373 sock->sk->sk_err = -err;
2376 fput_light(sock->file, fput_needed);
2381 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2382 unsigned int, vlen, unsigned int, flags,
2383 struct timespec __user *, timeout)
2386 struct timespec timeout_sys;
2388 if (flags & MSG_CMSG_COMPAT)
2392 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2394 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2397 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2399 if (datagrams > 0 &&
2400 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2401 datagrams = -EFAULT;
2406 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2407 /* Argument list sizes for sys_socketcall */
2408 #define AL(x) ((x) * sizeof(unsigned long))
2409 static const unsigned char nargs[21] = {
2410 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2411 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2412 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2419 * System call vectors.
2421 * Argument checking cleaned up. Saved 20% in size.
2422 * This function doesn't need to set the kernel lock because
2423 * it is set by the callees.
2426 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2428 unsigned long a[AUDITSC_ARGS];
2429 unsigned long a0, a1;
2433 if (call < 1 || call > SYS_SENDMMSG)
2437 if (len > sizeof(a))
2440 /* copy_from_user should be SMP safe. */
2441 if (copy_from_user(a, args, len))
2444 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2453 err = sys_socket(a0, a1, a[2]);
2456 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2459 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2462 err = sys_listen(a0, a1);
2465 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2466 (int __user *)a[2], 0);
2468 case SYS_GETSOCKNAME:
2470 sys_getsockname(a0, (struct sockaddr __user *)a1,
2471 (int __user *)a[2]);
2473 case SYS_GETPEERNAME:
2475 sys_getpeername(a0, (struct sockaddr __user *)a1,
2476 (int __user *)a[2]);
2478 case SYS_SOCKETPAIR:
2479 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2482 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2485 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2486 (struct sockaddr __user *)a[4], a[5]);
2489 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2492 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2493 (struct sockaddr __user *)a[4],
2494 (int __user *)a[5]);
2497 err = sys_shutdown(a0, a1);
2499 case SYS_SETSOCKOPT:
2500 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2502 case SYS_GETSOCKOPT:
2504 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2505 (int __user *)a[4]);
2508 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2511 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2514 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2517 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2518 (struct timespec __user *)a[4]);
2521 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2522 (int __user *)a[2], a[3]);
2531 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2534 * sock_register - add a socket protocol handler
2535 * @ops: description of protocol
2537 * This function is called by a protocol handler that wants to
2538 * advertise its address family, and have it linked into the
2539 * socket interface. The value ops->family corresponds to the
2540 * socket system call protocol family.
2542 int sock_register(const struct net_proto_family *ops)
2546 if (ops->family >= NPROTO) {
2547 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2551 spin_lock(&net_family_lock);
2552 if (rcu_dereference_protected(net_families[ops->family],
2553 lockdep_is_held(&net_family_lock)))
2556 rcu_assign_pointer(net_families[ops->family], ops);
2559 spin_unlock(&net_family_lock);
2561 pr_info("NET: Registered protocol family %d\n", ops->family);
2564 EXPORT_SYMBOL(sock_register);
2567 * sock_unregister - remove a protocol handler
2568 * @family: protocol family to remove
2570 * This function is called by a protocol handler that wants to
2571 * remove its address family, and have it unlinked from the
2572 * new socket creation.
2574 * If protocol handler is a module, then it can use module reference
2575 * counts to protect against new references. If protocol handler is not
2576 * a module then it needs to provide its own protection in
2577 * the ops->create routine.
2579 void sock_unregister(int family)
2581 BUG_ON(family < 0 || family >= NPROTO);
2583 spin_lock(&net_family_lock);
2584 RCU_INIT_POINTER(net_families[family], NULL);
2585 spin_unlock(&net_family_lock);
2589 pr_info("NET: Unregistered protocol family %d\n", family);
2591 EXPORT_SYMBOL(sock_unregister);
2593 static int __init sock_init(void)
2597 * Initialize the network sysctl infrastructure.
2599 err = net_sysctl_init();
2604 * Initialize skbuff SLAB cache
2609 * Initialize the protocols module.
2614 err = register_filesystem(&sock_fs_type);
2617 sock_mnt = kern_mount(&sock_fs_type);
2618 if (IS_ERR(sock_mnt)) {
2619 err = PTR_ERR(sock_mnt);
2623 /* The real protocol initialization is performed in later initcalls.
2626 #ifdef CONFIG_NETFILTER
2627 err = netfilter_init();
2632 ptp_classifier_init();
2638 unregister_filesystem(&sock_fs_type);
2643 core_initcall(sock_init); /* early initcall */
2645 #ifdef CONFIG_PROC_FS
2646 void socket_seq_show(struct seq_file *seq)
2651 for_each_possible_cpu(cpu)
2652 counter += per_cpu(sockets_in_use, cpu);
2654 /* It can be negative, by the way. 8) */
2658 seq_printf(seq, "sockets: used %d\n", counter);
2660 #endif /* CONFIG_PROC_FS */
2662 #ifdef CONFIG_COMPAT
2663 static int do_siocgstamp(struct net *net, struct socket *sock,
2664 unsigned int cmd, void __user *up)
2666 mm_segment_t old_fs = get_fs();
2671 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2674 err = compat_put_timeval(&ktv, up);
2679 static int do_siocgstampns(struct net *net, struct socket *sock,
2680 unsigned int cmd, void __user *up)
2682 mm_segment_t old_fs = get_fs();
2683 struct timespec kts;
2687 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2690 err = compat_put_timespec(&kts, up);
2695 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2697 struct ifreq __user *uifr;
2700 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2701 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2704 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2708 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2714 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2716 struct compat_ifconf ifc32;
2718 struct ifconf __user *uifc;
2719 struct compat_ifreq __user *ifr32;
2720 struct ifreq __user *ifr;
2724 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2727 memset(&ifc, 0, sizeof(ifc));
2728 if (ifc32.ifcbuf == 0) {
2732 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2734 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2735 sizeof(struct ifreq);
2736 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2738 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2739 ifr32 = compat_ptr(ifc32.ifcbuf);
2740 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2741 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2747 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2750 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2754 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2758 ifr32 = compat_ptr(ifc32.ifcbuf);
2760 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2761 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2762 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2768 if (ifc32.ifcbuf == 0) {
2769 /* Translate from 64-bit structure multiple to
2773 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2778 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2784 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2786 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2787 bool convert_in = false, convert_out = false;
2788 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2789 struct ethtool_rxnfc __user *rxnfc;
2790 struct ifreq __user *ifr;
2791 u32 rule_cnt = 0, actual_rule_cnt;
2796 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2799 compat_rxnfc = compat_ptr(data);
2801 if (get_user(ethcmd, &compat_rxnfc->cmd))
2804 /* Most ethtool structures are defined without padding.
2805 * Unfortunately struct ethtool_rxnfc is an exception.
2810 case ETHTOOL_GRXCLSRLALL:
2811 /* Buffer size is variable */
2812 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2814 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2816 buf_size += rule_cnt * sizeof(u32);
2818 case ETHTOOL_GRXRINGS:
2819 case ETHTOOL_GRXCLSRLCNT:
2820 case ETHTOOL_GRXCLSRULE:
2821 case ETHTOOL_SRXCLSRLINS:
2824 case ETHTOOL_SRXCLSRLDEL:
2825 buf_size += sizeof(struct ethtool_rxnfc);
2830 ifr = compat_alloc_user_space(buf_size);
2831 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2833 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2836 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2837 &ifr->ifr_ifru.ifru_data))
2841 /* We expect there to be holes between fs.m_ext and
2842 * fs.ring_cookie and at the end of fs, but nowhere else.
2844 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2845 sizeof(compat_rxnfc->fs.m_ext) !=
2846 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2847 sizeof(rxnfc->fs.m_ext));
2849 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2850 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2851 offsetof(struct ethtool_rxnfc, fs.location) -
2852 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2854 if (copy_in_user(rxnfc, compat_rxnfc,
2855 (void __user *)(&rxnfc->fs.m_ext + 1) -
2856 (void __user *)rxnfc) ||
2857 copy_in_user(&rxnfc->fs.ring_cookie,
2858 &compat_rxnfc->fs.ring_cookie,
2859 (void __user *)(&rxnfc->fs.location + 1) -
2860 (void __user *)&rxnfc->fs.ring_cookie) ||
2861 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2862 sizeof(rxnfc->rule_cnt)))
2866 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2871 if (copy_in_user(compat_rxnfc, rxnfc,
2872 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2873 (const void __user *)rxnfc) ||
2874 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2875 &rxnfc->fs.ring_cookie,
2876 (const void __user *)(&rxnfc->fs.location + 1) -
2877 (const void __user *)&rxnfc->fs.ring_cookie) ||
2878 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2879 sizeof(rxnfc->rule_cnt)))
2882 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2883 /* As an optimisation, we only copy the actual
2884 * number of rules that the underlying
2885 * function returned. Since Mallory might
2886 * change the rule count in user memory, we
2887 * check that it is less than the rule count
2888 * originally given (as the user buffer size),
2889 * which has been range-checked.
2891 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2893 if (actual_rule_cnt < rule_cnt)
2894 rule_cnt = actual_rule_cnt;
2895 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2896 &rxnfc->rule_locs[0],
2897 rule_cnt * sizeof(u32)))
2905 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2908 compat_uptr_t uptr32;
2909 struct ifreq __user *uifr;
2911 uifr = compat_alloc_user_space(sizeof(*uifr));
2912 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2915 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2918 uptr = compat_ptr(uptr32);
2920 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2923 return dev_ioctl(net, SIOCWANDEV, uifr);
2926 static int bond_ioctl(struct net *net, unsigned int cmd,
2927 struct compat_ifreq __user *ifr32)
2930 mm_segment_t old_fs;
2934 case SIOCBONDENSLAVE:
2935 case SIOCBONDRELEASE:
2936 case SIOCBONDSETHWADDR:
2937 case SIOCBONDCHANGEACTIVE:
2938 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2943 err = dev_ioctl(net, cmd,
2944 (struct ifreq __user __force *) &kifr);
2949 return -ENOIOCTLCMD;
2953 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2954 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2955 struct compat_ifreq __user *u_ifreq32)
2957 struct ifreq __user *u_ifreq64;
2958 char tmp_buf[IFNAMSIZ];
2959 void __user *data64;
2962 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2965 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2967 data64 = compat_ptr(data32);
2969 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2971 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2974 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2977 return dev_ioctl(net, cmd, u_ifreq64);
2980 static int dev_ifsioc(struct net *net, struct socket *sock,
2981 unsigned int cmd, struct compat_ifreq __user *uifr32)
2983 struct ifreq __user *uifr;
2986 uifr = compat_alloc_user_space(sizeof(*uifr));
2987 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2990 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3001 case SIOCGIFBRDADDR:
3002 case SIOCGIFDSTADDR:
3003 case SIOCGIFNETMASK:
3008 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3016 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3017 struct compat_ifreq __user *uifr32)
3020 struct compat_ifmap __user *uifmap32;
3021 mm_segment_t old_fs;
3024 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3025 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3026 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3027 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3028 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3029 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3030 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3031 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3037 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3040 if (cmd == SIOCGIFMAP && !err) {
3041 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3042 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3043 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3044 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3045 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3046 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3047 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3056 struct sockaddr rt_dst; /* target address */
3057 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3058 struct sockaddr rt_genmask; /* target network mask (IP) */
3059 unsigned short rt_flags;
3062 unsigned char rt_tos;
3063 unsigned char rt_class;
3065 short rt_metric; /* +1 for binary compatibility! */
3066 /* char * */ u32 rt_dev; /* forcing the device at add */
3067 u32 rt_mtu; /* per route MTU/Window */
3068 u32 rt_window; /* Window clamping */
3069 unsigned short rt_irtt; /* Initial RTT */
3072 struct in6_rtmsg32 {
3073 struct in6_addr rtmsg_dst;
3074 struct in6_addr rtmsg_src;
3075 struct in6_addr rtmsg_gateway;
3085 static int routing_ioctl(struct net *net, struct socket *sock,
3086 unsigned int cmd, void __user *argp)
3090 struct in6_rtmsg r6;
3094 mm_segment_t old_fs = get_fs();
3096 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3097 struct in6_rtmsg32 __user *ur6 = argp;
3098 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3099 3 * sizeof(struct in6_addr));
3100 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3101 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3102 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3103 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3104 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3105 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3106 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3110 struct rtentry32 __user *ur4 = argp;
3111 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3112 3 * sizeof(struct sockaddr));
3113 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3114 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3115 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3116 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3117 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3118 ret |= get_user(rtdev, &(ur4->rt_dev));
3120 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3121 r4.rt_dev = (char __user __force *)devname;
3135 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3142 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3143 * for some operations; this forces use of the newer bridge-utils that
3144 * use compatible ioctls
3146 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3150 if (get_user(tmp, argp))
3152 if (tmp == BRCTL_GET_VERSION)
3153 return BRCTL_VERSION + 1;
3157 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3158 unsigned int cmd, unsigned long arg)
3160 void __user *argp = compat_ptr(arg);
3161 struct sock *sk = sock->sk;
3162 struct net *net = sock_net(sk);
3164 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3165 return compat_ifr_data_ioctl(net, cmd, argp);
3170 return old_bridge_ioctl(argp);
3172 return dev_ifname32(net, argp);
3174 return dev_ifconf(net, argp);
3176 return ethtool_ioctl(net, argp);
3178 return compat_siocwandev(net, argp);
3181 return compat_sioc_ifmap(net, cmd, argp);
3182 case SIOCBONDENSLAVE:
3183 case SIOCBONDRELEASE:
3184 case SIOCBONDSETHWADDR:
3185 case SIOCBONDCHANGEACTIVE:
3186 return bond_ioctl(net, cmd, argp);
3189 return routing_ioctl(net, sock, cmd, argp);
3191 return do_siocgstamp(net, sock, cmd, argp);
3193 return do_siocgstampns(net, sock, cmd, argp);
3194 case SIOCBONDSLAVEINFOQUERY:
3195 case SIOCBONDINFOQUERY:
3198 return compat_ifr_data_ioctl(net, cmd, argp);
3211 return sock_ioctl(file, cmd, arg);
3228 case SIOCSIFHWBROADCAST:
3230 case SIOCGIFBRDADDR:
3231 case SIOCSIFBRDADDR:
3232 case SIOCGIFDSTADDR:
3233 case SIOCSIFDSTADDR:
3234 case SIOCGIFNETMASK:
3235 case SIOCSIFNETMASK:
3246 return dev_ifsioc(net, sock, cmd, argp);
3252 return sock_do_ioctl(net, sock, cmd, arg);
3255 return -ENOIOCTLCMD;
3258 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3261 struct socket *sock = file->private_data;
3262 int ret = -ENOIOCTLCMD;
3269 if (sock->ops->compat_ioctl)
3270 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3272 if (ret == -ENOIOCTLCMD &&
3273 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3274 ret = compat_wext_handle_ioctl(net, cmd, arg);
3276 if (ret == -ENOIOCTLCMD)
3277 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3283 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3285 return sock->ops->bind(sock, addr, addrlen);
3287 EXPORT_SYMBOL(kernel_bind);
3289 int kernel_listen(struct socket *sock, int backlog)
3291 return sock->ops->listen(sock, backlog);
3293 EXPORT_SYMBOL(kernel_listen);
3295 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3297 struct sock *sk = sock->sk;
3300 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3305 err = sock->ops->accept(sock, *newsock, flags, true);
3307 sock_release(*newsock);
3312 (*newsock)->ops = sock->ops;
3313 __module_get((*newsock)->ops->owner);
3318 EXPORT_SYMBOL(kernel_accept);
3320 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3323 return sock->ops->connect(sock, addr, addrlen, flags);
3325 EXPORT_SYMBOL(kernel_connect);
3327 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3330 return sock->ops->getname(sock, addr, addrlen, 0);
3332 EXPORT_SYMBOL(kernel_getsockname);
3334 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3337 return sock->ops->getname(sock, addr, addrlen, 1);
3339 EXPORT_SYMBOL(kernel_getpeername);
3341 int kernel_getsockopt(struct socket *sock, int level, int optname,
3342 char *optval, int *optlen)
3344 mm_segment_t oldfs = get_fs();
3345 char __user *uoptval;
3346 int __user *uoptlen;
3349 uoptval = (char __user __force *) optval;
3350 uoptlen = (int __user __force *) optlen;
3353 if (level == SOL_SOCKET)
3354 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3356 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3361 EXPORT_SYMBOL(kernel_getsockopt);
3363 int kernel_setsockopt(struct socket *sock, int level, int optname,
3364 char *optval, unsigned int optlen)
3366 mm_segment_t oldfs = get_fs();
3367 char __user *uoptval;
3370 uoptval = (char __user __force *) optval;
3373 if (level == SOL_SOCKET)
3374 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3376 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3381 EXPORT_SYMBOL(kernel_setsockopt);
3383 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3384 size_t size, int flags)
3386 if (sock->ops->sendpage)
3387 return sock->ops->sendpage(sock, page, offset, size, flags);
3389 return sock_no_sendpage(sock, page, offset, size, flags);
3391 EXPORT_SYMBOL(kernel_sendpage);
3393 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3394 size_t size, int flags)
3396 struct socket *sock = sk->sk_socket;
3398 if (sock->ops->sendpage_locked)
3399 return sock->ops->sendpage_locked(sk, page, offset, size,
3402 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3404 EXPORT_SYMBOL(kernel_sendpage_locked);
3406 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3408 mm_segment_t oldfs = get_fs();
3412 err = sock->ops->ioctl(sock, cmd, arg);
3417 EXPORT_SYMBOL(kernel_sock_ioctl);
3419 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3421 return sock->ops->shutdown(sock, how);
3423 EXPORT_SYMBOL(kernel_sock_shutdown);
3425 /* This routine returns the IP overhead imposed by a socket i.e.
3426 * the length of the underlying IP header, depending on whether
3427 * this is an IPv4 or IPv6 socket and the length from IP options turned
3428 * on at the socket. Assumes that the caller has a lock on the socket.
3430 u32 kernel_sock_ip_overhead(struct sock *sk)
3432 struct inet_sock *inet;
3433 struct ip_options_rcu *opt;
3435 #if IS_ENABLED(CONFIG_IPV6)
3436 struct ipv6_pinfo *np;
3437 struct ipv6_txoptions *optv6 = NULL;
3438 #endif /* IS_ENABLED(CONFIG_IPV6) */
3443 switch (sk->sk_family) {
3446 overhead += sizeof(struct iphdr);
3447 opt = rcu_dereference_protected(inet->inet_opt,
3448 sock_owned_by_user(sk));
3450 overhead += opt->opt.optlen;
3452 #if IS_ENABLED(CONFIG_IPV6)
3455 overhead += sizeof(struct ipv6hdr);
3457 optv6 = rcu_dereference_protected(np->opt,
3458 sock_owned_by_user(sk));
3460 overhead += (optv6->opt_flen + optv6->opt_nflen);
3462 #endif /* IS_ENABLED(CONFIG_IPV6) */
3463 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3467 EXPORT_SYMBOL(kernel_sock_ip_overhead);