2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
146 .unlocked_ioctl = sock_ioctl,
148 .compat_ioctl = compat_sock_ioctl,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 * Statistics counters of the socket lists
169 static DEFINE_PER_CPU(int, sockets_in_use);
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194 if (copy_from_user(kaddr, uaddr, ulen))
196 return audit_sockaddr(ulen, kaddr);
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
231 if (audit_sockaddr(klen, kaddr))
233 if (copy_to_user(uaddr, kaddr, len))
237 * "fromlen shall refer to the value before truncation.."
240 return __put_user(klen, ulen);
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
245 static struct inode *sock_alloc_inode(struct super_block *sb)
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
255 kmem_cache_free(sock_inode_cachep, ei);
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
269 return &ei->vfs_inode;
272 static void sock_destroy_inode(struct inode *inode)
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
280 kmem_cache_free(sock_inode_cachep, ei);
283 static void init_once(void *foo)
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
287 inode_init_once(&ei->vfs_inode);
290 static void init_inodecache(void)
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
299 BUG_ON(sock_inode_cachep == NULL);
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
309 * sockfs_dname() is called from d_path().
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 d_inode(dentry)->i_ino);
317 static const struct dentry_operations sockfs_dentry_operations = {
318 .d_dname = sockfs_dname,
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 struct dentry *dentry, struct inode *inode,
323 const char *suffix, void *value, size_t size)
326 if (dentry->d_name.len + 1 > size)
328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
330 return dentry->d_name.len + 1;
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
337 static const struct xattr_handler sockfs_xattr_handler = {
338 .name = XATTR_NAME_SOCKPROTONAME,
339 .get = sockfs_xattr_get,
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 struct dentry *dentry, struct inode *inode,
344 const char *suffix, const void *value,
345 size_t size, int flags)
347 /* Handled by LSM. */
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 .prefix = XATTR_SECURITY_PREFIX,
353 .set = sockfs_security_xattr_set,
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 &sockfs_xattr_handler,
358 &sockfs_security_xattr_handler,
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 int flags, const char *dev_name, void *data)
365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 sockfs_xattr_handlers,
367 &sockfs_dentry_operations, SOCKFS_MAGIC);
370 static struct vfsmount *sock_mnt __read_mostly;
372 static struct file_system_type sock_fs_type = {
374 .mount = sockfs_mount,
375 .kill_sb = kill_anon_super,
379 * Obtains the first available file descriptor and sets it up for use.
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
397 struct qstr name = { .name = "" };
403 name.len = strlen(name.name);
404 } else if (sock->sk) {
405 name.name = sock->sk->sk_prot_creator->name;
406 name.len = strlen(name.name);
408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 if (unlikely(!path.dentry))
410 return ERR_PTR(-ENOMEM);
411 path.mnt = mntget(sock_mnt);
413 d_instantiate(path.dentry, SOCK_INODE(sock));
415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
418 /* drop dentry, keep inode */
419 ihold(d_inode(path.dentry));
425 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
426 file->private_data = sock;
429 EXPORT_SYMBOL(sock_alloc_file);
431 static int sock_map_fd(struct socket *sock, int flags)
433 struct file *newfile;
434 int fd = get_unused_fd_flags(flags);
435 if (unlikely(fd < 0))
438 newfile = sock_alloc_file(sock, flags, NULL);
439 if (likely(!IS_ERR(newfile))) {
440 fd_install(fd, newfile);
445 return PTR_ERR(newfile);
448 struct socket *sock_from_file(struct file *file, int *err)
450 if (file->f_op == &socket_file_ops)
451 return file->private_data; /* set in sock_map_fd */
456 EXPORT_SYMBOL(sock_from_file);
459 * sockfd_lookup - Go from a file number to its socket slot
461 * @err: pointer to an error code return
463 * The file handle passed in is locked and the socket it is bound
464 * to is returned. If an error occurs the err pointer is overwritten
465 * with a negative errno code and NULL is returned. The function checks
466 * for both invalid handles and passing a handle which is not a socket.
468 * On a success the socket object pointer is returned.
471 struct socket *sockfd_lookup(int fd, int *err)
482 sock = sock_from_file(file, err);
487 EXPORT_SYMBOL(sockfd_lookup);
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
491 struct fd f = fdget(fd);
496 sock = sock_from_file(f.file, err);
498 *fput_needed = f.flags;
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
512 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
536 int err = simple_setattr(dentry, iattr);
538 if (!err && (iattr->ia_valid & ATTR_UID)) {
539 struct socket *sock = SOCKET_I(d_inode(dentry));
542 sock->sk->sk_uid = iattr->ia_uid;
550 static const struct inode_operations sockfs_inode_ops = {
551 .listxattr = sockfs_listxattr,
552 .setattr = sockfs_setattr,
556 * sock_alloc - allocate a socket
558 * Allocate a new inode and socket object. The two are bound together
559 * and initialised. The socket is then returned. If we are out of inodes
563 struct socket *sock_alloc(void)
568 inode = new_inode_pseudo(sock_mnt->mnt_sb);
572 sock = SOCKET_I(inode);
574 inode->i_ino = get_next_ino();
575 inode->i_mode = S_IFSOCK | S_IRWXUGO;
576 inode->i_uid = current_fsuid();
577 inode->i_gid = current_fsgid();
578 inode->i_op = &sockfs_inode_ops;
580 this_cpu_add(sockets_in_use, 1);
583 EXPORT_SYMBOL(sock_alloc);
586 * sock_release - close a socket
587 * @sock: socket to close
589 * The socket is released from the protocol stack if it has a release
590 * callback, and the inode is then released if the socket is bound to
591 * an inode not a file.
594 static void __sock_release(struct socket *sock, struct inode *inode)
597 struct module *owner = sock->ops->owner;
601 sock->ops->release(sock);
608 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
609 pr_err("%s: fasync list not empty!\n", __func__);
611 this_cpu_sub(sockets_in_use, 1);
613 iput(SOCK_INODE(sock));
619 void sock_release(struct socket *sock)
621 __sock_release(sock, NULL);
623 EXPORT_SYMBOL(sock_release);
625 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
627 u8 flags = *tx_flags;
629 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
630 flags |= SKBTX_HW_TSTAMP;
632 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
633 flags |= SKBTX_SW_TSTAMP;
635 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
636 flags |= SKBTX_SCHED_TSTAMP;
640 EXPORT_SYMBOL(__sock_tx_timestamp);
642 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
644 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
645 BUG_ON(ret == -EIOCBQUEUED);
649 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
651 int err = security_socket_sendmsg(sock, msg,
654 return err ?: sock_sendmsg_nosec(sock, msg);
656 EXPORT_SYMBOL(sock_sendmsg);
658 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
659 struct kvec *vec, size_t num, size_t size)
661 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
662 return sock_sendmsg(sock, msg);
664 EXPORT_SYMBOL(kernel_sendmsg);
666 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
667 struct kvec *vec, size_t num, size_t size)
669 struct socket *sock = sk->sk_socket;
671 if (!sock->ops->sendmsg_locked)
672 return sock_no_sendmsg_locked(sk, msg, size);
674 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
676 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
678 EXPORT_SYMBOL(kernel_sendmsg_locked);
680 static bool skb_is_err_queue(const struct sk_buff *skb)
682 /* pkt_type of skbs enqueued on the error queue are set to
683 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
684 * in recvmsg, since skbs received on a local socket will never
685 * have a pkt_type of PACKET_OUTGOING.
687 return skb->pkt_type == PACKET_OUTGOING;
690 /* On transmit, software and hardware timestamps are returned independently.
691 * As the two skb clones share the hardware timestamp, which may be updated
692 * before the software timestamp is received, a hardware TX timestamp may be
693 * returned only if there is no software TX timestamp. Ignore false software
694 * timestamps, which may be made in the __sock_recv_timestamp() call when the
695 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
696 * hardware timestamp.
698 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
700 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
703 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
705 struct scm_ts_pktinfo ts_pktinfo;
706 struct net_device *orig_dev;
708 if (!skb_mac_header_was_set(skb))
711 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
714 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
716 ts_pktinfo.if_index = orig_dev->ifindex;
719 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
720 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
721 sizeof(ts_pktinfo), &ts_pktinfo);
725 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
727 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
730 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
731 struct scm_timestamping tss;
732 int empty = 1, false_tstamp = 0;
733 struct skb_shared_hwtstamps *shhwtstamps =
736 /* Race occurred between timestamp enabling and packet
737 receiving. Fill in the current time for now. */
738 if (need_software_tstamp && skb->tstamp == 0) {
739 __net_timestamp(skb);
743 if (need_software_tstamp) {
744 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
746 skb_get_timestamp(skb, &tv);
747 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
751 skb_get_timestampns(skb, &ts);
752 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
757 memset(&tss, 0, sizeof(tss));
758 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
759 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
762 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
763 !skb_is_swtx_tstamp(skb, false_tstamp) &&
764 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
766 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
767 !skb_is_err_queue(skb))
768 put_ts_pktinfo(msg, skb);
771 put_cmsg(msg, SOL_SOCKET,
772 SCM_TIMESTAMPING, sizeof(tss), &tss);
774 if (skb_is_err_queue(skb) && skb->len &&
775 SKB_EXT_ERR(skb)->opt_stats)
776 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
777 skb->len, skb->data);
780 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
782 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
787 if (!sock_flag(sk, SOCK_WIFI_STATUS))
789 if (!skb->wifi_acked_valid)
792 ack = skb->wifi_acked;
794 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
796 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
798 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
801 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
802 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
803 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
806 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
809 sock_recv_timestamp(msg, sk, skb);
810 sock_recv_drops(msg, sk, skb);
812 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
814 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
817 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
820 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
822 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
824 return err ?: sock_recvmsg_nosec(sock, msg, flags);
826 EXPORT_SYMBOL(sock_recvmsg);
829 * kernel_recvmsg - Receive a message from a socket (kernel space)
830 * @sock: The socket to receive the message from
831 * @msg: Received message
832 * @vec: Input s/g array for message data
833 * @num: Size of input s/g array
834 * @size: Number of bytes to read
835 * @flags: Message flags (MSG_DONTWAIT, etc...)
837 * On return the msg structure contains the scatter/gather array passed in the
838 * vec argument. The array is modified so that it consists of the unfilled
839 * portion of the original array.
841 * The returned value is the total number of bytes received, or an error.
843 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
844 struct kvec *vec, size_t num, size_t size, int flags)
846 mm_segment_t oldfs = get_fs();
849 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
851 result = sock_recvmsg(sock, msg, flags);
855 EXPORT_SYMBOL(kernel_recvmsg);
857 static ssize_t sock_sendpage(struct file *file, struct page *page,
858 int offset, size_t size, loff_t *ppos, int more)
863 sock = file->private_data;
865 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
866 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
869 return kernel_sendpage(sock, page, offset, size, flags);
872 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
873 struct pipe_inode_info *pipe, size_t len,
876 struct socket *sock = file->private_data;
878 if (unlikely(!sock->ops->splice_read))
881 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
884 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
886 struct file *file = iocb->ki_filp;
887 struct socket *sock = file->private_data;
888 struct msghdr msg = {.msg_iter = *to,
892 if (file->f_flags & O_NONBLOCK)
893 msg.msg_flags = MSG_DONTWAIT;
895 if (iocb->ki_pos != 0)
898 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
901 res = sock_recvmsg(sock, &msg, msg.msg_flags);
906 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
908 struct file *file = iocb->ki_filp;
909 struct socket *sock = file->private_data;
910 struct msghdr msg = {.msg_iter = *from,
914 if (iocb->ki_pos != 0)
917 if (file->f_flags & O_NONBLOCK)
918 msg.msg_flags = MSG_DONTWAIT;
920 if (sock->type == SOCK_SEQPACKET)
921 msg.msg_flags |= MSG_EOR;
923 res = sock_sendmsg(sock, &msg);
924 *from = msg.msg_iter;
929 * Atomic setting of ioctl hooks to avoid race
930 * with module unload.
933 static DEFINE_MUTEX(br_ioctl_mutex);
934 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
936 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
938 mutex_lock(&br_ioctl_mutex);
939 br_ioctl_hook = hook;
940 mutex_unlock(&br_ioctl_mutex);
942 EXPORT_SYMBOL(brioctl_set);
944 static DEFINE_MUTEX(vlan_ioctl_mutex);
945 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
947 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
949 mutex_lock(&vlan_ioctl_mutex);
950 vlan_ioctl_hook = hook;
951 mutex_unlock(&vlan_ioctl_mutex);
953 EXPORT_SYMBOL(vlan_ioctl_set);
955 static DEFINE_MUTEX(dlci_ioctl_mutex);
956 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
958 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
960 mutex_lock(&dlci_ioctl_mutex);
961 dlci_ioctl_hook = hook;
962 mutex_unlock(&dlci_ioctl_mutex);
964 EXPORT_SYMBOL(dlci_ioctl_set);
966 static long sock_do_ioctl(struct net *net, struct socket *sock,
967 unsigned int cmd, unsigned long arg)
970 void __user *argp = (void __user *)arg;
972 err = sock->ops->ioctl(sock, cmd, arg);
975 * If this ioctl is unknown try to hand it down
978 if (err == -ENOIOCTLCMD)
979 err = dev_ioctl(net, cmd, argp);
985 * With an ioctl, arg may well be a user mode pointer, but we don't know
986 * what to do with it - that's up to the protocol still.
989 static struct ns_common *get_net_ns(struct ns_common *ns)
991 return &get_net(container_of(ns, struct net, ns))->ns;
994 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
998 void __user *argp = (void __user *)arg;
1002 sock = file->private_data;
1005 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1006 err = dev_ioctl(net, cmd, argp);
1008 #ifdef CONFIG_WEXT_CORE
1009 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1010 err = dev_ioctl(net, cmd, argp);
1017 if (get_user(pid, (int __user *)argp))
1019 err = f_setown(sock->file, pid, 1);
1023 err = put_user(f_getown(sock->file),
1024 (int __user *)argp);
1032 request_module("bridge");
1034 mutex_lock(&br_ioctl_mutex);
1036 err = br_ioctl_hook(net, cmd, argp);
1037 mutex_unlock(&br_ioctl_mutex);
1042 if (!vlan_ioctl_hook)
1043 request_module("8021q");
1045 mutex_lock(&vlan_ioctl_mutex);
1046 if (vlan_ioctl_hook)
1047 err = vlan_ioctl_hook(net, argp);
1048 mutex_unlock(&vlan_ioctl_mutex);
1053 if (!dlci_ioctl_hook)
1054 request_module("dlci");
1056 mutex_lock(&dlci_ioctl_mutex);
1057 if (dlci_ioctl_hook)
1058 err = dlci_ioctl_hook(cmd, argp);
1059 mutex_unlock(&dlci_ioctl_mutex);
1063 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1066 err = open_related_ns(&net->ns, get_net_ns);
1069 err = sock_do_ioctl(net, sock, cmd, arg);
1075 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1078 struct socket *sock = NULL;
1080 err = security_socket_create(family, type, protocol, 1);
1084 sock = sock_alloc();
1091 err = security_socket_post_create(sock, family, type, protocol, 1);
1103 EXPORT_SYMBOL(sock_create_lite);
1105 /* No kernel lock held - perfect */
1106 static unsigned int sock_poll(struct file *file, poll_table *wait)
1108 unsigned int busy_flag = 0;
1109 struct socket *sock;
1112 * We can't return errors to poll, so it's either yes or no.
1114 sock = file->private_data;
1116 if (sk_can_busy_loop(sock->sk)) {
1117 /* this socket can poll_ll so tell the system call */
1118 busy_flag = POLL_BUSY_LOOP;
1120 /* once, only if requested by syscall */
1121 if (wait && (wait->_key & POLL_BUSY_LOOP))
1122 sk_busy_loop(sock->sk, 1);
1125 return busy_flag | sock->ops->poll(file, sock, wait);
1128 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1130 struct socket *sock = file->private_data;
1132 return sock->ops->mmap(file, sock, vma);
1135 static int sock_close(struct inode *inode, struct file *filp)
1137 __sock_release(SOCKET_I(inode), inode);
1142 * Update the socket async list
1144 * Fasync_list locking strategy.
1146 * 1. fasync_list is modified only under process context socket lock
1147 * i.e. under semaphore.
1148 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1149 * or under socket lock
1152 static int sock_fasync(int fd, struct file *filp, int on)
1154 struct socket *sock = filp->private_data;
1155 struct sock *sk = sock->sk;
1156 struct socket_wq *wq;
1162 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1163 fasync_helper(fd, filp, on, &wq->fasync_list);
1165 if (!wq->fasync_list)
1166 sock_reset_flag(sk, SOCK_FASYNC);
1168 sock_set_flag(sk, SOCK_FASYNC);
1174 /* This function may be called only under rcu_lock */
1176 int sock_wake_async(struct socket_wq *wq, int how, int band)
1178 if (!wq || !wq->fasync_list)
1182 case SOCK_WAKE_WAITD:
1183 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1186 case SOCK_WAKE_SPACE:
1187 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1192 kill_fasync(&wq->fasync_list, SIGIO, band);
1195 kill_fasync(&wq->fasync_list, SIGURG, band);
1200 EXPORT_SYMBOL(sock_wake_async);
1202 int __sock_create(struct net *net, int family, int type, int protocol,
1203 struct socket **res, int kern)
1206 struct socket *sock;
1207 const struct net_proto_family *pf;
1210 * Check protocol is in range
1212 if (family < 0 || family >= NPROTO)
1213 return -EAFNOSUPPORT;
1214 if (type < 0 || type >= SOCK_MAX)
1219 This uglymoron is moved from INET layer to here to avoid
1220 deadlock in module load.
1222 if (family == PF_INET && type == SOCK_PACKET) {
1223 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1228 err = security_socket_create(family, type, protocol, kern);
1233 * Allocate the socket and allow the family to set things up. if
1234 * the protocol is 0, the family is instructed to select an appropriate
1237 sock = sock_alloc();
1239 net_warn_ratelimited("socket: no more sockets\n");
1240 return -ENFILE; /* Not exactly a match, but its the
1241 closest posix thing */
1246 #ifdef CONFIG_MODULES
1247 /* Attempt to load a protocol module if the find failed.
1249 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1250 * requested real, full-featured networking support upon configuration.
1251 * Otherwise module support will break!
1253 if (rcu_access_pointer(net_families[family]) == NULL)
1254 request_module("net-pf-%d", family);
1258 pf = rcu_dereference(net_families[family]);
1259 err = -EAFNOSUPPORT;
1264 * We will call the ->create function, that possibly is in a loadable
1265 * module, so we have to bump that loadable module refcnt first.
1267 if (!try_module_get(pf->owner))
1270 /* Now protected by module ref count */
1273 err = pf->create(net, sock, protocol, kern);
1275 goto out_module_put;
1278 * Now to bump the refcnt of the [loadable] module that owns this
1279 * socket at sock_release time we decrement its refcnt.
1281 if (!try_module_get(sock->ops->owner))
1282 goto out_module_busy;
1285 * Now that we're done with the ->create function, the [loadable]
1286 * module can have its refcnt decremented
1288 module_put(pf->owner);
1289 err = security_socket_post_create(sock, family, type, protocol, kern);
1291 goto out_sock_release;
1297 err = -EAFNOSUPPORT;
1300 module_put(pf->owner);
1307 goto out_sock_release;
1309 EXPORT_SYMBOL(__sock_create);
1311 int sock_create(int family, int type, int protocol, struct socket **res)
1313 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1315 EXPORT_SYMBOL(sock_create);
1317 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1319 return __sock_create(net, family, type, protocol, res, 1);
1321 EXPORT_SYMBOL(sock_create_kern);
1323 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1326 struct socket *sock;
1329 /* Check the SOCK_* constants for consistency. */
1330 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1331 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1332 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1333 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1335 flags = type & ~SOCK_TYPE_MASK;
1336 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1338 type &= SOCK_TYPE_MASK;
1340 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1341 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1343 retval = sock_create(family, type, protocol, &sock);
1347 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1352 /* It may be already another descriptor 8) Not kernel problem. */
1361 * Create a pair of connected sockets.
1364 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1365 int __user *, usockvec)
1367 struct socket *sock1, *sock2;
1369 struct file *newfile1, *newfile2;
1372 flags = type & ~SOCK_TYPE_MASK;
1373 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1375 type &= SOCK_TYPE_MASK;
1377 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1378 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1381 * Obtain the first socket and check if the underlying protocol
1382 * supports the socketpair call.
1385 err = sock_create(family, type, protocol, &sock1);
1389 err = sock_create(family, type, protocol, &sock2);
1393 err = sock1->ops->socketpair(sock1, sock2);
1395 goto out_release_both;
1397 fd1 = get_unused_fd_flags(flags);
1398 if (unlikely(fd1 < 0)) {
1400 goto out_release_both;
1403 fd2 = get_unused_fd_flags(flags);
1404 if (unlikely(fd2 < 0)) {
1406 goto out_put_unused_1;
1409 newfile1 = sock_alloc_file(sock1, flags, NULL);
1410 if (IS_ERR(newfile1)) {
1411 err = PTR_ERR(newfile1);
1412 goto out_put_unused_both;
1415 newfile2 = sock_alloc_file(sock2, flags, NULL);
1416 if (IS_ERR(newfile2)) {
1417 err = PTR_ERR(newfile2);
1421 err = put_user(fd1, &usockvec[0]);
1425 err = put_user(fd2, &usockvec[1]);
1429 audit_fd_pair(fd1, fd2);
1431 fd_install(fd1, newfile1);
1432 fd_install(fd2, newfile2);
1433 /* fd1 and fd2 may be already another descriptors.
1434 * Not kernel problem.
1450 sock_release(sock2);
1453 out_put_unused_both:
1458 sock_release(sock2);
1460 sock_release(sock1);
1466 * Bind a name to a socket. Nothing much to do here since it's
1467 * the protocol's responsibility to handle the local address.
1469 * We move the socket address to kernel space before we call
1470 * the protocol layer (having also checked the address is ok).
1473 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1475 struct socket *sock;
1476 struct sockaddr_storage address;
1477 int err, fput_needed;
1479 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1481 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1483 err = security_socket_bind(sock,
1484 (struct sockaddr *)&address,
1487 err = sock->ops->bind(sock,
1491 fput_light(sock->file, fput_needed);
1497 * Perform a listen. Basically, we allow the protocol to do anything
1498 * necessary for a listen, and if that works, we mark the socket as
1499 * ready for listening.
1502 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1504 struct socket *sock;
1505 int err, fput_needed;
1508 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1510 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1511 if ((unsigned int)backlog > somaxconn)
1512 backlog = somaxconn;
1514 err = security_socket_listen(sock, backlog);
1516 err = sock->ops->listen(sock, backlog);
1518 fput_light(sock->file, fput_needed);
1524 * For accept, we attempt to create a new socket, set up the link
1525 * with the client, wake up the client, then return the new
1526 * connected fd. We collect the address of the connector in kernel
1527 * space and move it to user at the very end. This is unclean because
1528 * we open the socket then return an error.
1530 * 1003.1g adds the ability to recvmsg() to query connection pending
1531 * status to recvmsg. We need to add that support in a way thats
1532 * clean when we restucture accept also.
1535 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1536 int __user *, upeer_addrlen, int, flags)
1538 struct socket *sock, *newsock;
1539 struct file *newfile;
1540 int err, len, newfd, fput_needed;
1541 struct sockaddr_storage address;
1543 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1546 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1547 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1549 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1554 newsock = sock_alloc();
1558 newsock->type = sock->type;
1559 newsock->ops = sock->ops;
1562 * We don't need try_module_get here, as the listening socket (sock)
1563 * has the protocol module (sock->ops->owner) held.
1565 __module_get(newsock->ops->owner);
1567 newfd = get_unused_fd_flags(flags);
1568 if (unlikely(newfd < 0)) {
1570 sock_release(newsock);
1573 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1574 if (IS_ERR(newfile)) {
1575 err = PTR_ERR(newfile);
1576 put_unused_fd(newfd);
1577 sock_release(newsock);
1581 err = security_socket_accept(sock, newsock);
1585 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1589 if (upeer_sockaddr) {
1590 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1592 err = -ECONNABORTED;
1595 err = move_addr_to_user(&address,
1596 len, upeer_sockaddr, upeer_addrlen);
1601 /* File flags are not inherited via accept() unlike another OSes. */
1603 fd_install(newfd, newfile);
1607 fput_light(sock->file, fput_needed);
1612 put_unused_fd(newfd);
1616 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1617 int __user *, upeer_addrlen)
1619 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1623 * Attempt to connect to a socket with the server address. The address
1624 * is in user space so we verify it is OK and move it to kernel space.
1626 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1629 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1630 * other SEQPACKET protocols that take time to connect() as it doesn't
1631 * include the -EINPROGRESS status for such sockets.
1634 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1637 struct socket *sock;
1638 struct sockaddr_storage address;
1639 int err, fput_needed;
1641 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1644 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1649 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1653 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1654 sock->file->f_flags);
1656 fput_light(sock->file, fput_needed);
1662 * Get the local address ('name') of a socket object. Move the obtained
1663 * name to user space.
1666 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1667 int __user *, usockaddr_len)
1669 struct socket *sock;
1670 struct sockaddr_storage address;
1671 int len, err, fput_needed;
1673 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1677 err = security_socket_getsockname(sock);
1681 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1684 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1687 fput_light(sock->file, fput_needed);
1693 * Get the remote address ('name') of a socket object. Move the obtained
1694 * name to user space.
1697 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1698 int __user *, usockaddr_len)
1700 struct socket *sock;
1701 struct sockaddr_storage address;
1702 int len, err, fput_needed;
1704 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1706 err = security_socket_getpeername(sock);
1708 fput_light(sock->file, fput_needed);
1713 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1716 err = move_addr_to_user(&address, len, usockaddr,
1718 fput_light(sock->file, fput_needed);
1724 * Send a datagram to a given address. We move the address into kernel
1725 * space and check the user space data area is readable before invoking
1729 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1730 unsigned int, flags, struct sockaddr __user *, addr,
1733 struct socket *sock;
1734 struct sockaddr_storage address;
1740 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1743 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1747 msg.msg_name = NULL;
1748 msg.msg_control = NULL;
1749 msg.msg_controllen = 0;
1750 msg.msg_namelen = 0;
1752 err = move_addr_to_kernel(addr, addr_len, &address);
1755 msg.msg_name = (struct sockaddr *)&address;
1756 msg.msg_namelen = addr_len;
1758 if (sock->file->f_flags & O_NONBLOCK)
1759 flags |= MSG_DONTWAIT;
1760 msg.msg_flags = flags;
1761 err = sock_sendmsg(sock, &msg);
1764 fput_light(sock->file, fput_needed);
1770 * Send a datagram down a socket.
1773 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1774 unsigned int, flags)
1776 return sys_sendto(fd, buff, len, flags, NULL, 0);
1780 * Receive a frame from the socket and optionally record the address of the
1781 * sender. We verify the buffers are writable and if needed move the
1782 * sender address from kernel to user space.
1785 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1786 unsigned int, flags, struct sockaddr __user *, addr,
1787 int __user *, addr_len)
1789 struct socket *sock;
1792 struct sockaddr_storage address;
1796 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1799 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1803 msg.msg_control = NULL;
1804 msg.msg_controllen = 0;
1805 /* Save some cycles and don't copy the address if not needed */
1806 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1807 /* We assume all kernel code knows the size of sockaddr_storage */
1808 msg.msg_namelen = 0;
1809 msg.msg_iocb = NULL;
1811 if (sock->file->f_flags & O_NONBLOCK)
1812 flags |= MSG_DONTWAIT;
1813 err = sock_recvmsg(sock, &msg, flags);
1815 if (err >= 0 && addr != NULL) {
1816 err2 = move_addr_to_user(&address,
1817 msg.msg_namelen, addr, addr_len);
1822 fput_light(sock->file, fput_needed);
1828 * Receive a datagram from a socket.
1831 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1832 unsigned int, flags)
1834 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1838 * Set a socket option. Because we don't know the option lengths we have
1839 * to pass the user mode parameter for the protocols to sort out.
1842 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1843 char __user *, optval, int, optlen)
1845 int err, fput_needed;
1846 struct socket *sock;
1851 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1853 err = security_socket_setsockopt(sock, level, optname);
1857 if (level == SOL_SOCKET)
1859 sock_setsockopt(sock, level, optname, optval,
1863 sock->ops->setsockopt(sock, level, optname, optval,
1866 fput_light(sock->file, fput_needed);
1872 * Get a socket option. Because we don't know the option lengths we have
1873 * to pass a user mode parameter for the protocols to sort out.
1876 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1877 char __user *, optval, int __user *, optlen)
1879 int err, fput_needed;
1880 struct socket *sock;
1882 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1884 err = security_socket_getsockopt(sock, level, optname);
1888 if (level == SOL_SOCKET)
1890 sock_getsockopt(sock, level, optname, optval,
1894 sock->ops->getsockopt(sock, level, optname, optval,
1897 fput_light(sock->file, fput_needed);
1903 * Shutdown a socket.
1906 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1908 int err, fput_needed;
1909 struct socket *sock;
1911 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1913 err = security_socket_shutdown(sock, how);
1915 err = sock->ops->shutdown(sock, how);
1916 fput_light(sock->file, fput_needed);
1921 /* A couple of helpful macros for getting the address of the 32/64 bit
1922 * fields which are the same type (int / unsigned) on our platforms.
1924 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1925 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1926 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1928 struct used_address {
1929 struct sockaddr_storage name;
1930 unsigned int name_len;
1933 static int copy_msghdr_from_user(struct msghdr *kmsg,
1934 struct user_msghdr __user *umsg,
1935 struct sockaddr __user **save_addr,
1938 struct user_msghdr msg;
1941 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1944 kmsg->msg_control = (void __force *)msg.msg_control;
1945 kmsg->msg_controllen = msg.msg_controllen;
1946 kmsg->msg_flags = msg.msg_flags;
1948 kmsg->msg_namelen = msg.msg_namelen;
1950 kmsg->msg_namelen = 0;
1952 if (kmsg->msg_namelen < 0)
1955 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1956 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1959 *save_addr = msg.msg_name;
1961 if (msg.msg_name && kmsg->msg_namelen) {
1963 err = move_addr_to_kernel(msg.msg_name,
1970 kmsg->msg_name = NULL;
1971 kmsg->msg_namelen = 0;
1974 if (msg.msg_iovlen > UIO_MAXIOV)
1977 kmsg->msg_iocb = NULL;
1979 return import_iovec(save_addr ? READ : WRITE,
1980 msg.msg_iov, msg.msg_iovlen,
1981 UIO_FASTIOV, iov, &kmsg->msg_iter);
1984 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1985 struct msghdr *msg_sys, unsigned int flags,
1986 struct used_address *used_address,
1987 unsigned int allowed_msghdr_flags)
1989 struct compat_msghdr __user *msg_compat =
1990 (struct compat_msghdr __user *)msg;
1991 struct sockaddr_storage address;
1992 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1993 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1994 __aligned(sizeof(__kernel_size_t));
1995 /* 20 is size of ipv6_pktinfo */
1996 unsigned char *ctl_buf = ctl;
2000 msg_sys->msg_name = &address;
2002 if (MSG_CMSG_COMPAT & flags)
2003 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2005 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2011 if (msg_sys->msg_controllen > INT_MAX)
2013 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2014 ctl_len = msg_sys->msg_controllen;
2015 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2017 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2021 ctl_buf = msg_sys->msg_control;
2022 ctl_len = msg_sys->msg_controllen;
2023 } else if (ctl_len) {
2024 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2025 CMSG_ALIGN(sizeof(struct cmsghdr)));
2026 if (ctl_len > sizeof(ctl)) {
2027 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2028 if (ctl_buf == NULL)
2033 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2034 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2035 * checking falls down on this.
2037 if (copy_from_user(ctl_buf,
2038 (void __user __force *)msg_sys->msg_control,
2041 msg_sys->msg_control = ctl_buf;
2043 msg_sys->msg_flags = flags;
2045 if (sock->file->f_flags & O_NONBLOCK)
2046 msg_sys->msg_flags |= MSG_DONTWAIT;
2048 * If this is sendmmsg() and current destination address is same as
2049 * previously succeeded address, omit asking LSM's decision.
2050 * used_address->name_len is initialized to UINT_MAX so that the first
2051 * destination address never matches.
2053 if (used_address && msg_sys->msg_name &&
2054 used_address->name_len == msg_sys->msg_namelen &&
2055 !memcmp(&used_address->name, msg_sys->msg_name,
2056 used_address->name_len)) {
2057 err = sock_sendmsg_nosec(sock, msg_sys);
2060 err = sock_sendmsg(sock, msg_sys);
2062 * If this is sendmmsg() and sending to current destination address was
2063 * successful, remember it.
2065 if (used_address && err >= 0) {
2066 used_address->name_len = msg_sys->msg_namelen;
2067 if (msg_sys->msg_name)
2068 memcpy(&used_address->name, msg_sys->msg_name,
2069 used_address->name_len);
2074 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2081 * BSD sendmsg interface
2084 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2086 int fput_needed, err;
2087 struct msghdr msg_sys;
2088 struct socket *sock;
2090 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2094 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2096 fput_light(sock->file, fput_needed);
2101 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2103 if (flags & MSG_CMSG_COMPAT)
2105 return __sys_sendmsg(fd, msg, flags);
2109 * Linux sendmmsg interface
2112 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2115 int fput_needed, err, datagrams;
2116 struct socket *sock;
2117 struct mmsghdr __user *entry;
2118 struct compat_mmsghdr __user *compat_entry;
2119 struct msghdr msg_sys;
2120 struct used_address used_address;
2121 unsigned int oflags = flags;
2123 if (vlen > UIO_MAXIOV)
2128 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2132 used_address.name_len = UINT_MAX;
2134 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2138 while (datagrams < vlen) {
2139 if (datagrams == vlen - 1)
2142 if (MSG_CMSG_COMPAT & flags) {
2143 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2144 &msg_sys, flags, &used_address, MSG_EOR);
2147 err = __put_user(err, &compat_entry->msg_len);
2150 err = ___sys_sendmsg(sock,
2151 (struct user_msghdr __user *)entry,
2152 &msg_sys, flags, &used_address, MSG_EOR);
2155 err = put_user(err, &entry->msg_len);
2162 if (msg_data_left(&msg_sys))
2167 fput_light(sock->file, fput_needed);
2169 /* We only return an error if no datagrams were able to be sent */
2176 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2177 unsigned int, vlen, unsigned int, flags)
2179 if (flags & MSG_CMSG_COMPAT)
2181 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2184 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2185 struct msghdr *msg_sys, unsigned int flags, int nosec)
2187 struct compat_msghdr __user *msg_compat =
2188 (struct compat_msghdr __user *)msg;
2189 struct iovec iovstack[UIO_FASTIOV];
2190 struct iovec *iov = iovstack;
2191 unsigned long cmsg_ptr;
2195 /* kernel mode address */
2196 struct sockaddr_storage addr;
2198 /* user mode address pointers */
2199 struct sockaddr __user *uaddr;
2200 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2202 msg_sys->msg_name = &addr;
2204 if (MSG_CMSG_COMPAT & flags)
2205 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2207 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2211 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2212 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2214 /* We assume all kernel code knows the size of sockaddr_storage */
2215 msg_sys->msg_namelen = 0;
2217 if (sock->file->f_flags & O_NONBLOCK)
2218 flags |= MSG_DONTWAIT;
2219 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2224 if (uaddr != NULL) {
2225 err = move_addr_to_user(&addr,
2226 msg_sys->msg_namelen, uaddr,
2231 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2235 if (MSG_CMSG_COMPAT & flags)
2236 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2237 &msg_compat->msg_controllen);
2239 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2240 &msg->msg_controllen);
2251 * BSD recvmsg interface
2254 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2256 int fput_needed, err;
2257 struct msghdr msg_sys;
2258 struct socket *sock;
2260 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2264 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2266 fput_light(sock->file, fput_needed);
2271 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2272 unsigned int, flags)
2274 if (flags & MSG_CMSG_COMPAT)
2276 return __sys_recvmsg(fd, msg, flags);
2280 * Linux recvmmsg interface
2283 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2284 unsigned int flags, struct timespec *timeout)
2286 int fput_needed, err, datagrams;
2287 struct socket *sock;
2288 struct mmsghdr __user *entry;
2289 struct compat_mmsghdr __user *compat_entry;
2290 struct msghdr msg_sys;
2291 struct timespec64 end_time;
2292 struct timespec64 timeout64;
2295 poll_select_set_timeout(&end_time, timeout->tv_sec,
2301 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2305 err = sock_error(sock->sk);
2312 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2314 while (datagrams < vlen) {
2316 * No need to ask LSM for more than the first datagram.
2318 if (MSG_CMSG_COMPAT & flags) {
2319 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2320 &msg_sys, flags & ~MSG_WAITFORONE,
2324 err = __put_user(err, &compat_entry->msg_len);
2327 err = ___sys_recvmsg(sock,
2328 (struct user_msghdr __user *)entry,
2329 &msg_sys, flags & ~MSG_WAITFORONE,
2333 err = put_user(err, &entry->msg_len);
2341 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2342 if (flags & MSG_WAITFORONE)
2343 flags |= MSG_DONTWAIT;
2346 ktime_get_ts64(&timeout64);
2347 *timeout = timespec64_to_timespec(
2348 timespec64_sub(end_time, timeout64));
2349 if (timeout->tv_sec < 0) {
2350 timeout->tv_sec = timeout->tv_nsec = 0;
2354 /* Timeout, return less than vlen datagrams */
2355 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2359 /* Out of band data, return right away */
2360 if (msg_sys.msg_flags & MSG_OOB)
2368 if (datagrams == 0) {
2374 * We may return less entries than requested (vlen) if the
2375 * sock is non block and there aren't enough datagrams...
2377 if (err != -EAGAIN) {
2379 * ... or if recvmsg returns an error after we
2380 * received some datagrams, where we record the
2381 * error to return on the next call or if the
2382 * app asks about it using getsockopt(SO_ERROR).
2384 sock->sk->sk_err = -err;
2387 fput_light(sock->file, fput_needed);
2392 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2393 unsigned int, vlen, unsigned int, flags,
2394 struct timespec __user *, timeout)
2397 struct timespec timeout_sys;
2399 if (flags & MSG_CMSG_COMPAT)
2403 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2405 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2408 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2410 if (datagrams > 0 &&
2411 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2412 datagrams = -EFAULT;
2417 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2418 /* Argument list sizes for sys_socketcall */
2419 #define AL(x) ((x) * sizeof(unsigned long))
2420 static const unsigned char nargs[21] = {
2421 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2422 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2423 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2430 * System call vectors.
2432 * Argument checking cleaned up. Saved 20% in size.
2433 * This function doesn't need to set the kernel lock because
2434 * it is set by the callees.
2437 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2439 unsigned long a[AUDITSC_ARGS];
2440 unsigned long a0, a1;
2444 if (call < 1 || call > SYS_SENDMMSG)
2448 if (len > sizeof(a))
2451 /* copy_from_user should be SMP safe. */
2452 if (copy_from_user(a, args, len))
2455 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2464 err = sys_socket(a0, a1, a[2]);
2467 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2470 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2473 err = sys_listen(a0, a1);
2476 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2477 (int __user *)a[2], 0);
2479 case SYS_GETSOCKNAME:
2481 sys_getsockname(a0, (struct sockaddr __user *)a1,
2482 (int __user *)a[2]);
2484 case SYS_GETPEERNAME:
2486 sys_getpeername(a0, (struct sockaddr __user *)a1,
2487 (int __user *)a[2]);
2489 case SYS_SOCKETPAIR:
2490 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2493 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2496 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2497 (struct sockaddr __user *)a[4], a[5]);
2500 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2503 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2504 (struct sockaddr __user *)a[4],
2505 (int __user *)a[5]);
2508 err = sys_shutdown(a0, a1);
2510 case SYS_SETSOCKOPT:
2511 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2513 case SYS_GETSOCKOPT:
2515 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2516 (int __user *)a[4]);
2519 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2522 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2525 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2528 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2529 (struct timespec __user *)a[4]);
2532 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2533 (int __user *)a[2], a[3]);
2542 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2545 * sock_register - add a socket protocol handler
2546 * @ops: description of protocol
2548 * This function is called by a protocol handler that wants to
2549 * advertise its address family, and have it linked into the
2550 * socket interface. The value ops->family corresponds to the
2551 * socket system call protocol family.
2553 int sock_register(const struct net_proto_family *ops)
2557 if (ops->family >= NPROTO) {
2558 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2562 spin_lock(&net_family_lock);
2563 if (rcu_dereference_protected(net_families[ops->family],
2564 lockdep_is_held(&net_family_lock)))
2567 rcu_assign_pointer(net_families[ops->family], ops);
2570 spin_unlock(&net_family_lock);
2572 pr_info("NET: Registered protocol family %d\n", ops->family);
2575 EXPORT_SYMBOL(sock_register);
2578 * sock_unregister - remove a protocol handler
2579 * @family: protocol family to remove
2581 * This function is called by a protocol handler that wants to
2582 * remove its address family, and have it unlinked from the
2583 * new socket creation.
2585 * If protocol handler is a module, then it can use module reference
2586 * counts to protect against new references. If protocol handler is not
2587 * a module then it needs to provide its own protection in
2588 * the ops->create routine.
2590 void sock_unregister(int family)
2592 BUG_ON(family < 0 || family >= NPROTO);
2594 spin_lock(&net_family_lock);
2595 RCU_INIT_POINTER(net_families[family], NULL);
2596 spin_unlock(&net_family_lock);
2600 pr_info("NET: Unregistered protocol family %d\n", family);
2602 EXPORT_SYMBOL(sock_unregister);
2604 static int __init sock_init(void)
2608 * Initialize the network sysctl infrastructure.
2610 err = net_sysctl_init();
2615 * Initialize skbuff SLAB cache
2620 * Initialize the protocols module.
2625 err = register_filesystem(&sock_fs_type);
2628 sock_mnt = kern_mount(&sock_fs_type);
2629 if (IS_ERR(sock_mnt)) {
2630 err = PTR_ERR(sock_mnt);
2634 /* The real protocol initialization is performed in later initcalls.
2637 #ifdef CONFIG_NETFILTER
2638 err = netfilter_init();
2643 ptp_classifier_init();
2649 unregister_filesystem(&sock_fs_type);
2654 core_initcall(sock_init); /* early initcall */
2656 static int __init jit_init(void)
2658 #ifdef CONFIG_BPF_JIT_ALWAYS_ON
2663 pure_initcall(jit_init);
2665 #ifdef CONFIG_PROC_FS
2666 void socket_seq_show(struct seq_file *seq)
2671 for_each_possible_cpu(cpu)
2672 counter += per_cpu(sockets_in_use, cpu);
2674 /* It can be negative, by the way. 8) */
2678 seq_printf(seq, "sockets: used %d\n", counter);
2680 #endif /* CONFIG_PROC_FS */
2682 #ifdef CONFIG_COMPAT
2683 static int do_siocgstamp(struct net *net, struct socket *sock,
2684 unsigned int cmd, void __user *up)
2686 mm_segment_t old_fs = get_fs();
2691 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2694 err = compat_put_timeval(&ktv, up);
2699 static int do_siocgstampns(struct net *net, struct socket *sock,
2700 unsigned int cmd, void __user *up)
2702 mm_segment_t old_fs = get_fs();
2703 struct timespec kts;
2707 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2710 err = compat_put_timespec(&kts, up);
2715 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2717 struct ifreq __user *uifr;
2720 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2721 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2724 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2728 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2734 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2736 struct compat_ifconf ifc32;
2738 struct ifconf __user *uifc;
2739 struct compat_ifreq __user *ifr32;
2740 struct ifreq __user *ifr;
2744 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2747 memset(&ifc, 0, sizeof(ifc));
2748 if (ifc32.ifcbuf == 0) {
2752 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2754 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2755 sizeof(struct ifreq);
2756 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2758 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2759 ifr32 = compat_ptr(ifc32.ifcbuf);
2760 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2761 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2767 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2770 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2774 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2778 ifr32 = compat_ptr(ifc32.ifcbuf);
2780 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2781 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2782 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2788 if (ifc32.ifcbuf == 0) {
2789 /* Translate from 64-bit structure multiple to
2793 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2798 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2804 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2806 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2807 bool convert_in = false, convert_out = false;
2808 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2809 struct ethtool_rxnfc __user *rxnfc;
2810 struct ifreq __user *ifr;
2811 u32 rule_cnt = 0, actual_rule_cnt;
2816 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2819 compat_rxnfc = compat_ptr(data);
2821 if (get_user(ethcmd, &compat_rxnfc->cmd))
2824 /* Most ethtool structures are defined without padding.
2825 * Unfortunately struct ethtool_rxnfc is an exception.
2830 case ETHTOOL_GRXCLSRLALL:
2831 /* Buffer size is variable */
2832 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2834 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2836 buf_size += rule_cnt * sizeof(u32);
2838 case ETHTOOL_GRXRINGS:
2839 case ETHTOOL_GRXCLSRLCNT:
2840 case ETHTOOL_GRXCLSRULE:
2841 case ETHTOOL_SRXCLSRLINS:
2844 case ETHTOOL_SRXCLSRLDEL:
2845 buf_size += sizeof(struct ethtool_rxnfc);
2850 ifr = compat_alloc_user_space(buf_size);
2851 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2853 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2856 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2857 &ifr->ifr_ifru.ifru_data))
2861 /* We expect there to be holes between fs.m_ext and
2862 * fs.ring_cookie and at the end of fs, but nowhere else.
2864 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2865 sizeof(compat_rxnfc->fs.m_ext) !=
2866 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2867 sizeof(rxnfc->fs.m_ext));
2869 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2870 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2871 offsetof(struct ethtool_rxnfc, fs.location) -
2872 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2874 if (copy_in_user(rxnfc, compat_rxnfc,
2875 (void __user *)(&rxnfc->fs.m_ext + 1) -
2876 (void __user *)rxnfc) ||
2877 copy_in_user(&rxnfc->fs.ring_cookie,
2878 &compat_rxnfc->fs.ring_cookie,
2879 (void __user *)(&rxnfc->fs.location + 1) -
2880 (void __user *)&rxnfc->fs.ring_cookie) ||
2881 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2882 sizeof(rxnfc->rule_cnt)))
2886 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2891 if (copy_in_user(compat_rxnfc, rxnfc,
2892 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2893 (const void __user *)rxnfc) ||
2894 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2895 &rxnfc->fs.ring_cookie,
2896 (const void __user *)(&rxnfc->fs.location + 1) -
2897 (const void __user *)&rxnfc->fs.ring_cookie) ||
2898 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2899 sizeof(rxnfc->rule_cnt)))
2902 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2903 /* As an optimisation, we only copy the actual
2904 * number of rules that the underlying
2905 * function returned. Since Mallory might
2906 * change the rule count in user memory, we
2907 * check that it is less than the rule count
2908 * originally given (as the user buffer size),
2909 * which has been range-checked.
2911 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2913 if (actual_rule_cnt < rule_cnt)
2914 rule_cnt = actual_rule_cnt;
2915 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2916 &rxnfc->rule_locs[0],
2917 rule_cnt * sizeof(u32)))
2925 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2928 compat_uptr_t uptr32;
2929 struct ifreq __user *uifr;
2931 uifr = compat_alloc_user_space(sizeof(*uifr));
2932 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2935 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2938 uptr = compat_ptr(uptr32);
2940 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2943 return dev_ioctl(net, SIOCWANDEV, uifr);
2946 static int bond_ioctl(struct net *net, unsigned int cmd,
2947 struct compat_ifreq __user *ifr32)
2950 mm_segment_t old_fs;
2954 case SIOCBONDENSLAVE:
2955 case SIOCBONDRELEASE:
2956 case SIOCBONDSETHWADDR:
2957 case SIOCBONDCHANGEACTIVE:
2958 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2963 err = dev_ioctl(net, cmd,
2964 (struct ifreq __user __force *) &kifr);
2969 return -ENOIOCTLCMD;
2973 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2974 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2975 struct compat_ifreq __user *u_ifreq32)
2977 struct ifreq __user *u_ifreq64;
2978 char tmp_buf[IFNAMSIZ];
2979 void __user *data64;
2982 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2985 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2987 data64 = compat_ptr(data32);
2989 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2991 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2994 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2997 return dev_ioctl(net, cmd, u_ifreq64);
3000 static int dev_ifsioc(struct net *net, struct socket *sock,
3001 unsigned int cmd, struct compat_ifreq __user *uifr32)
3003 struct ifreq __user *uifr;
3006 uifr = compat_alloc_user_space(sizeof(*uifr));
3007 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3010 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3021 case SIOCGIFBRDADDR:
3022 case SIOCGIFDSTADDR:
3023 case SIOCGIFNETMASK:
3028 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3036 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3037 struct compat_ifreq __user *uifr32)
3040 struct compat_ifmap __user *uifmap32;
3041 mm_segment_t old_fs;
3044 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3045 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3046 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3047 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3048 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3049 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3050 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3051 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3057 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3060 if (cmd == SIOCGIFMAP && !err) {
3061 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3062 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3063 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3064 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3065 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3066 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3067 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3076 struct sockaddr rt_dst; /* target address */
3077 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3078 struct sockaddr rt_genmask; /* target network mask (IP) */
3079 unsigned short rt_flags;
3082 unsigned char rt_tos;
3083 unsigned char rt_class;
3085 short rt_metric; /* +1 for binary compatibility! */
3086 /* char * */ u32 rt_dev; /* forcing the device at add */
3087 u32 rt_mtu; /* per route MTU/Window */
3088 u32 rt_window; /* Window clamping */
3089 unsigned short rt_irtt; /* Initial RTT */
3092 struct in6_rtmsg32 {
3093 struct in6_addr rtmsg_dst;
3094 struct in6_addr rtmsg_src;
3095 struct in6_addr rtmsg_gateway;
3105 static int routing_ioctl(struct net *net, struct socket *sock,
3106 unsigned int cmd, void __user *argp)
3110 struct in6_rtmsg r6;
3114 mm_segment_t old_fs = get_fs();
3116 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3117 struct in6_rtmsg32 __user *ur6 = argp;
3118 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3119 3 * sizeof(struct in6_addr));
3120 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3121 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3122 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3123 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3124 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3125 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3126 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3130 struct rtentry32 __user *ur4 = argp;
3131 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3132 3 * sizeof(struct sockaddr));
3133 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3134 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3135 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3136 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3137 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3138 ret |= get_user(rtdev, &(ur4->rt_dev));
3140 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3141 r4.rt_dev = (char __user __force *)devname;
3155 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3162 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3163 * for some operations; this forces use of the newer bridge-utils that
3164 * use compatible ioctls
3166 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3170 if (get_user(tmp, argp))
3172 if (tmp == BRCTL_GET_VERSION)
3173 return BRCTL_VERSION + 1;
3177 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3178 unsigned int cmd, unsigned long arg)
3180 void __user *argp = compat_ptr(arg);
3181 struct sock *sk = sock->sk;
3182 struct net *net = sock_net(sk);
3184 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3185 return compat_ifr_data_ioctl(net, cmd, argp);
3190 return old_bridge_ioctl(argp);
3192 return dev_ifname32(net, argp);
3194 return dev_ifconf(net, argp);
3196 return ethtool_ioctl(net, argp);
3198 return compat_siocwandev(net, argp);
3201 return compat_sioc_ifmap(net, cmd, argp);
3202 case SIOCBONDENSLAVE:
3203 case SIOCBONDRELEASE:
3204 case SIOCBONDSETHWADDR:
3205 case SIOCBONDCHANGEACTIVE:
3206 return bond_ioctl(net, cmd, argp);
3209 return routing_ioctl(net, sock, cmd, argp);
3211 return do_siocgstamp(net, sock, cmd, argp);
3213 return do_siocgstampns(net, sock, cmd, argp);
3214 case SIOCBONDSLAVEINFOQUERY:
3215 case SIOCBONDINFOQUERY:
3218 return compat_ifr_data_ioctl(net, cmd, argp);
3231 return sock_ioctl(file, cmd, arg);
3248 case SIOCSIFHWBROADCAST:
3250 case SIOCGIFBRDADDR:
3251 case SIOCSIFBRDADDR:
3252 case SIOCGIFDSTADDR:
3253 case SIOCSIFDSTADDR:
3254 case SIOCGIFNETMASK:
3255 case SIOCSIFNETMASK:
3266 return dev_ifsioc(net, sock, cmd, argp);
3272 return sock_do_ioctl(net, sock, cmd, arg);
3275 return -ENOIOCTLCMD;
3278 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3281 struct socket *sock = file->private_data;
3282 int ret = -ENOIOCTLCMD;
3289 if (sock->ops->compat_ioctl)
3290 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3292 if (ret == -ENOIOCTLCMD &&
3293 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3294 ret = compat_wext_handle_ioctl(net, cmd, arg);
3296 if (ret == -ENOIOCTLCMD)
3297 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3303 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3305 return sock->ops->bind(sock, addr, addrlen);
3307 EXPORT_SYMBOL(kernel_bind);
3309 int kernel_listen(struct socket *sock, int backlog)
3311 return sock->ops->listen(sock, backlog);
3313 EXPORT_SYMBOL(kernel_listen);
3315 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3317 struct sock *sk = sock->sk;
3320 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3325 err = sock->ops->accept(sock, *newsock, flags, true);
3327 sock_release(*newsock);
3332 (*newsock)->ops = sock->ops;
3333 __module_get((*newsock)->ops->owner);
3338 EXPORT_SYMBOL(kernel_accept);
3340 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3343 return sock->ops->connect(sock, addr, addrlen, flags);
3345 EXPORT_SYMBOL(kernel_connect);
3347 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3350 return sock->ops->getname(sock, addr, addrlen, 0);
3352 EXPORT_SYMBOL(kernel_getsockname);
3354 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3357 return sock->ops->getname(sock, addr, addrlen, 1);
3359 EXPORT_SYMBOL(kernel_getpeername);
3361 int kernel_getsockopt(struct socket *sock, int level, int optname,
3362 char *optval, int *optlen)
3364 mm_segment_t oldfs = get_fs();
3365 char __user *uoptval;
3366 int __user *uoptlen;
3369 uoptval = (char __user __force *) optval;
3370 uoptlen = (int __user __force *) optlen;
3373 if (level == SOL_SOCKET)
3374 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3376 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3381 EXPORT_SYMBOL(kernel_getsockopt);
3383 int kernel_setsockopt(struct socket *sock, int level, int optname,
3384 char *optval, unsigned int optlen)
3386 mm_segment_t oldfs = get_fs();
3387 char __user *uoptval;
3390 uoptval = (char __user __force *) optval;
3393 if (level == SOL_SOCKET)
3394 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3396 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3401 EXPORT_SYMBOL(kernel_setsockopt);
3403 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3404 size_t size, int flags)
3406 if (sock->ops->sendpage)
3407 return sock->ops->sendpage(sock, page, offset, size, flags);
3409 return sock_no_sendpage(sock, page, offset, size, flags);
3411 EXPORT_SYMBOL(kernel_sendpage);
3413 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3414 size_t size, int flags)
3416 struct socket *sock = sk->sk_socket;
3418 if (sock->ops->sendpage_locked)
3419 return sock->ops->sendpage_locked(sk, page, offset, size,
3422 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3424 EXPORT_SYMBOL(kernel_sendpage_locked);
3426 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3428 mm_segment_t oldfs = get_fs();
3432 err = sock->ops->ioctl(sock, cmd, arg);
3437 EXPORT_SYMBOL(kernel_sock_ioctl);
3439 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3441 return sock->ops->shutdown(sock, how);
3443 EXPORT_SYMBOL(kernel_sock_shutdown);
3445 /* This routine returns the IP overhead imposed by a socket i.e.
3446 * the length of the underlying IP header, depending on whether
3447 * this is an IPv4 or IPv6 socket and the length from IP options turned
3448 * on at the socket. Assumes that the caller has a lock on the socket.
3450 u32 kernel_sock_ip_overhead(struct sock *sk)
3452 struct inet_sock *inet;
3453 struct ip_options_rcu *opt;
3455 #if IS_ENABLED(CONFIG_IPV6)
3456 struct ipv6_pinfo *np;
3457 struct ipv6_txoptions *optv6 = NULL;
3458 #endif /* IS_ENABLED(CONFIG_IPV6) */
3463 switch (sk->sk_family) {
3466 overhead += sizeof(struct iphdr);
3467 opt = rcu_dereference_protected(inet->inet_opt,
3468 sock_owned_by_user(sk));
3470 overhead += opt->opt.optlen;
3472 #if IS_ENABLED(CONFIG_IPV6)
3475 overhead += sizeof(struct ipv6hdr);
3477 optv6 = rcu_dereference_protected(np->opt,
3478 sock_owned_by_user(sk));
3480 overhead += (optv6->opt_flen + optv6->opt_nflen);
3482 #endif /* IS_ENABLED(CONFIG_IPV6) */
3483 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3487 EXPORT_SYMBOL(kernel_sock_ip_overhead);