1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET An implementation of the SOCKET network access protocol.
5 * Version: @(#)socket.c 1.1.93 18/02/95
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
49 * This module is effectively the top level interface to the BSD socket
52 * Based upon Swansea University Computer Society NET3.039
55 #include <linux/bpf-cgroup.h>
56 #include <linux/ethtool.h>
58 #include <linux/socket.h>
59 #include <linux/file.h>
60 #include <linux/net.h>
61 #include <linux/interrupt.h>
62 #include <linux/thread_info.h>
63 #include <linux/rcupdate.h>
64 #include <linux/netdevice.h>
65 #include <linux/proc_fs.h>
66 #include <linux/seq_file.h>
67 #include <linux/mutex.h>
68 #include <linux/if_bridge.h>
69 #include <linux/if_vlan.h>
70 #include <linux/ptp_classify.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/cache.h>
74 #include <linux/module.h>
75 #include <linux/highmem.h>
76 #include <linux/mount.h>
77 #include <linux/pseudo_fs.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/compat.h>
81 #include <linux/kmod.h>
82 #include <linux/audit.h>
83 #include <linux/wireless.h>
84 #include <linux/nsproxy.h>
85 #include <linux/magic.h>
86 #include <linux/slab.h>
87 #include <linux/xattr.h>
88 #include <linux/nospec.h>
89 #include <linux/indirect_call_wrapper.h>
91 #include <linux/uaccess.h>
92 #include <asm/unistd.h>
94 #include <net/compat.h>
96 #include <net/cls_cgroup.h>
99 #include <linux/netfilter.h>
101 #include <linux/if_tun.h>
102 #include <linux/ipv6_route.h>
103 #include <linux/route.h>
104 #include <linux/termios.h>
105 #include <linux/sockios.h>
106 #include <net/busy_poll.h>
107 #include <linux/errqueue.h>
108 #include <linux/ptp_clock_kernel.h>
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 static int sock_close(struct inode *inode, struct file *file);
120 static __poll_t sock_poll(struct file *file,
121 struct poll_table_struct *wait);
122 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 static long compat_sock_ioctl(struct file *file,
125 unsigned int cmd, unsigned long arg);
127 static int sock_fasync(int fd, struct file *filp, int on);
128 static ssize_t sock_sendpage(struct file *file, struct page *page,
129 int offset, size_t size, loff_t *ppos, int more);
130 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
131 struct pipe_inode_info *pipe, size_t len,
134 #ifdef CONFIG_PROC_FS
135 static void sock_show_fdinfo(struct seq_file *m, struct file *f)
137 struct socket *sock = f->private_data;
139 if (sock->ops->show_fdinfo)
140 sock->ops->show_fdinfo(m, sock);
143 #define sock_show_fdinfo NULL
147 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
148 * in the operation structures but are done directly via the socketcall() multiplexor.
151 static const struct file_operations socket_file_ops = {
152 .owner = THIS_MODULE,
154 .read_iter = sock_read_iter,
155 .write_iter = sock_write_iter,
157 .unlocked_ioctl = sock_ioctl,
159 .compat_ioctl = compat_sock_ioctl,
162 .release = sock_close,
163 .fasync = sock_fasync,
164 .sendpage = sock_sendpage,
165 .splice_write = generic_splice_sendpage,
166 .splice_read = sock_splice_read,
167 .show_fdinfo = sock_show_fdinfo,
170 static const char * const pf_family_names[] = {
171 [PF_UNSPEC] = "PF_UNSPEC",
172 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
173 [PF_INET] = "PF_INET",
174 [PF_AX25] = "PF_AX25",
176 [PF_APPLETALK] = "PF_APPLETALK",
177 [PF_NETROM] = "PF_NETROM",
178 [PF_BRIDGE] = "PF_BRIDGE",
179 [PF_ATMPVC] = "PF_ATMPVC",
181 [PF_INET6] = "PF_INET6",
182 [PF_ROSE] = "PF_ROSE",
183 [PF_DECnet] = "PF_DECnet",
184 [PF_NETBEUI] = "PF_NETBEUI",
185 [PF_SECURITY] = "PF_SECURITY",
187 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
188 [PF_PACKET] = "PF_PACKET",
190 [PF_ECONET] = "PF_ECONET",
191 [PF_ATMSVC] = "PF_ATMSVC",
194 [PF_IRDA] = "PF_IRDA",
195 [PF_PPPOX] = "PF_PPPOX",
196 [PF_WANPIPE] = "PF_WANPIPE",
199 [PF_MPLS] = "PF_MPLS",
201 [PF_TIPC] = "PF_TIPC",
202 [PF_BLUETOOTH] = "PF_BLUETOOTH",
203 [PF_IUCV] = "PF_IUCV",
204 [PF_RXRPC] = "PF_RXRPC",
205 [PF_ISDN] = "PF_ISDN",
206 [PF_PHONET] = "PF_PHONET",
207 [PF_IEEE802154] = "PF_IEEE802154",
208 [PF_CAIF] = "PF_CAIF",
211 [PF_VSOCK] = "PF_VSOCK",
213 [PF_QIPCRTR] = "PF_QIPCRTR",
216 [PF_MCTP] = "PF_MCTP",
220 * The protocol list. Each protocol is registered in here.
223 static DEFINE_SPINLOCK(net_family_lock);
224 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
228 * Move socket addresses back and forth across the kernel/user
229 * divide and look after the messy bits.
233 * move_addr_to_kernel - copy a socket address into kernel space
234 * @uaddr: Address in user space
235 * @kaddr: Address in kernel space
236 * @ulen: Length in user space
238 * The address is copied into kernel space. If the provided address is
239 * too long an error code of -EINVAL is returned. If the copy gives
240 * invalid addresses -EFAULT is returned. On a success 0 is returned.
243 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
245 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
249 if (copy_from_user(kaddr, uaddr, ulen))
251 return audit_sockaddr(ulen, kaddr);
255 * move_addr_to_user - copy an address to user space
256 * @kaddr: kernel space address
257 * @klen: length of address in kernel
258 * @uaddr: user space address
259 * @ulen: pointer to user length field
261 * The value pointed to by ulen on entry is the buffer length available.
262 * This is overwritten with the buffer space used. -EINVAL is returned
263 * if an overlong buffer is specified or a negative buffer size. -EFAULT
264 * is returned if either the buffer or the length field are not
266 * After copying the data up to the limit the user specifies, the true
267 * length of the data is written over the length limit the user
268 * specified. Zero is returned for a success.
271 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
272 void __user *uaddr, int __user *ulen)
277 BUG_ON(klen > sizeof(struct sockaddr_storage));
278 err = get_user(len, ulen);
286 if (audit_sockaddr(klen, kaddr))
288 if (copy_to_user(uaddr, kaddr, len))
292 * "fromlen shall refer to the value before truncation.."
295 return __put_user(klen, ulen);
298 static struct kmem_cache *sock_inode_cachep __ro_after_init;
300 static struct inode *sock_alloc_inode(struct super_block *sb)
302 struct socket_alloc *ei;
304 ei = alloc_inode_sb(sb, sock_inode_cachep, GFP_KERNEL);
307 init_waitqueue_head(&ei->socket.wq.wait);
308 ei->socket.wq.fasync_list = NULL;
309 ei->socket.wq.flags = 0;
311 ei->socket.state = SS_UNCONNECTED;
312 ei->socket.flags = 0;
313 ei->socket.ops = NULL;
314 ei->socket.sk = NULL;
315 ei->socket.file = NULL;
317 return &ei->vfs_inode;
320 static void sock_free_inode(struct inode *inode)
322 struct socket_alloc *ei;
324 ei = container_of(inode, struct socket_alloc, vfs_inode);
325 kmem_cache_free(sock_inode_cachep, ei);
328 static void init_once(void *foo)
330 struct socket_alloc *ei = (struct socket_alloc *)foo;
332 inode_init_once(&ei->vfs_inode);
335 static void init_inodecache(void)
337 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
338 sizeof(struct socket_alloc),
340 (SLAB_HWCACHE_ALIGN |
341 SLAB_RECLAIM_ACCOUNT |
342 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
344 BUG_ON(sock_inode_cachep == NULL);
347 static const struct super_operations sockfs_ops = {
348 .alloc_inode = sock_alloc_inode,
349 .free_inode = sock_free_inode,
350 .statfs = simple_statfs,
354 * sockfs_dname() is called from d_path().
356 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
358 return dynamic_dname(buffer, buflen, "socket:[%lu]",
359 d_inode(dentry)->i_ino);
362 static const struct dentry_operations sockfs_dentry_operations = {
363 .d_dname = sockfs_dname,
366 static int sockfs_xattr_get(const struct xattr_handler *handler,
367 struct dentry *dentry, struct inode *inode,
368 const char *suffix, void *value, size_t size)
371 if (dentry->d_name.len + 1 > size)
373 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
375 return dentry->d_name.len + 1;
378 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
379 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
380 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
382 static const struct xattr_handler sockfs_xattr_handler = {
383 .name = XATTR_NAME_SOCKPROTONAME,
384 .get = sockfs_xattr_get,
387 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
388 struct user_namespace *mnt_userns,
389 struct dentry *dentry, struct inode *inode,
390 const char *suffix, const void *value,
391 size_t size, int flags)
393 /* Handled by LSM. */
397 static const struct xattr_handler sockfs_security_xattr_handler = {
398 .prefix = XATTR_SECURITY_PREFIX,
399 .set = sockfs_security_xattr_set,
402 static const struct xattr_handler *sockfs_xattr_handlers[] = {
403 &sockfs_xattr_handler,
404 &sockfs_security_xattr_handler,
408 static int sockfs_init_fs_context(struct fs_context *fc)
410 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
413 ctx->ops = &sockfs_ops;
414 ctx->dops = &sockfs_dentry_operations;
415 ctx->xattr = sockfs_xattr_handlers;
419 static struct vfsmount *sock_mnt __read_mostly;
421 static struct file_system_type sock_fs_type = {
423 .init_fs_context = sockfs_init_fs_context,
424 .kill_sb = kill_anon_super,
428 * Obtains the first available file descriptor and sets it up for use.
430 * These functions create file structures and maps them to fd space
431 * of the current process. On success it returns file descriptor
432 * and file struct implicitly stored in sock->file.
433 * Note that another thread may close file descriptor before we return
434 * from this function. We use the fact that now we do not refer
435 * to socket after mapping. If one day we will need it, this
436 * function will increment ref. count on file by 1.
438 * In any case returned fd MAY BE not valid!
439 * This race condition is unavoidable
440 * with shared fd spaces, we cannot solve it inside kernel,
441 * but we take care of internal coherence yet.
445 * sock_alloc_file - Bind a &socket to a &file
447 * @flags: file status flags
448 * @dname: protocol name
450 * Returns the &file bound with @sock, implicitly storing it
451 * in sock->file. If dname is %NULL, sets to "".
452 * On failure the return is a ERR pointer (see linux/err.h).
453 * This function uses GFP_KERNEL internally.
456 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
461 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
463 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
464 O_RDWR | (flags & O_NONBLOCK),
472 file->private_data = sock;
473 stream_open(SOCK_INODE(sock), file);
476 EXPORT_SYMBOL(sock_alloc_file);
478 static int sock_map_fd(struct socket *sock, int flags)
480 struct file *newfile;
481 int fd = get_unused_fd_flags(flags);
482 if (unlikely(fd < 0)) {
487 newfile = sock_alloc_file(sock, flags, NULL);
488 if (!IS_ERR(newfile)) {
489 fd_install(fd, newfile);
494 return PTR_ERR(newfile);
498 * sock_from_file - Return the &socket bounded to @file.
501 * On failure returns %NULL.
504 struct socket *sock_from_file(struct file *file)
506 if (file->f_op == &socket_file_ops)
507 return file->private_data; /* set in sock_alloc_file */
511 EXPORT_SYMBOL(sock_from_file);
514 * sockfd_lookup - Go from a file number to its socket slot
516 * @err: pointer to an error code return
518 * The file handle passed in is locked and the socket it is bound
519 * to is returned. If an error occurs the err pointer is overwritten
520 * with a negative errno code and NULL is returned. The function checks
521 * for both invalid handles and passing a handle which is not a socket.
523 * On a success the socket object pointer is returned.
526 struct socket *sockfd_lookup(int fd, int *err)
537 sock = sock_from_file(file);
544 EXPORT_SYMBOL(sockfd_lookup);
546 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
548 struct fd f = fdget(fd);
553 sock = sock_from_file(f.file);
555 *fput_needed = f.flags & FDPUT_FPUT;
564 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
570 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
580 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
585 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
592 static int sockfs_setattr(struct user_namespace *mnt_userns,
593 struct dentry *dentry, struct iattr *iattr)
595 int err = simple_setattr(&init_user_ns, dentry, iattr);
597 if (!err && (iattr->ia_valid & ATTR_UID)) {
598 struct socket *sock = SOCKET_I(d_inode(dentry));
601 sock->sk->sk_uid = iattr->ia_uid;
609 static const struct inode_operations sockfs_inode_ops = {
610 .listxattr = sockfs_listxattr,
611 .setattr = sockfs_setattr,
615 * sock_alloc - allocate a socket
617 * Allocate a new inode and socket object. The two are bound together
618 * and initialised. The socket is then returned. If we are out of inodes
619 * NULL is returned. This functions uses GFP_KERNEL internally.
622 struct socket *sock_alloc(void)
627 inode = new_inode_pseudo(sock_mnt->mnt_sb);
631 sock = SOCKET_I(inode);
633 inode->i_ino = get_next_ino();
634 inode->i_mode = S_IFSOCK | S_IRWXUGO;
635 inode->i_uid = current_fsuid();
636 inode->i_gid = current_fsgid();
637 inode->i_op = &sockfs_inode_ops;
641 EXPORT_SYMBOL(sock_alloc);
643 static void __sock_release(struct socket *sock, struct inode *inode)
646 struct module *owner = sock->ops->owner;
650 sock->ops->release(sock);
658 if (sock->wq.fasync_list)
659 pr_err("%s: fasync list not empty!\n", __func__);
662 iput(SOCK_INODE(sock));
669 * sock_release - close a socket
670 * @sock: socket to close
672 * The socket is released from the protocol stack if it has a release
673 * callback, and the inode is then released if the socket is bound to
674 * an inode not a file.
676 void sock_release(struct socket *sock)
678 __sock_release(sock, NULL);
680 EXPORT_SYMBOL(sock_release);
682 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
684 u8 flags = *tx_flags;
686 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
687 flags |= SKBTX_HW_TSTAMP;
689 /* PTP hardware clocks can provide a free running cycle counter
690 * as a time base for virtual clocks. Tell driver to use the
691 * free running cycle counter for timestamp if socket is bound
694 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
695 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
698 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
699 flags |= SKBTX_SW_TSTAMP;
701 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
702 flags |= SKBTX_SCHED_TSTAMP;
706 EXPORT_SYMBOL(__sock_tx_timestamp);
708 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
710 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
712 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
714 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
715 inet_sendmsg, sock, msg,
717 BUG_ON(ret == -EIOCBQUEUED);
722 * sock_sendmsg - send a message through @sock
724 * @msg: message to send
726 * Sends @msg through @sock, passing through LSM.
727 * Returns the number of bytes sent, or an error code.
729 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
731 int err = security_socket_sendmsg(sock, msg,
734 return err ?: sock_sendmsg_nosec(sock, msg);
736 EXPORT_SYMBOL(sock_sendmsg);
739 * kernel_sendmsg - send a message through @sock (kernel-space)
741 * @msg: message header
743 * @num: vec array length
744 * @size: total message data size
746 * Builds the message data with @vec and sends it through @sock.
747 * Returns the number of bytes sent, or an error code.
750 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
751 struct kvec *vec, size_t num, size_t size)
753 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
754 return sock_sendmsg(sock, msg);
756 EXPORT_SYMBOL(kernel_sendmsg);
759 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
761 * @msg: message header
762 * @vec: output s/g array
763 * @num: output s/g array length
764 * @size: total message data size
766 * Builds the message data with @vec and sends it through @sock.
767 * Returns the number of bytes sent, or an error code.
768 * Caller must hold @sk.
771 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
772 struct kvec *vec, size_t num, size_t size)
774 struct socket *sock = sk->sk_socket;
776 if (!sock->ops->sendmsg_locked)
777 return sock_no_sendmsg_locked(sk, msg, size);
779 iov_iter_kvec(&msg->msg_iter, ITER_SOURCE, vec, num, size);
781 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
783 EXPORT_SYMBOL(kernel_sendmsg_locked);
785 static bool skb_is_err_queue(const struct sk_buff *skb)
787 /* pkt_type of skbs enqueued on the error queue are set to
788 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
789 * in recvmsg, since skbs received on a local socket will never
790 * have a pkt_type of PACKET_OUTGOING.
792 return skb->pkt_type == PACKET_OUTGOING;
795 /* On transmit, software and hardware timestamps are returned independently.
796 * As the two skb clones share the hardware timestamp, which may be updated
797 * before the software timestamp is received, a hardware TX timestamp may be
798 * returned only if there is no software TX timestamp. Ignore false software
799 * timestamps, which may be made in the __sock_recv_timestamp() call when the
800 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
801 * hardware timestamp.
803 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
805 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
808 static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
810 bool cycles = sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC;
811 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
812 struct net_device *orig_dev;
816 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
818 *if_index = orig_dev->ifindex;
819 hwtstamp = netdev_get_tstamp(orig_dev, shhwtstamps, cycles);
821 hwtstamp = shhwtstamps->hwtstamp;
828 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
831 struct scm_ts_pktinfo ts_pktinfo;
832 struct net_device *orig_dev;
834 if (!skb_mac_header_was_set(skb))
837 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
841 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
843 if_index = orig_dev->ifindex;
846 ts_pktinfo.if_index = if_index;
848 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
849 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
850 sizeof(ts_pktinfo), &ts_pktinfo);
854 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
856 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
859 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
860 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
861 struct scm_timestamping_internal tss;
863 int empty = 1, false_tstamp = 0;
864 struct skb_shared_hwtstamps *shhwtstamps =
869 /* Race occurred between timestamp enabling and packet
870 receiving. Fill in the current time for now. */
871 if (need_software_tstamp && skb->tstamp == 0) {
872 __net_timestamp(skb);
876 if (need_software_tstamp) {
877 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
879 struct __kernel_sock_timeval tv;
881 skb_get_new_timestamp(skb, &tv);
882 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
885 struct __kernel_old_timeval tv;
887 skb_get_timestamp(skb, &tv);
888 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
893 struct __kernel_timespec ts;
895 skb_get_new_timestampns(skb, &ts);
896 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
899 struct __kernel_old_timespec ts;
901 skb_get_timestampns(skb, &ts);
902 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
908 memset(&tss, 0, sizeof(tss));
909 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
910 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
913 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
914 !skb_is_swtx_tstamp(skb, false_tstamp)) {
916 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
917 hwtstamp = get_timestamp(sk, skb, &if_index);
919 hwtstamp = shhwtstamps->hwtstamp;
921 if (sk->sk_tsflags & SOF_TIMESTAMPING_BIND_PHC)
922 hwtstamp = ptp_convert_timestamp(&hwtstamp,
925 if (ktime_to_timespec64_cond(hwtstamp, tss.ts + 2)) {
928 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
929 !skb_is_err_queue(skb))
930 put_ts_pktinfo(msg, skb, if_index);
934 if (sock_flag(sk, SOCK_TSTAMP_NEW))
935 put_cmsg_scm_timestamping64(msg, &tss);
937 put_cmsg_scm_timestamping(msg, &tss);
939 if (skb_is_err_queue(skb) && skb->len &&
940 SKB_EXT_ERR(skb)->opt_stats)
941 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
942 skb->len, skb->data);
945 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
947 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
952 if (!sock_flag(sk, SOCK_WIFI_STATUS))
954 if (!skb->wifi_acked_valid)
957 ack = skb->wifi_acked;
959 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
961 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
963 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
966 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
967 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
968 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
971 static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
974 if (sock_flag(sk, SOCK_RCVMARK) && skb)
975 put_cmsg(msg, SOL_SOCKET, SO_MARK, sizeof(__u32),
979 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
982 sock_recv_timestamp(msg, sk, skb);
983 sock_recv_drops(msg, sk, skb);
984 sock_recv_mark(msg, sk, skb);
986 EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
988 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
990 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
992 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
995 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
996 inet_recvmsg, sock, msg, msg_data_left(msg),
1001 * sock_recvmsg - receive a message from @sock
1003 * @msg: message to receive
1004 * @flags: message flags
1006 * Receives @msg from @sock, passing through LSM. Returns the total number
1007 * of bytes received, or an error.
1009 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1011 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
1013 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1015 EXPORT_SYMBOL(sock_recvmsg);
1018 * kernel_recvmsg - Receive a message from a socket (kernel space)
1019 * @sock: The socket to receive the message from
1020 * @msg: Received message
1021 * @vec: Input s/g array for message data
1022 * @num: Size of input s/g array
1023 * @size: Number of bytes to read
1024 * @flags: Message flags (MSG_DONTWAIT, etc...)
1026 * On return the msg structure contains the scatter/gather array passed in the
1027 * vec argument. The array is modified so that it consists of the unfilled
1028 * portion of the original array.
1030 * The returned value is the total number of bytes received, or an error.
1033 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1034 struct kvec *vec, size_t num, size_t size, int flags)
1036 msg->msg_control_is_user = false;
1037 iov_iter_kvec(&msg->msg_iter, ITER_DEST, vec, num, size);
1038 return sock_recvmsg(sock, msg, flags);
1040 EXPORT_SYMBOL(kernel_recvmsg);
1042 static ssize_t sock_sendpage(struct file *file, struct page *page,
1043 int offset, size_t size, loff_t *ppos, int more)
1045 struct socket *sock;
1048 sock = file->private_data;
1050 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
1051 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
1054 return kernel_sendpage(sock, page, offset, size, flags);
1057 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1058 struct pipe_inode_info *pipe, size_t len,
1061 struct socket *sock = file->private_data;
1063 if (unlikely(!sock->ops->splice_read))
1064 return generic_file_splice_read(file, ppos, pipe, len, flags);
1066 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
1069 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1071 struct file *file = iocb->ki_filp;
1072 struct socket *sock = file->private_data;
1073 struct msghdr msg = {.msg_iter = *to,
1077 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1078 msg.msg_flags = MSG_DONTWAIT;
1080 if (iocb->ki_pos != 0)
1083 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
1086 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1091 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1093 struct file *file = iocb->ki_filp;
1094 struct socket *sock = file->private_data;
1095 struct msghdr msg = {.msg_iter = *from,
1099 if (iocb->ki_pos != 0)
1102 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1103 msg.msg_flags = MSG_DONTWAIT;
1105 if (sock->type == SOCK_SEQPACKET)
1106 msg.msg_flags |= MSG_EOR;
1108 res = sock_sendmsg(sock, &msg);
1109 *from = msg.msg_iter;
1114 * Atomic setting of ioctl hooks to avoid race
1115 * with module unload.
1118 static DEFINE_MUTEX(br_ioctl_mutex);
1119 static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1120 unsigned int cmd, struct ifreq *ifr,
1123 void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1124 unsigned int cmd, struct ifreq *ifr,
1127 mutex_lock(&br_ioctl_mutex);
1128 br_ioctl_hook = hook;
1129 mutex_unlock(&br_ioctl_mutex);
1131 EXPORT_SYMBOL(brioctl_set);
1133 int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1134 struct ifreq *ifr, void __user *uarg)
1139 request_module("bridge");
1141 mutex_lock(&br_ioctl_mutex);
1143 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1144 mutex_unlock(&br_ioctl_mutex);
1149 static DEFINE_MUTEX(vlan_ioctl_mutex);
1150 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1152 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1154 mutex_lock(&vlan_ioctl_mutex);
1155 vlan_ioctl_hook = hook;
1156 mutex_unlock(&vlan_ioctl_mutex);
1158 EXPORT_SYMBOL(vlan_ioctl_set);
1160 static long sock_do_ioctl(struct net *net, struct socket *sock,
1161 unsigned int cmd, unsigned long arg)
1166 void __user *argp = (void __user *)arg;
1169 err = sock->ops->ioctl(sock, cmd, arg);
1172 * If this ioctl is unknown try to hand it down
1173 * to the NIC driver.
1175 if (err != -ENOIOCTLCMD)
1178 if (!is_socket_ioctl_cmd(cmd))
1181 if (get_user_ifreq(&ifr, &data, argp))
1183 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1184 if (!err && need_copyout)
1185 if (put_user_ifreq(&ifr, argp))
1192 * With an ioctl, arg may well be a user mode pointer, but we don't know
1193 * what to do with it - that's up to the protocol still.
1196 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1198 struct socket *sock;
1200 void __user *argp = (void __user *)arg;
1204 sock = file->private_data;
1207 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1211 if (get_user_ifreq(&ifr, &data, argp))
1213 err = dev_ioctl(net, cmd, &ifr, data, &need_copyout);
1214 if (!err && need_copyout)
1215 if (put_user_ifreq(&ifr, argp))
1218 #ifdef CONFIG_WEXT_CORE
1219 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1220 err = wext_handle_ioctl(net, cmd, argp);
1227 if (get_user(pid, (int __user *)argp))
1229 err = f_setown(sock->file, pid, 1);
1233 err = put_user(f_getown(sock->file),
1234 (int __user *)argp);
1240 err = br_ioctl_call(net, NULL, cmd, NULL, argp);
1245 if (!vlan_ioctl_hook)
1246 request_module("8021q");
1248 mutex_lock(&vlan_ioctl_mutex);
1249 if (vlan_ioctl_hook)
1250 err = vlan_ioctl_hook(net, argp);
1251 mutex_unlock(&vlan_ioctl_mutex);
1255 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1258 err = open_related_ns(&net->ns, get_net_ns);
1260 case SIOCGSTAMP_OLD:
1261 case SIOCGSTAMPNS_OLD:
1262 if (!sock->ops->gettstamp) {
1266 err = sock->ops->gettstamp(sock, argp,
1267 cmd == SIOCGSTAMP_OLD,
1268 !IS_ENABLED(CONFIG_64BIT));
1270 case SIOCGSTAMP_NEW:
1271 case SIOCGSTAMPNS_NEW:
1272 if (!sock->ops->gettstamp) {
1276 err = sock->ops->gettstamp(sock, argp,
1277 cmd == SIOCGSTAMP_NEW,
1282 err = dev_ifconf(net, argp);
1286 err = sock_do_ioctl(net, sock, cmd, arg);
1293 * sock_create_lite - creates a socket
1294 * @family: protocol family (AF_INET, ...)
1295 * @type: communication type (SOCK_STREAM, ...)
1296 * @protocol: protocol (0, ...)
1299 * Creates a new socket and assigns it to @res, passing through LSM.
1300 * The new socket initialization is not complete, see kernel_accept().
1301 * Returns 0 or an error. On failure @res is set to %NULL.
1302 * This function internally uses GFP_KERNEL.
1305 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1308 struct socket *sock = NULL;
1310 err = security_socket_create(family, type, protocol, 1);
1314 sock = sock_alloc();
1321 err = security_socket_post_create(sock, family, type, protocol, 1);
1333 EXPORT_SYMBOL(sock_create_lite);
1335 /* No kernel lock held - perfect */
1336 static __poll_t sock_poll(struct file *file, poll_table *wait)
1338 struct socket *sock = file->private_data;
1339 __poll_t events = poll_requested_events(wait), flag = 0;
1341 if (!sock->ops->poll)
1344 if (sk_can_busy_loop(sock->sk)) {
1345 /* poll once if requested by the syscall */
1346 if (events & POLL_BUSY_LOOP)
1347 sk_busy_loop(sock->sk, 1);
1349 /* if this socket can poll_ll, tell the system call */
1350 flag = POLL_BUSY_LOOP;
1353 return sock->ops->poll(file, sock, wait) | flag;
1356 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1358 struct socket *sock = file->private_data;
1360 return sock->ops->mmap(file, sock, vma);
1363 static int sock_close(struct inode *inode, struct file *filp)
1365 __sock_release(SOCKET_I(inode), inode);
1370 * Update the socket async list
1372 * Fasync_list locking strategy.
1374 * 1. fasync_list is modified only under process context socket lock
1375 * i.e. under semaphore.
1376 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1377 * or under socket lock
1380 static int sock_fasync(int fd, struct file *filp, int on)
1382 struct socket *sock = filp->private_data;
1383 struct sock *sk = sock->sk;
1384 struct socket_wq *wq = &sock->wq;
1390 fasync_helper(fd, filp, on, &wq->fasync_list);
1392 if (!wq->fasync_list)
1393 sock_reset_flag(sk, SOCK_FASYNC);
1395 sock_set_flag(sk, SOCK_FASYNC);
1401 /* This function may be called only under rcu_lock */
1403 int sock_wake_async(struct socket_wq *wq, int how, int band)
1405 if (!wq || !wq->fasync_list)
1409 case SOCK_WAKE_WAITD:
1410 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1413 case SOCK_WAKE_SPACE:
1414 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1419 kill_fasync(&wq->fasync_list, SIGIO, band);
1422 kill_fasync(&wq->fasync_list, SIGURG, band);
1427 EXPORT_SYMBOL(sock_wake_async);
1430 * __sock_create - creates a socket
1431 * @net: net namespace
1432 * @family: protocol family (AF_INET, ...)
1433 * @type: communication type (SOCK_STREAM, ...)
1434 * @protocol: protocol (0, ...)
1436 * @kern: boolean for kernel space sockets
1438 * Creates a new socket and assigns it to @res, passing through LSM.
1439 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1440 * be set to true if the socket resides in kernel space.
1441 * This function internally uses GFP_KERNEL.
1444 int __sock_create(struct net *net, int family, int type, int protocol,
1445 struct socket **res, int kern)
1448 struct socket *sock;
1449 const struct net_proto_family *pf;
1452 * Check protocol is in range
1454 if (family < 0 || family >= NPROTO)
1455 return -EAFNOSUPPORT;
1456 if (type < 0 || type >= SOCK_MAX)
1461 This uglymoron is moved from INET layer to here to avoid
1462 deadlock in module load.
1464 if (family == PF_INET && type == SOCK_PACKET) {
1465 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1470 err = security_socket_create(family, type, protocol, kern);
1475 * Allocate the socket and allow the family to set things up. if
1476 * the protocol is 0, the family is instructed to select an appropriate
1479 sock = sock_alloc();
1481 net_warn_ratelimited("socket: no more sockets\n");
1482 return -ENFILE; /* Not exactly a match, but its the
1483 closest posix thing */
1488 #ifdef CONFIG_MODULES
1489 /* Attempt to load a protocol module if the find failed.
1491 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1492 * requested real, full-featured networking support upon configuration.
1493 * Otherwise module support will break!
1495 if (rcu_access_pointer(net_families[family]) == NULL)
1496 request_module("net-pf-%d", family);
1500 pf = rcu_dereference(net_families[family]);
1501 err = -EAFNOSUPPORT;
1506 * We will call the ->create function, that possibly is in a loadable
1507 * module, so we have to bump that loadable module refcnt first.
1509 if (!try_module_get(pf->owner))
1512 /* Now protected by module ref count */
1515 err = pf->create(net, sock, protocol, kern);
1517 goto out_module_put;
1520 * Now to bump the refcnt of the [loadable] module that owns this
1521 * socket at sock_release time we decrement its refcnt.
1523 if (!try_module_get(sock->ops->owner))
1524 goto out_module_busy;
1527 * Now that we're done with the ->create function, the [loadable]
1528 * module can have its refcnt decremented
1530 module_put(pf->owner);
1531 err = security_socket_post_create(sock, family, type, protocol, kern);
1533 goto out_sock_release;
1539 err = -EAFNOSUPPORT;
1542 module_put(pf->owner);
1549 goto out_sock_release;
1551 EXPORT_SYMBOL(__sock_create);
1554 * sock_create - creates a socket
1555 * @family: protocol family (AF_INET, ...)
1556 * @type: communication type (SOCK_STREAM, ...)
1557 * @protocol: protocol (0, ...)
1560 * A wrapper around __sock_create().
1561 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1564 int sock_create(int family, int type, int protocol, struct socket **res)
1566 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1568 EXPORT_SYMBOL(sock_create);
1571 * sock_create_kern - creates a socket (kernel space)
1572 * @net: net namespace
1573 * @family: protocol family (AF_INET, ...)
1574 * @type: communication type (SOCK_STREAM, ...)
1575 * @protocol: protocol (0, ...)
1578 * A wrapper around __sock_create().
1579 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1582 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1584 return __sock_create(net, family, type, protocol, res, 1);
1586 EXPORT_SYMBOL(sock_create_kern);
1588 static struct socket *__sys_socket_create(int family, int type, int protocol)
1590 struct socket *sock;
1593 /* Check the SOCK_* constants for consistency. */
1594 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1595 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1596 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1597 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1599 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1600 return ERR_PTR(-EINVAL);
1601 type &= SOCK_TYPE_MASK;
1603 retval = sock_create(family, type, protocol, &sock);
1605 return ERR_PTR(retval);
1610 struct file *__sys_socket_file(int family, int type, int protocol)
1612 struct socket *sock;
1616 sock = __sys_socket_create(family, type, protocol);
1618 return ERR_CAST(sock);
1620 flags = type & ~SOCK_TYPE_MASK;
1621 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1622 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1624 file = sock_alloc_file(sock, flags, NULL);
1631 int __sys_socket(int family, int type, int protocol)
1633 struct socket *sock;
1636 sock = __sys_socket_create(family, type, protocol);
1638 return PTR_ERR(sock);
1640 flags = type & ~SOCK_TYPE_MASK;
1641 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1642 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1644 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1647 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1649 return __sys_socket(family, type, protocol);
1653 * Create a pair of connected sockets.
1656 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1658 struct socket *sock1, *sock2;
1660 struct file *newfile1, *newfile2;
1663 flags = type & ~SOCK_TYPE_MASK;
1664 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1666 type &= SOCK_TYPE_MASK;
1668 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1669 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1672 * reserve descriptors and make sure we won't fail
1673 * to return them to userland.
1675 fd1 = get_unused_fd_flags(flags);
1676 if (unlikely(fd1 < 0))
1679 fd2 = get_unused_fd_flags(flags);
1680 if (unlikely(fd2 < 0)) {
1685 err = put_user(fd1, &usockvec[0]);
1689 err = put_user(fd2, &usockvec[1]);
1694 * Obtain the first socket and check if the underlying protocol
1695 * supports the socketpair call.
1698 err = sock_create(family, type, protocol, &sock1);
1699 if (unlikely(err < 0))
1702 err = sock_create(family, type, protocol, &sock2);
1703 if (unlikely(err < 0)) {
1704 sock_release(sock1);
1708 err = security_socket_socketpair(sock1, sock2);
1709 if (unlikely(err)) {
1710 sock_release(sock2);
1711 sock_release(sock1);
1715 err = sock1->ops->socketpair(sock1, sock2);
1716 if (unlikely(err < 0)) {
1717 sock_release(sock2);
1718 sock_release(sock1);
1722 newfile1 = sock_alloc_file(sock1, flags, NULL);
1723 if (IS_ERR(newfile1)) {
1724 err = PTR_ERR(newfile1);
1725 sock_release(sock2);
1729 newfile2 = sock_alloc_file(sock2, flags, NULL);
1730 if (IS_ERR(newfile2)) {
1731 err = PTR_ERR(newfile2);
1736 audit_fd_pair(fd1, fd2);
1738 fd_install(fd1, newfile1);
1739 fd_install(fd2, newfile2);
1748 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1749 int __user *, usockvec)
1751 return __sys_socketpair(family, type, protocol, usockvec);
1755 * Bind a name to a socket. Nothing much to do here since it's
1756 * the protocol's responsibility to handle the local address.
1758 * We move the socket address to kernel space before we call
1759 * the protocol layer (having also checked the address is ok).
1762 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1764 struct socket *sock;
1765 struct sockaddr_storage address;
1766 int err, fput_needed;
1768 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1770 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1772 err = security_socket_bind(sock,
1773 (struct sockaddr *)&address,
1776 err = sock->ops->bind(sock,
1780 fput_light(sock->file, fput_needed);
1785 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1787 return __sys_bind(fd, umyaddr, addrlen);
1791 * Perform a listen. Basically, we allow the protocol to do anything
1792 * necessary for a listen, and if that works, we mark the socket as
1793 * ready for listening.
1796 int __sys_listen(int fd, int backlog)
1798 struct socket *sock;
1799 int err, fput_needed;
1802 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1804 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1805 if ((unsigned int)backlog > somaxconn)
1806 backlog = somaxconn;
1808 err = security_socket_listen(sock, backlog);
1810 err = sock->ops->listen(sock, backlog);
1812 fput_light(sock->file, fput_needed);
1817 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1819 return __sys_listen(fd, backlog);
1822 struct file *do_accept(struct file *file, unsigned file_flags,
1823 struct sockaddr __user *upeer_sockaddr,
1824 int __user *upeer_addrlen, int flags)
1826 struct socket *sock, *newsock;
1827 struct file *newfile;
1829 struct sockaddr_storage address;
1831 sock = sock_from_file(file);
1833 return ERR_PTR(-ENOTSOCK);
1835 newsock = sock_alloc();
1837 return ERR_PTR(-ENFILE);
1839 newsock->type = sock->type;
1840 newsock->ops = sock->ops;
1843 * We don't need try_module_get here, as the listening socket (sock)
1844 * has the protocol module (sock->ops->owner) held.
1846 __module_get(newsock->ops->owner);
1848 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1849 if (IS_ERR(newfile))
1852 err = security_socket_accept(sock, newsock);
1856 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1861 if (upeer_sockaddr) {
1862 len = newsock->ops->getname(newsock,
1863 (struct sockaddr *)&address, 2);
1865 err = -ECONNABORTED;
1868 err = move_addr_to_user(&address,
1869 len, upeer_sockaddr, upeer_addrlen);
1874 /* File flags are not inherited via accept() unlike another OSes. */
1878 return ERR_PTR(err);
1881 static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1882 int __user *upeer_addrlen, int flags)
1884 struct file *newfile;
1887 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1890 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1891 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1893 newfd = get_unused_fd_flags(flags);
1894 if (unlikely(newfd < 0))
1897 newfile = do_accept(file, 0, upeer_sockaddr, upeer_addrlen,
1899 if (IS_ERR(newfile)) {
1900 put_unused_fd(newfd);
1901 return PTR_ERR(newfile);
1903 fd_install(newfd, newfile);
1908 * For accept, we attempt to create a new socket, set up the link
1909 * with the client, wake up the client, then return the new
1910 * connected fd. We collect the address of the connector in kernel
1911 * space and move it to user at the very end. This is unclean because
1912 * we open the socket then return an error.
1914 * 1003.1g adds the ability to recvmsg() to query connection pending
1915 * status to recvmsg. We need to add that support in a way thats
1916 * clean when we restructure accept also.
1919 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1920 int __user *upeer_addrlen, int flags)
1927 ret = __sys_accept4_file(f.file, upeer_sockaddr,
1928 upeer_addrlen, flags);
1935 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1936 int __user *, upeer_addrlen, int, flags)
1938 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1941 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1942 int __user *, upeer_addrlen)
1944 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1948 * Attempt to connect to a socket with the server address. The address
1949 * is in user space so we verify it is OK and move it to kernel space.
1951 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1954 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1955 * other SEQPACKET protocols that take time to connect() as it doesn't
1956 * include the -EINPROGRESS status for such sockets.
1959 int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1960 int addrlen, int file_flags)
1962 struct socket *sock;
1965 sock = sock_from_file(file);
1972 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1976 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1977 sock->file->f_flags | file_flags);
1982 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1989 struct sockaddr_storage address;
1991 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1993 ret = __sys_connect_file(f.file, &address, addrlen, 0);
2000 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2003 return __sys_connect(fd, uservaddr, addrlen);
2007 * Get the local address ('name') of a socket object. Move the obtained
2008 * name to user space.
2011 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2012 int __user *usockaddr_len)
2014 struct socket *sock;
2015 struct sockaddr_storage address;
2016 int err, fput_needed;
2018 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2022 err = security_socket_getsockname(sock);
2026 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
2029 /* "err" is actually length in this case */
2030 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
2033 fput_light(sock->file, fput_needed);
2038 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2039 int __user *, usockaddr_len)
2041 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2045 * Get the remote address ('name') of a socket object. Move the obtained
2046 * name to user space.
2049 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2050 int __user *usockaddr_len)
2052 struct socket *sock;
2053 struct sockaddr_storage address;
2054 int err, fput_needed;
2056 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2058 err = security_socket_getpeername(sock);
2060 fput_light(sock->file, fput_needed);
2064 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
2066 /* "err" is actually length in this case */
2067 err = move_addr_to_user(&address, err, usockaddr,
2069 fput_light(sock->file, fput_needed);
2074 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2075 int __user *, usockaddr_len)
2077 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2081 * Send a datagram to a given address. We move the address into kernel
2082 * space and check the user space data area is readable before invoking
2085 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2086 struct sockaddr __user *addr, int addr_len)
2088 struct socket *sock;
2089 struct sockaddr_storage address;
2095 err = import_single_range(ITER_SOURCE, buff, len, &iov, &msg.msg_iter);
2098 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2102 msg.msg_name = NULL;
2103 msg.msg_control = NULL;
2104 msg.msg_controllen = 0;
2105 msg.msg_namelen = 0;
2106 msg.msg_ubuf = NULL;
2108 err = move_addr_to_kernel(addr, addr_len, &address);
2111 msg.msg_name = (struct sockaddr *)&address;
2112 msg.msg_namelen = addr_len;
2114 if (sock->file->f_flags & O_NONBLOCK)
2115 flags |= MSG_DONTWAIT;
2116 msg.msg_flags = flags;
2117 err = sock_sendmsg(sock, &msg);
2120 fput_light(sock->file, fput_needed);
2125 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2126 unsigned int, flags, struct sockaddr __user *, addr,
2129 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2133 * Send a datagram down a socket.
2136 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2137 unsigned int, flags)
2139 return __sys_sendto(fd, buff, len, flags, NULL, 0);
2143 * Receive a frame from the socket and optionally record the address of the
2144 * sender. We verify the buffers are writable and if needed move the
2145 * sender address from kernel to user space.
2147 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2148 struct sockaddr __user *addr, int __user *addr_len)
2150 struct sockaddr_storage address;
2151 struct msghdr msg = {
2152 /* Save some cycles and don't copy the address if not needed */
2153 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2155 struct socket *sock;
2160 err = import_single_range(ITER_DEST, ubuf, size, &iov, &msg.msg_iter);
2163 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2167 if (sock->file->f_flags & O_NONBLOCK)
2168 flags |= MSG_DONTWAIT;
2169 err = sock_recvmsg(sock, &msg, flags);
2171 if (err >= 0 && addr != NULL) {
2172 err2 = move_addr_to_user(&address,
2173 msg.msg_namelen, addr, addr_len);
2178 fput_light(sock->file, fput_needed);
2183 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2184 unsigned int, flags, struct sockaddr __user *, addr,
2185 int __user *, addr_len)
2187 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2191 * Receive a datagram from a socket.
2194 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2195 unsigned int, flags)
2197 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2200 static bool sock_use_custom_sol_socket(const struct socket *sock)
2202 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2206 * Set a socket option. Because we don't know the option lengths we have
2207 * to pass the user mode parameter for the protocols to sort out.
2209 int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2212 sockptr_t optval = USER_SOCKPTR(user_optval);
2213 char *kernel_optval = NULL;
2214 int err, fput_needed;
2215 struct socket *sock;
2220 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2224 err = security_socket_setsockopt(sock, level, optname);
2228 if (!in_compat_syscall())
2229 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2230 user_optval, &optlen,
2240 optval = KERNEL_SOCKPTR(kernel_optval);
2241 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2242 err = sock_setsockopt(sock, level, optname, optval, optlen);
2243 else if (unlikely(!sock->ops->setsockopt))
2246 err = sock->ops->setsockopt(sock, level, optname, optval,
2248 kfree(kernel_optval);
2250 fput_light(sock->file, fput_needed);
2254 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2255 char __user *, optval, int, optlen)
2257 return __sys_setsockopt(fd, level, optname, optval, optlen);
2260 INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2264 * Get a socket option. Because we don't know the option lengths we have
2265 * to pass a user mode parameter for the protocols to sort out.
2267 int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2270 int err, fput_needed;
2271 struct socket *sock;
2274 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2278 err = security_socket_getsockopt(sock, level, optname);
2282 if (!in_compat_syscall())
2283 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2285 if (level == SOL_SOCKET)
2286 err = sock_getsockopt(sock, level, optname, optval, optlen);
2287 else if (unlikely(!sock->ops->getsockopt))
2290 err = sock->ops->getsockopt(sock, level, optname, optval,
2293 if (!in_compat_syscall())
2294 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2295 optval, optlen, max_optlen,
2298 fput_light(sock->file, fput_needed);
2302 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2303 char __user *, optval, int __user *, optlen)
2305 return __sys_getsockopt(fd, level, optname, optval, optlen);
2309 * Shutdown a socket.
2312 int __sys_shutdown_sock(struct socket *sock, int how)
2316 err = security_socket_shutdown(sock, how);
2318 err = sock->ops->shutdown(sock, how);
2323 int __sys_shutdown(int fd, int how)
2325 int err, fput_needed;
2326 struct socket *sock;
2328 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2330 err = __sys_shutdown_sock(sock, how);
2331 fput_light(sock->file, fput_needed);
2336 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2338 return __sys_shutdown(fd, how);
2341 /* A couple of helpful macros for getting the address of the 32/64 bit
2342 * fields which are the same type (int / unsigned) on our platforms.
2344 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2345 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2346 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2348 struct used_address {
2349 struct sockaddr_storage name;
2350 unsigned int name_len;
2353 int __copy_msghdr(struct msghdr *kmsg,
2354 struct user_msghdr *msg,
2355 struct sockaddr __user **save_addr)
2359 kmsg->msg_control_is_user = true;
2360 kmsg->msg_get_inq = 0;
2361 kmsg->msg_control_user = msg->msg_control;
2362 kmsg->msg_controllen = msg->msg_controllen;
2363 kmsg->msg_flags = msg->msg_flags;
2365 kmsg->msg_namelen = msg->msg_namelen;
2367 kmsg->msg_namelen = 0;
2369 if (kmsg->msg_namelen < 0)
2372 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2373 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2376 *save_addr = msg->msg_name;
2378 if (msg->msg_name && kmsg->msg_namelen) {
2380 err = move_addr_to_kernel(msg->msg_name,
2387 kmsg->msg_name = NULL;
2388 kmsg->msg_namelen = 0;
2391 if (msg->msg_iovlen > UIO_MAXIOV)
2394 kmsg->msg_iocb = NULL;
2395 kmsg->msg_ubuf = NULL;
2399 static int copy_msghdr_from_user(struct msghdr *kmsg,
2400 struct user_msghdr __user *umsg,
2401 struct sockaddr __user **save_addr,
2404 struct user_msghdr msg;
2407 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2410 err = __copy_msghdr(kmsg, &msg, save_addr);
2414 err = import_iovec(save_addr ? ITER_DEST : ITER_SOURCE,
2415 msg.msg_iov, msg.msg_iovlen,
2416 UIO_FASTIOV, iov, &kmsg->msg_iter);
2417 return err < 0 ? err : 0;
2420 static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2421 unsigned int flags, struct used_address *used_address,
2422 unsigned int allowed_msghdr_flags)
2424 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2425 __aligned(sizeof(__kernel_size_t));
2426 /* 20 is size of ipv6_pktinfo */
2427 unsigned char *ctl_buf = ctl;
2433 if (msg_sys->msg_controllen > INT_MAX)
2435 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2436 ctl_len = msg_sys->msg_controllen;
2437 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2439 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2443 ctl_buf = msg_sys->msg_control;
2444 ctl_len = msg_sys->msg_controllen;
2445 } else if (ctl_len) {
2446 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2447 CMSG_ALIGN(sizeof(struct cmsghdr)));
2448 if (ctl_len > sizeof(ctl)) {
2449 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2450 if (ctl_buf == NULL)
2454 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2456 msg_sys->msg_control = ctl_buf;
2457 msg_sys->msg_control_is_user = false;
2459 msg_sys->msg_flags = flags;
2461 if (sock->file->f_flags & O_NONBLOCK)
2462 msg_sys->msg_flags |= MSG_DONTWAIT;
2464 * If this is sendmmsg() and current destination address is same as
2465 * previously succeeded address, omit asking LSM's decision.
2466 * used_address->name_len is initialized to UINT_MAX so that the first
2467 * destination address never matches.
2469 if (used_address && msg_sys->msg_name &&
2470 used_address->name_len == msg_sys->msg_namelen &&
2471 !memcmp(&used_address->name, msg_sys->msg_name,
2472 used_address->name_len)) {
2473 err = sock_sendmsg_nosec(sock, msg_sys);
2476 err = sock_sendmsg(sock, msg_sys);
2478 * If this is sendmmsg() and sending to current destination address was
2479 * successful, remember it.
2481 if (used_address && err >= 0) {
2482 used_address->name_len = msg_sys->msg_namelen;
2483 if (msg_sys->msg_name)
2484 memcpy(&used_address->name, msg_sys->msg_name,
2485 used_address->name_len);
2490 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2495 int sendmsg_copy_msghdr(struct msghdr *msg,
2496 struct user_msghdr __user *umsg, unsigned flags,
2501 if (flags & MSG_CMSG_COMPAT) {
2502 struct compat_msghdr __user *msg_compat;
2504 msg_compat = (struct compat_msghdr __user *) umsg;
2505 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2507 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2515 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2516 struct msghdr *msg_sys, unsigned int flags,
2517 struct used_address *used_address,
2518 unsigned int allowed_msghdr_flags)
2520 struct sockaddr_storage address;
2521 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2524 msg_sys->msg_name = &address;
2526 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2530 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2531 allowed_msghdr_flags);
2537 * BSD sendmsg interface
2539 long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2542 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2545 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2546 bool forbid_cmsg_compat)
2548 int fput_needed, err;
2549 struct msghdr msg_sys;
2550 struct socket *sock;
2552 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2555 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2559 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2561 fput_light(sock->file, fput_needed);
2566 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2568 return __sys_sendmsg(fd, msg, flags, true);
2572 * Linux sendmmsg interface
2575 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2576 unsigned int flags, bool forbid_cmsg_compat)
2578 int fput_needed, err, datagrams;
2579 struct socket *sock;
2580 struct mmsghdr __user *entry;
2581 struct compat_mmsghdr __user *compat_entry;
2582 struct msghdr msg_sys;
2583 struct used_address used_address;
2584 unsigned int oflags = flags;
2586 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2589 if (vlen > UIO_MAXIOV)
2594 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2598 used_address.name_len = UINT_MAX;
2600 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2604 while (datagrams < vlen) {
2605 if (datagrams == vlen - 1)
2608 if (MSG_CMSG_COMPAT & flags) {
2609 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2610 &msg_sys, flags, &used_address, MSG_EOR);
2613 err = __put_user(err, &compat_entry->msg_len);
2616 err = ___sys_sendmsg(sock,
2617 (struct user_msghdr __user *)entry,
2618 &msg_sys, flags, &used_address, MSG_EOR);
2621 err = put_user(err, &entry->msg_len);
2628 if (msg_data_left(&msg_sys))
2633 fput_light(sock->file, fput_needed);
2635 /* We only return an error if no datagrams were able to be sent */
2642 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2643 unsigned int, vlen, unsigned int, flags)
2645 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2648 int recvmsg_copy_msghdr(struct msghdr *msg,
2649 struct user_msghdr __user *umsg, unsigned flags,
2650 struct sockaddr __user **uaddr,
2655 if (MSG_CMSG_COMPAT & flags) {
2656 struct compat_msghdr __user *msg_compat;
2658 msg_compat = (struct compat_msghdr __user *) umsg;
2659 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2661 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2669 static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2670 struct user_msghdr __user *msg,
2671 struct sockaddr __user *uaddr,
2672 unsigned int flags, int nosec)
2674 struct compat_msghdr __user *msg_compat =
2675 (struct compat_msghdr __user *) msg;
2676 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2677 struct sockaddr_storage addr;
2678 unsigned long cmsg_ptr;
2682 msg_sys->msg_name = &addr;
2683 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2684 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2686 /* We assume all kernel code knows the size of sockaddr_storage */
2687 msg_sys->msg_namelen = 0;
2689 if (sock->file->f_flags & O_NONBLOCK)
2690 flags |= MSG_DONTWAIT;
2692 if (unlikely(nosec))
2693 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2695 err = sock_recvmsg(sock, msg_sys, flags);
2701 if (uaddr != NULL) {
2702 err = move_addr_to_user(&addr,
2703 msg_sys->msg_namelen, uaddr,
2708 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2712 if (MSG_CMSG_COMPAT & flags)
2713 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2714 &msg_compat->msg_controllen);
2716 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2717 &msg->msg_controllen);
2725 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2726 struct msghdr *msg_sys, unsigned int flags, int nosec)
2728 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2729 /* user mode address pointers */
2730 struct sockaddr __user *uaddr;
2733 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2737 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2743 * BSD recvmsg interface
2746 long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2747 struct user_msghdr __user *umsg,
2748 struct sockaddr __user *uaddr, unsigned int flags)
2750 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2753 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2754 bool forbid_cmsg_compat)
2756 int fput_needed, err;
2757 struct msghdr msg_sys;
2758 struct socket *sock;
2760 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2763 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2767 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2769 fput_light(sock->file, fput_needed);
2774 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2775 unsigned int, flags)
2777 return __sys_recvmsg(fd, msg, flags, true);
2781 * Linux recvmmsg interface
2784 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2785 unsigned int vlen, unsigned int flags,
2786 struct timespec64 *timeout)
2788 int fput_needed, err, datagrams;
2789 struct socket *sock;
2790 struct mmsghdr __user *entry;
2791 struct compat_mmsghdr __user *compat_entry;
2792 struct msghdr msg_sys;
2793 struct timespec64 end_time;
2794 struct timespec64 timeout64;
2797 poll_select_set_timeout(&end_time, timeout->tv_sec,
2803 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2807 if (likely(!(flags & MSG_ERRQUEUE))) {
2808 err = sock_error(sock->sk);
2816 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2818 while (datagrams < vlen) {
2820 * No need to ask LSM for more than the first datagram.
2822 if (MSG_CMSG_COMPAT & flags) {
2823 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2824 &msg_sys, flags & ~MSG_WAITFORONE,
2828 err = __put_user(err, &compat_entry->msg_len);
2831 err = ___sys_recvmsg(sock,
2832 (struct user_msghdr __user *)entry,
2833 &msg_sys, flags & ~MSG_WAITFORONE,
2837 err = put_user(err, &entry->msg_len);
2845 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2846 if (flags & MSG_WAITFORONE)
2847 flags |= MSG_DONTWAIT;
2850 ktime_get_ts64(&timeout64);
2851 *timeout = timespec64_sub(end_time, timeout64);
2852 if (timeout->tv_sec < 0) {
2853 timeout->tv_sec = timeout->tv_nsec = 0;
2857 /* Timeout, return less than vlen datagrams */
2858 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2862 /* Out of band data, return right away */
2863 if (msg_sys.msg_flags & MSG_OOB)
2871 if (datagrams == 0) {
2877 * We may return less entries than requested (vlen) if the
2878 * sock is non block and there aren't enough datagrams...
2880 if (err != -EAGAIN) {
2882 * ... or if recvmsg returns an error after we
2883 * received some datagrams, where we record the
2884 * error to return on the next call or if the
2885 * app asks about it using getsockopt(SO_ERROR).
2887 sock->sk->sk_err = -err;
2890 fput_light(sock->file, fput_needed);
2895 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2896 unsigned int vlen, unsigned int flags,
2897 struct __kernel_timespec __user *timeout,
2898 struct old_timespec32 __user *timeout32)
2901 struct timespec64 timeout_sys;
2903 if (timeout && get_timespec64(&timeout_sys, timeout))
2906 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2909 if (!timeout && !timeout32)
2910 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2912 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2917 if (timeout && put_timespec64(&timeout_sys, timeout))
2918 datagrams = -EFAULT;
2920 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2921 datagrams = -EFAULT;
2926 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2927 unsigned int, vlen, unsigned int, flags,
2928 struct __kernel_timespec __user *, timeout)
2930 if (flags & MSG_CMSG_COMPAT)
2933 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2936 #ifdef CONFIG_COMPAT_32BIT_TIME
2937 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2938 unsigned int, vlen, unsigned int, flags,
2939 struct old_timespec32 __user *, timeout)
2941 if (flags & MSG_CMSG_COMPAT)
2944 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2948 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2949 /* Argument list sizes for sys_socketcall */
2950 #define AL(x) ((x) * sizeof(unsigned long))
2951 static const unsigned char nargs[21] = {
2952 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2953 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2954 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2961 * System call vectors.
2963 * Argument checking cleaned up. Saved 20% in size.
2964 * This function doesn't need to set the kernel lock because
2965 * it is set by the callees.
2968 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2970 unsigned long a[AUDITSC_ARGS];
2971 unsigned long a0, a1;
2975 if (call < 1 || call > SYS_SENDMMSG)
2977 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2980 if (len > sizeof(a))
2983 /* copy_from_user should be SMP safe. */
2984 if (copy_from_user(a, args, len))
2987 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2996 err = __sys_socket(a0, a1, a[2]);
2999 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
3002 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
3005 err = __sys_listen(a0, a1);
3008 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3009 (int __user *)a[2], 0);
3011 case SYS_GETSOCKNAME:
3013 __sys_getsockname(a0, (struct sockaddr __user *)a1,
3014 (int __user *)a[2]);
3016 case SYS_GETPEERNAME:
3018 __sys_getpeername(a0, (struct sockaddr __user *)a1,
3019 (int __user *)a[2]);
3021 case SYS_SOCKETPAIR:
3022 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
3025 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3029 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
3030 (struct sockaddr __user *)a[4], a[5]);
3033 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3037 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
3038 (struct sockaddr __user *)a[4],
3039 (int __user *)a[5]);
3042 err = __sys_shutdown(a0, a1);
3044 case SYS_SETSOCKOPT:
3045 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
3048 case SYS_GETSOCKOPT:
3050 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
3051 (int __user *)a[4]);
3054 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
3058 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
3062 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
3066 if (IS_ENABLED(CONFIG_64BIT))
3067 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3069 (struct __kernel_timespec __user *)a[4],
3072 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
3074 (struct old_timespec32 __user *)a[4]);
3077 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
3078 (int __user *)a[2], a[3]);
3087 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
3090 * sock_register - add a socket protocol handler
3091 * @ops: description of protocol
3093 * This function is called by a protocol handler that wants to
3094 * advertise its address family, and have it linked into the
3095 * socket interface. The value ops->family corresponds to the
3096 * socket system call protocol family.
3098 int sock_register(const struct net_proto_family *ops)
3102 if (ops->family >= NPROTO) {
3103 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3107 spin_lock(&net_family_lock);
3108 if (rcu_dereference_protected(net_families[ops->family],
3109 lockdep_is_held(&net_family_lock)))
3112 rcu_assign_pointer(net_families[ops->family], ops);
3115 spin_unlock(&net_family_lock);
3117 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3120 EXPORT_SYMBOL(sock_register);
3123 * sock_unregister - remove a protocol handler
3124 * @family: protocol family to remove
3126 * This function is called by a protocol handler that wants to
3127 * remove its address family, and have it unlinked from the
3128 * new socket creation.
3130 * If protocol handler is a module, then it can use module reference
3131 * counts to protect against new references. If protocol handler is not
3132 * a module then it needs to provide its own protection in
3133 * the ops->create routine.
3135 void sock_unregister(int family)
3137 BUG_ON(family < 0 || family >= NPROTO);
3139 spin_lock(&net_family_lock);
3140 RCU_INIT_POINTER(net_families[family], NULL);
3141 spin_unlock(&net_family_lock);
3145 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3147 EXPORT_SYMBOL(sock_unregister);
3149 bool sock_is_registered(int family)
3151 return family < NPROTO && rcu_access_pointer(net_families[family]);
3154 static int __init sock_init(void)
3158 * Initialize the network sysctl infrastructure.
3160 err = net_sysctl_init();
3165 * Initialize skbuff SLAB cache
3170 * Initialize the protocols module.
3175 err = register_filesystem(&sock_fs_type);
3178 sock_mnt = kern_mount(&sock_fs_type);
3179 if (IS_ERR(sock_mnt)) {
3180 err = PTR_ERR(sock_mnt);
3184 /* The real protocol initialization is performed in later initcalls.
3187 #ifdef CONFIG_NETFILTER
3188 err = netfilter_init();
3193 ptp_classifier_init();
3199 unregister_filesystem(&sock_fs_type);
3203 core_initcall(sock_init); /* early initcall */
3205 #ifdef CONFIG_PROC_FS
3206 void socket_seq_show(struct seq_file *seq)
3208 seq_printf(seq, "sockets: used %d\n",
3209 sock_inuse_get(seq->private));
3211 #endif /* CONFIG_PROC_FS */
3213 /* Handle the fact that while struct ifreq has the same *layout* on
3214 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3215 * which are handled elsewhere, it still has different *size* due to
3216 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3217 * resulting in struct ifreq being 32 and 40 bytes respectively).
3218 * As a result, if the struct happens to be at the end of a page and
3219 * the next page isn't readable/writable, we get a fault. To prevent
3220 * that, copy back and forth to the full size.
3222 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3224 if (in_compat_syscall()) {
3225 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3227 memset(ifr, 0, sizeof(*ifr));
3228 if (copy_from_user(ifr32, arg, sizeof(*ifr32)))
3232 *ifrdata = compat_ptr(ifr32->ifr_data);
3237 if (copy_from_user(ifr, arg, sizeof(*ifr)))
3241 *ifrdata = ifr->ifr_data;
3245 EXPORT_SYMBOL(get_user_ifreq);
3247 int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3249 size_t size = sizeof(*ifr);
3251 if (in_compat_syscall())
3252 size = sizeof(struct compat_ifreq);
3254 if (copy_to_user(arg, ifr, size))
3259 EXPORT_SYMBOL(put_user_ifreq);
3261 #ifdef CONFIG_COMPAT
3262 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3264 compat_uptr_t uptr32;
3269 if (get_user_ifreq(&ifr, NULL, uifr32))
3272 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3275 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3276 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3278 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL, NULL);
3280 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3281 if (put_user_ifreq(&ifr, uifr32))
3287 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3288 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3289 struct compat_ifreq __user *u_ifreq32)
3294 if (!is_socket_ioctl_cmd(cmd))
3296 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3298 ifreq.ifr_data = data;
3300 return dev_ioctl(net, cmd, &ifreq, data, NULL);
3303 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3304 unsigned int cmd, unsigned long arg)
3306 void __user *argp = compat_ptr(arg);
3307 struct sock *sk = sock->sk;
3308 struct net *net = sock_net(sk);
3310 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3311 return sock_ioctl(file, cmd, (unsigned long)argp);
3315 return compat_siocwandev(net, argp);
3316 case SIOCGSTAMP_OLD:
3317 case SIOCGSTAMPNS_OLD:
3318 if (!sock->ops->gettstamp)
3319 return -ENOIOCTLCMD;
3320 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3321 !COMPAT_USE_64BIT_TIME);
3324 case SIOCBONDSLAVEINFOQUERY:
3325 case SIOCBONDINFOQUERY:
3328 return compat_ifr_data_ioctl(net, cmd, argp);
3339 case SIOCGSTAMP_NEW:
3340 case SIOCGSTAMPNS_NEW:
3344 return sock_ioctl(file, cmd, arg);
3363 case SIOCSIFHWBROADCAST:
3365 case SIOCGIFBRDADDR:
3366 case SIOCSIFBRDADDR:
3367 case SIOCGIFDSTADDR:
3368 case SIOCSIFDSTADDR:
3369 case SIOCGIFNETMASK:
3370 case SIOCSIFNETMASK:
3382 case SIOCBONDENSLAVE:
3383 case SIOCBONDRELEASE:
3384 case SIOCBONDSETHWADDR:
3385 case SIOCBONDCHANGEACTIVE:
3392 return sock_do_ioctl(net, sock, cmd, arg);
3395 return -ENOIOCTLCMD;
3398 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3401 struct socket *sock = file->private_data;
3402 int ret = -ENOIOCTLCMD;
3409 if (sock->ops->compat_ioctl)
3410 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3412 if (ret == -ENOIOCTLCMD &&
3413 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3414 ret = compat_wext_handle_ioctl(net, cmd, arg);
3416 if (ret == -ENOIOCTLCMD)
3417 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3424 * kernel_bind - bind an address to a socket (kernel space)
3427 * @addrlen: length of address
3429 * Returns 0 or an error.
3432 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3434 return sock->ops->bind(sock, addr, addrlen);
3436 EXPORT_SYMBOL(kernel_bind);
3439 * kernel_listen - move socket to listening state (kernel space)
3441 * @backlog: pending connections queue size
3443 * Returns 0 or an error.
3446 int kernel_listen(struct socket *sock, int backlog)
3448 return sock->ops->listen(sock, backlog);
3450 EXPORT_SYMBOL(kernel_listen);
3453 * kernel_accept - accept a connection (kernel space)
3454 * @sock: listening socket
3455 * @newsock: new connected socket
3458 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3459 * If it fails, @newsock is guaranteed to be %NULL.
3460 * Returns 0 or an error.
3463 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3465 struct sock *sk = sock->sk;
3468 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3473 err = sock->ops->accept(sock, *newsock, flags, true);
3475 sock_release(*newsock);
3480 (*newsock)->ops = sock->ops;
3481 __module_get((*newsock)->ops->owner);
3486 EXPORT_SYMBOL(kernel_accept);
3489 * kernel_connect - connect a socket (kernel space)
3492 * @addrlen: address length
3493 * @flags: flags (O_NONBLOCK, ...)
3495 * For datagram sockets, @addr is the address to which datagrams are sent
3496 * by default, and the only address from which datagrams are received.
3497 * For stream sockets, attempts to connect to @addr.
3498 * Returns 0 or an error code.
3501 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3504 return sock->ops->connect(sock, addr, addrlen, flags);
3506 EXPORT_SYMBOL(kernel_connect);
3509 * kernel_getsockname - get the address which the socket is bound (kernel space)
3511 * @addr: address holder
3513 * Fills the @addr pointer with the address which the socket is bound.
3514 * Returns the length of the address in bytes or an error code.
3517 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3519 return sock->ops->getname(sock, addr, 0);
3521 EXPORT_SYMBOL(kernel_getsockname);
3524 * kernel_getpeername - get the address which the socket is connected (kernel space)
3526 * @addr: address holder
3528 * Fills the @addr pointer with the address which the socket is connected.
3529 * Returns the length of the address in bytes or an error code.
3532 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3534 return sock->ops->getname(sock, addr, 1);
3536 EXPORT_SYMBOL(kernel_getpeername);
3539 * kernel_sendpage - send a &page through a socket (kernel space)
3542 * @offset: page offset
3543 * @size: total size in bytes
3544 * @flags: flags (MSG_DONTWAIT, ...)
3546 * Returns the total amount sent in bytes or an error.
3549 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3550 size_t size, int flags)
3552 if (sock->ops->sendpage) {
3553 /* Warn in case the improper page to zero-copy send */
3554 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3555 return sock->ops->sendpage(sock, page, offset, size, flags);
3557 return sock_no_sendpage(sock, page, offset, size, flags);
3559 EXPORT_SYMBOL(kernel_sendpage);
3562 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3565 * @offset: page offset
3566 * @size: total size in bytes
3567 * @flags: flags (MSG_DONTWAIT, ...)
3569 * Returns the total amount sent in bytes or an error.
3570 * Caller must hold @sk.
3573 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3574 size_t size, int flags)
3576 struct socket *sock = sk->sk_socket;
3578 if (sock->ops->sendpage_locked)
3579 return sock->ops->sendpage_locked(sk, page, offset, size,
3582 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3584 EXPORT_SYMBOL(kernel_sendpage_locked);
3587 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3589 * @how: connection part
3591 * Returns 0 or an error.
3594 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3596 return sock->ops->shutdown(sock, how);
3598 EXPORT_SYMBOL(kernel_sock_shutdown);
3601 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3604 * This routine returns the IP overhead imposed by a socket i.e.
3605 * the length of the underlying IP header, depending on whether
3606 * this is an IPv4 or IPv6 socket and the length from IP options turned
3607 * on at the socket. Assumes that the caller has a lock on the socket.
3610 u32 kernel_sock_ip_overhead(struct sock *sk)
3612 struct inet_sock *inet;
3613 struct ip_options_rcu *opt;
3615 #if IS_ENABLED(CONFIG_IPV6)
3616 struct ipv6_pinfo *np;
3617 struct ipv6_txoptions *optv6 = NULL;
3618 #endif /* IS_ENABLED(CONFIG_IPV6) */
3623 switch (sk->sk_family) {
3626 overhead += sizeof(struct iphdr);
3627 opt = rcu_dereference_protected(inet->inet_opt,
3628 sock_owned_by_user(sk));
3630 overhead += opt->opt.optlen;
3632 #if IS_ENABLED(CONFIG_IPV6)
3635 overhead += sizeof(struct ipv6hdr);
3637 optv6 = rcu_dereference_protected(np->opt,
3638 sock_owned_by_user(sk));
3640 overhead += (optv6->opt_flen + optv6->opt_nflen);
3642 #endif /* IS_ENABLED(CONFIG_IPV6) */
3643 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3647 EXPORT_SYMBOL(kernel_sock_ip_overhead);