2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
109 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
110 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
111 unsigned long nr_segs, loff_t pos);
112 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
113 unsigned long nr_segs, loff_t pos);
114 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116 static int sock_close(struct inode *inode, struct file *file);
117 static unsigned int sock_poll(struct file *file,
118 struct poll_table_struct *wait);
119 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121 static long compat_sock_ioctl(struct file *file,
122 unsigned int cmd, unsigned long arg);
124 static int sock_fasync(int fd, struct file *filp, int on);
125 static ssize_t sock_sendpage(struct file *file, struct page *page,
126 int offset, size_t size, loff_t *ppos, int more);
127 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
128 struct pipe_inode_info *pipe, size_t len,
132 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
133 * in the operation structures but are done directly via the socketcall() multiplexor.
136 static const struct file_operations socket_file_ops = {
137 .owner = THIS_MODULE,
139 .aio_read = sock_aio_read,
140 .aio_write = sock_aio_write,
142 .unlocked_ioctl = sock_ioctl,
144 .compat_ioctl = compat_sock_ioctl,
147 .open = sock_no_open, /* special open code to disallow open via /proc */
148 .release = sock_close,
149 .fasync = sock_fasync,
150 .sendpage = sock_sendpage,
151 .splice_write = generic_splice_sendpage,
152 .splice_read = sock_splice_read,
156 * The protocol list. Each protocol is registered in here.
159 static DEFINE_SPINLOCK(net_family_lock);
160 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
163 * Statistics counters of the socket lists
166 static DEFINE_PER_CPU(int, sockets_in_use);
170 * Move socket addresses back and forth across the kernel/user
171 * divide and look after the messy bits.
175 * move_addr_to_kernel - copy a socket address into kernel space
176 * @uaddr: Address in user space
177 * @kaddr: Address in kernel space
178 * @ulen: Length in user space
180 * The address is copied into kernel space. If the provided address is
181 * too long an error code of -EINVAL is returned. If the copy gives
182 * invalid addresses -EFAULT is returned. On a success 0 is returned.
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 if (copy_from_user(kaddr, uaddr, ulen))
193 return audit_sockaddr(ulen, kaddr);
197 * move_addr_to_user - copy an address to user space
198 * @kaddr: kernel space address
199 * @klen: length of address in kernel
200 * @uaddr: user space address
201 * @ulen: pointer to user length field
203 * The value pointed to by ulen on entry is the buffer length available.
204 * This is overwritten with the buffer space used. -EINVAL is returned
205 * if an overlong buffer is specified or a negative buffer size. -EFAULT
206 * is returned if either the buffer or the length field are not
208 * After copying the data up to the limit the user specifies, the true
209 * length of the data is written over the length limit the user
210 * specified. Zero is returned for a success.
213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
214 void __user *uaddr, int __user *ulen)
219 err = get_user(len, ulen);
224 if (len < 0 || len > sizeof(struct sockaddr_storage))
227 if (audit_sockaddr(klen, kaddr))
229 if (copy_to_user(uaddr, kaddr, len))
233 * "fromlen shall refer to the value before truncation.."
236 return __put_user(klen, ulen);
239 static struct kmem_cache *sock_inode_cachep __read_mostly;
241 static struct inode *sock_alloc_inode(struct super_block *sb)
243 struct socket_alloc *ei;
244 struct socket_wq *wq;
246 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
249 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
251 kmem_cache_free(sock_inode_cachep, ei);
254 init_waitqueue_head(&wq->wait);
255 wq->fasync_list = NULL;
256 RCU_INIT_POINTER(ei->socket.wq, wq);
258 ei->socket.state = SS_UNCONNECTED;
259 ei->socket.flags = 0;
260 ei->socket.ops = NULL;
261 ei->socket.sk = NULL;
262 ei->socket.file = NULL;
264 return &ei->vfs_inode;
267 static void sock_destroy_inode(struct inode *inode)
269 struct socket_alloc *ei;
270 struct socket_wq *wq;
272 ei = container_of(inode, struct socket_alloc, vfs_inode);
273 wq = rcu_dereference_protected(ei->socket.wq, 1);
275 kmem_cache_free(sock_inode_cachep, ei);
278 static void init_once(void *foo)
280 struct socket_alloc *ei = (struct socket_alloc *)foo;
282 inode_init_once(&ei->vfs_inode);
285 static int init_inodecache(void)
287 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
288 sizeof(struct socket_alloc),
290 (SLAB_HWCACHE_ALIGN |
291 SLAB_RECLAIM_ACCOUNT |
294 if (sock_inode_cachep == NULL)
299 static const struct super_operations sockfs_ops = {
300 .alloc_inode = sock_alloc_inode,
301 .destroy_inode = sock_destroy_inode,
302 .statfs = simple_statfs,
306 * sockfs_dname() is called from d_path().
308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
310 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 dentry->d_inode->i_ino);
314 static const struct dentry_operations sockfs_dentry_operations = {
315 .d_dname = sockfs_dname,
318 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
319 int flags, const char *dev_name, void *data)
321 return mount_pseudo(fs_type, "socket:", &sockfs_ops,
322 &sockfs_dentry_operations, SOCKFS_MAGIC);
325 static struct vfsmount *sock_mnt __read_mostly;
327 static struct file_system_type sock_fs_type = {
329 .mount = sockfs_mount,
330 .kill_sb = kill_anon_super,
334 * Obtains the first available file descriptor and sets it up for use.
336 * These functions create file structures and maps them to fd space
337 * of the current process. On success it returns file descriptor
338 * and file struct implicitly stored in sock->file.
339 * Note that another thread may close file descriptor before we return
340 * from this function. We use the fact that now we do not refer
341 * to socket after mapping. If one day we will need it, this
342 * function will increment ref. count on file by 1.
344 * In any case returned fd MAY BE not valid!
345 * This race condition is unavoidable
346 * with shared fd spaces, we cannot solve it inside kernel,
347 * but we take care of internal coherence yet.
350 static int sock_alloc_file(struct socket *sock, struct file **f, int flags,
353 struct qstr name = { .name = "" };
358 fd = get_unused_fd_flags(flags);
359 if (unlikely(fd < 0))
364 name.len = strlen(name.name);
365 } else if (sock->sk) {
366 name.name = sock->sk->sk_prot_creator->name;
367 name.len = strlen(name.name);
369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 if (unlikely(!path.dentry)) {
374 path.mnt = mntget(sock_mnt);
376 d_instantiate(path.dentry, SOCK_INODE(sock));
377 SOCK_INODE(sock)->i_fop = &socket_file_ops;
379 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
381 if (unlikely(!file)) {
382 /* drop dentry, keep inode */
383 ihold(path.dentry->d_inode);
390 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
392 file->private_data = sock;
398 int sock_map_fd(struct socket *sock, int flags)
400 struct file *newfile;
401 int fd = sock_alloc_file(sock, &newfile, flags, NULL);
404 fd_install(fd, newfile);
408 EXPORT_SYMBOL(sock_map_fd);
410 struct socket *sock_from_file(struct file *file, int *err)
412 if (file->f_op == &socket_file_ops)
413 return file->private_data; /* set in sock_map_fd */
418 EXPORT_SYMBOL(sock_from_file);
421 * sockfd_lookup - Go from a file number to its socket slot
423 * @err: pointer to an error code return
425 * The file handle passed in is locked and the socket it is bound
426 * too is returned. If an error occurs the err pointer is overwritten
427 * with a negative errno code and NULL is returned. The function checks
428 * for both invalid handles and passing a handle which is not a socket.
430 * On a success the socket object pointer is returned.
433 struct socket *sockfd_lookup(int fd, int *err)
444 sock = sock_from_file(file, err);
449 EXPORT_SYMBOL(sockfd_lookup);
451 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
457 file = fget_light(fd, fput_needed);
459 sock = sock_from_file(file, err);
462 fput_light(file, *fput_needed);
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 const char *name, void *value, size_t size)
473 const char *proto_name;
478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 proto_name = dentry->d_name.name;
480 proto_size = strlen(proto_name);
484 if (proto_size + 1 > size)
487 strncpy(value, proto_name, proto_size + 1);
489 error = proto_size + 1;
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
502 len = security_inode_listsecurity(dentry->d_inode, buffer, size);
512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
524 static const struct inode_operations sockfs_inode_ops = {
525 .getxattr = sockfs_getxattr,
526 .listxattr = sockfs_listxattr,
530 * sock_alloc - allocate a socket
532 * Allocate a new inode and socket object. The two are bound together
533 * and initialised. The socket is then returned. If we are out of inodes
537 static struct socket *sock_alloc(void)
542 inode = new_inode_pseudo(sock_mnt->mnt_sb);
546 sock = SOCKET_I(inode);
548 kmemcheck_annotate_bitfield(sock, type);
549 inode->i_ino = get_next_ino();
550 inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 inode->i_uid = current_fsuid();
552 inode->i_gid = current_fsgid();
553 inode->i_op = &sockfs_inode_ops;
555 this_cpu_add(sockets_in_use, 1);
560 * In theory you can't get an open on this inode, but /proc provides
561 * a back door. Remember to keep it shut otherwise you'll let the
562 * creepy crawlies in.
565 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
570 const struct file_operations bad_sock_fops = {
571 .owner = THIS_MODULE,
572 .open = sock_no_open,
573 .llseek = noop_llseek,
577 * sock_release - close a socket
578 * @sock: socket to close
580 * The socket is released from the protocol stack if it has a release
581 * callback, and the inode is then released if the socket is bound to
582 * an inode not a file.
585 void sock_release(struct socket *sock)
588 struct module *owner = sock->ops->owner;
590 sock->ops->release(sock);
595 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
596 printk(KERN_ERR "sock_release: fasync list not empty!\n");
598 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
601 this_cpu_sub(sockets_in_use, 1);
603 iput(SOCK_INODE(sock));
608 EXPORT_SYMBOL(sock_release);
610 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
613 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
614 *tx_flags |= SKBTX_HW_TSTAMP;
615 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
616 *tx_flags |= SKBTX_SW_TSTAMP;
617 if (sock_flag(sk, SOCK_WIFI_STATUS))
618 *tx_flags |= SKBTX_WIFI_STATUS;
621 EXPORT_SYMBOL(sock_tx_timestamp);
623 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
624 struct msghdr *msg, size_t size)
626 struct sock_iocb *si = kiocb_to_siocb(iocb);
628 sock_update_classid(sock->sk);
635 return sock->ops->sendmsg(iocb, sock, msg, size);
638 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
639 struct msghdr *msg, size_t size)
641 int err = security_socket_sendmsg(sock, msg, size);
643 return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
646 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
649 struct sock_iocb siocb;
652 init_sync_kiocb(&iocb, NULL);
653 iocb.private = &siocb;
654 ret = __sock_sendmsg(&iocb, sock, msg, size);
655 if (-EIOCBQUEUED == ret)
656 ret = wait_on_sync_kiocb(&iocb);
659 EXPORT_SYMBOL(sock_sendmsg);
661 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
664 struct sock_iocb siocb;
667 init_sync_kiocb(&iocb, NULL);
668 iocb.private = &siocb;
669 ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
670 if (-EIOCBQUEUED == ret)
671 ret = wait_on_sync_kiocb(&iocb);
675 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
676 struct kvec *vec, size_t num, size_t size)
678 mm_segment_t oldfs = get_fs();
683 * the following is safe, since for compiler definitions of kvec and
684 * iovec are identical, yielding the same in-core layout and alignment
686 msg->msg_iov = (struct iovec *)vec;
687 msg->msg_iovlen = num;
688 result = sock_sendmsg(sock, msg, size);
692 EXPORT_SYMBOL(kernel_sendmsg);
694 static int ktime2ts(ktime_t kt, struct timespec *ts)
697 *ts = ktime_to_timespec(kt);
705 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
707 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
710 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
711 struct timespec ts[3];
713 struct skb_shared_hwtstamps *shhwtstamps =
716 /* Race occurred between timestamp enabling and packet
717 receiving. Fill in the current time for now. */
718 if (need_software_tstamp && skb->tstamp.tv64 == 0)
719 __net_timestamp(skb);
721 if (need_software_tstamp) {
722 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
724 skb_get_timestamp(skb, &tv);
725 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
728 skb_get_timestampns(skb, &ts[0]);
729 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
730 sizeof(ts[0]), &ts[0]);
735 memset(ts, 0, sizeof(ts));
736 if (skb->tstamp.tv64 &&
737 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
738 skb_get_timestampns(skb, ts + 0);
742 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
743 ktime2ts(shhwtstamps->syststamp, ts + 1))
745 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
746 ktime2ts(shhwtstamps->hwtstamp, ts + 2))
750 put_cmsg(msg, SOL_SOCKET,
751 SCM_TIMESTAMPING, sizeof(ts), &ts);
753 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
755 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
760 if (!sock_flag(sk, SOCK_WIFI_STATUS))
762 if (!skb->wifi_acked_valid)
765 ack = skb->wifi_acked;
767 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
769 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
771 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
774 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
775 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
776 sizeof(__u32), &skb->dropcount);
779 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
782 sock_recv_timestamp(msg, sk, skb);
783 sock_recv_drops(msg, sk, skb);
785 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
787 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
788 struct msghdr *msg, size_t size, int flags)
790 struct sock_iocb *si = kiocb_to_siocb(iocb);
792 sock_update_classid(sock->sk);
800 return sock->ops->recvmsg(iocb, sock, msg, size, flags);
803 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
804 struct msghdr *msg, size_t size, int flags)
806 int err = security_socket_recvmsg(sock, msg, size, flags);
808 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
811 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
812 size_t size, int flags)
815 struct sock_iocb siocb;
818 init_sync_kiocb(&iocb, NULL);
819 iocb.private = &siocb;
820 ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
821 if (-EIOCBQUEUED == ret)
822 ret = wait_on_sync_kiocb(&iocb);
825 EXPORT_SYMBOL(sock_recvmsg);
827 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
828 size_t size, int flags)
831 struct sock_iocb siocb;
834 init_sync_kiocb(&iocb, NULL);
835 iocb.private = &siocb;
836 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
837 if (-EIOCBQUEUED == ret)
838 ret = wait_on_sync_kiocb(&iocb);
843 * kernel_recvmsg - Receive a message from a socket (kernel space)
844 * @sock: The socket to receive the message from
845 * @msg: Received message
846 * @vec: Input s/g array for message data
847 * @num: Size of input s/g array
848 * @size: Number of bytes to read
849 * @flags: Message flags (MSG_DONTWAIT, etc...)
851 * On return the msg structure contains the scatter/gather array passed in the
852 * vec argument. The array is modified so that it consists of the unfilled
853 * portion of the original array.
855 * The returned value is the total number of bytes received, or an error.
857 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
858 struct kvec *vec, size_t num, size_t size, int flags)
860 mm_segment_t oldfs = get_fs();
865 * the following is safe, since for compiler definitions of kvec and
866 * iovec are identical, yielding the same in-core layout and alignment
868 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
869 result = sock_recvmsg(sock, msg, size, flags);
873 EXPORT_SYMBOL(kernel_recvmsg);
875 static void sock_aio_dtor(struct kiocb *iocb)
877 kfree(iocb->private);
880 static ssize_t sock_sendpage(struct file *file, struct page *page,
881 int offset, size_t size, loff_t *ppos, int more)
886 sock = file->private_data;
888 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
889 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
892 return kernel_sendpage(sock, page, offset, size, flags);
895 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
896 struct pipe_inode_info *pipe, size_t len,
899 struct socket *sock = file->private_data;
901 if (unlikely(!sock->ops->splice_read))
904 sock_update_classid(sock->sk);
906 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
909 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
910 struct sock_iocb *siocb)
912 if (!is_sync_kiocb(iocb)) {
913 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
916 iocb->ki_dtor = sock_aio_dtor;
920 iocb->private = siocb;
924 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
925 struct file *file, const struct iovec *iov,
926 unsigned long nr_segs)
928 struct socket *sock = file->private_data;
932 for (i = 0; i < nr_segs; i++)
933 size += iov[i].iov_len;
935 msg->msg_name = NULL;
936 msg->msg_namelen = 0;
937 msg->msg_control = NULL;
938 msg->msg_controllen = 0;
939 msg->msg_iov = (struct iovec *)iov;
940 msg->msg_iovlen = nr_segs;
941 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
943 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
946 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
947 unsigned long nr_segs, loff_t pos)
949 struct sock_iocb siocb, *x;
954 if (iocb->ki_left == 0) /* Match SYS5 behaviour */
958 x = alloc_sock_iocb(iocb, &siocb);
961 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
964 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
965 struct file *file, const struct iovec *iov,
966 unsigned long nr_segs)
968 struct socket *sock = file->private_data;
972 for (i = 0; i < nr_segs; i++)
973 size += iov[i].iov_len;
975 msg->msg_name = NULL;
976 msg->msg_namelen = 0;
977 msg->msg_control = NULL;
978 msg->msg_controllen = 0;
979 msg->msg_iov = (struct iovec *)iov;
980 msg->msg_iovlen = nr_segs;
981 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
982 if (sock->type == SOCK_SEQPACKET)
983 msg->msg_flags |= MSG_EOR;
985 return __sock_sendmsg(iocb, sock, msg, size);
988 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
989 unsigned long nr_segs, loff_t pos)
991 struct sock_iocb siocb, *x;
996 x = alloc_sock_iocb(iocb, &siocb);
1000 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
1004 * Atomic setting of ioctl hooks to avoid race
1005 * with module unload.
1008 static DEFINE_MUTEX(br_ioctl_mutex);
1009 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1011 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1013 mutex_lock(&br_ioctl_mutex);
1014 br_ioctl_hook = hook;
1015 mutex_unlock(&br_ioctl_mutex);
1017 EXPORT_SYMBOL(brioctl_set);
1019 static DEFINE_MUTEX(vlan_ioctl_mutex);
1020 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1022 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1024 mutex_lock(&vlan_ioctl_mutex);
1025 vlan_ioctl_hook = hook;
1026 mutex_unlock(&vlan_ioctl_mutex);
1028 EXPORT_SYMBOL(vlan_ioctl_set);
1030 static DEFINE_MUTEX(dlci_ioctl_mutex);
1031 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1033 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1035 mutex_lock(&dlci_ioctl_mutex);
1036 dlci_ioctl_hook = hook;
1037 mutex_unlock(&dlci_ioctl_mutex);
1039 EXPORT_SYMBOL(dlci_ioctl_set);
1041 static long sock_do_ioctl(struct net *net, struct socket *sock,
1042 unsigned int cmd, unsigned long arg)
1045 void __user *argp = (void __user *)arg;
1047 err = sock->ops->ioctl(sock, cmd, arg);
1050 * If this ioctl is unknown try to hand it down
1051 * to the NIC driver.
1053 if (err == -ENOIOCTLCMD)
1054 err = dev_ioctl(net, cmd, argp);
1060 * With an ioctl, arg may well be a user mode pointer, but we don't know
1061 * what to do with it - that's up to the protocol still.
1064 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1066 struct socket *sock;
1068 void __user *argp = (void __user *)arg;
1072 sock = file->private_data;
1075 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1076 err = dev_ioctl(net, cmd, argp);
1078 #ifdef CONFIG_WEXT_CORE
1079 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1080 err = dev_ioctl(net, cmd, argp);
1087 if (get_user(pid, (int __user *)argp))
1089 err = f_setown(sock->file, pid, 1);
1093 err = put_user(f_getown(sock->file),
1094 (int __user *)argp);
1102 request_module("bridge");
1104 mutex_lock(&br_ioctl_mutex);
1106 err = br_ioctl_hook(net, cmd, argp);
1107 mutex_unlock(&br_ioctl_mutex);
1112 if (!vlan_ioctl_hook)
1113 request_module("8021q");
1115 mutex_lock(&vlan_ioctl_mutex);
1116 if (vlan_ioctl_hook)
1117 err = vlan_ioctl_hook(net, argp);
1118 mutex_unlock(&vlan_ioctl_mutex);
1123 if (!dlci_ioctl_hook)
1124 request_module("dlci");
1126 mutex_lock(&dlci_ioctl_mutex);
1127 if (dlci_ioctl_hook)
1128 err = dlci_ioctl_hook(cmd, argp);
1129 mutex_unlock(&dlci_ioctl_mutex);
1132 err = sock_do_ioctl(net, sock, cmd, arg);
1138 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1141 struct socket *sock = NULL;
1143 err = security_socket_create(family, type, protocol, 1);
1147 sock = sock_alloc();
1154 err = security_socket_post_create(sock, family, type, protocol, 1);
1166 EXPORT_SYMBOL(sock_create_lite);
1168 /* No kernel lock held - perfect */
1169 static unsigned int sock_poll(struct file *file, poll_table *wait)
1171 struct socket *sock;
1174 * We can't return errors to poll, so it's either yes or no.
1176 sock = file->private_data;
1177 return sock->ops->poll(file, sock, wait);
1180 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1182 struct socket *sock = file->private_data;
1184 return sock->ops->mmap(file, sock, vma);
1187 static int sock_close(struct inode *inode, struct file *filp)
1190 * It was possible the inode is NULL we were
1191 * closing an unfinished socket.
1195 printk(KERN_DEBUG "sock_close: NULL inode\n");
1198 sock_release(SOCKET_I(inode));
1203 * Update the socket async list
1205 * Fasync_list locking strategy.
1207 * 1. fasync_list is modified only under process context socket lock
1208 * i.e. under semaphore.
1209 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1210 * or under socket lock
1213 static int sock_fasync(int fd, struct file *filp, int on)
1215 struct socket *sock = filp->private_data;
1216 struct sock *sk = sock->sk;
1217 struct socket_wq *wq;
1223 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1224 fasync_helper(fd, filp, on, &wq->fasync_list);
1226 if (!wq->fasync_list)
1227 sock_reset_flag(sk, SOCK_FASYNC);
1229 sock_set_flag(sk, SOCK_FASYNC);
1235 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1237 int sock_wake_async(struct socket *sock, int how, int band)
1239 struct socket_wq *wq;
1244 wq = rcu_dereference(sock->wq);
1245 if (!wq || !wq->fasync_list) {
1250 case SOCK_WAKE_WAITD:
1251 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1254 case SOCK_WAKE_SPACE:
1255 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1260 kill_fasync(&wq->fasync_list, SIGIO, band);
1263 kill_fasync(&wq->fasync_list, SIGURG, band);
1268 EXPORT_SYMBOL(sock_wake_async);
1270 int __sock_create(struct net *net, int family, int type, int protocol,
1271 struct socket **res, int kern)
1274 struct socket *sock;
1275 const struct net_proto_family *pf;
1278 * Check protocol is in range
1280 if (family < 0 || family >= NPROTO)
1281 return -EAFNOSUPPORT;
1282 if (type < 0 || type >= SOCK_MAX)
1287 This uglymoron is moved from INET layer to here to avoid
1288 deadlock in module load.
1290 if (family == PF_INET && type == SOCK_PACKET) {
1294 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1300 err = security_socket_create(family, type, protocol, kern);
1305 * Allocate the socket and allow the family to set things up. if
1306 * the protocol is 0, the family is instructed to select an appropriate
1309 sock = sock_alloc();
1311 net_warn_ratelimited("socket: no more sockets\n");
1312 return -ENFILE; /* Not exactly a match, but its the
1313 closest posix thing */
1318 #ifdef CONFIG_MODULES
1319 /* Attempt to load a protocol module if the find failed.
1321 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1322 * requested real, full-featured networking support upon configuration.
1323 * Otherwise module support will break!
1325 if (rcu_access_pointer(net_families[family]) == NULL)
1326 request_module("net-pf-%d", family);
1330 pf = rcu_dereference(net_families[family]);
1331 err = -EAFNOSUPPORT;
1336 * We will call the ->create function, that possibly is in a loadable
1337 * module, so we have to bump that loadable module refcnt first.
1339 if (!try_module_get(pf->owner))
1342 /* Now protected by module ref count */
1345 err = pf->create(net, sock, protocol, kern);
1347 goto out_module_put;
1350 * Now to bump the refcnt of the [loadable] module that owns this
1351 * socket at sock_release time we decrement its refcnt.
1353 if (!try_module_get(sock->ops->owner))
1354 goto out_module_busy;
1357 * Now that we're done with the ->create function, the [loadable]
1358 * module can have its refcnt decremented
1360 module_put(pf->owner);
1361 err = security_socket_post_create(sock, family, type, protocol, kern);
1363 goto out_sock_release;
1369 err = -EAFNOSUPPORT;
1372 module_put(pf->owner);
1379 goto out_sock_release;
1381 EXPORT_SYMBOL(__sock_create);
1383 int sock_create(int family, int type, int protocol, struct socket **res)
1385 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1387 EXPORT_SYMBOL(sock_create);
1389 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1391 return __sock_create(&init_net, family, type, protocol, res, 1);
1393 EXPORT_SYMBOL(sock_create_kern);
1395 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1398 struct socket *sock;
1401 /* Check the SOCK_* constants for consistency. */
1402 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1403 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1404 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1405 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1407 flags = type & ~SOCK_TYPE_MASK;
1408 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1410 type &= SOCK_TYPE_MASK;
1412 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1413 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1415 retval = sock_create(family, type, protocol, &sock);
1419 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1424 /* It may be already another descriptor 8) Not kernel problem. */
1433 * Create a pair of connected sockets.
1436 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1437 int __user *, usockvec)
1439 struct socket *sock1, *sock2;
1441 struct file *newfile1, *newfile2;
1444 flags = type & ~SOCK_TYPE_MASK;
1445 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1447 type &= SOCK_TYPE_MASK;
1449 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1450 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1453 * Obtain the first socket and check if the underlying protocol
1454 * supports the socketpair call.
1457 err = sock_create(family, type, protocol, &sock1);
1461 err = sock_create(family, type, protocol, &sock2);
1465 err = sock1->ops->socketpair(sock1, sock2);
1467 goto out_release_both;
1469 fd1 = sock_alloc_file(sock1, &newfile1, flags, NULL);
1470 if (unlikely(fd1 < 0)) {
1472 goto out_release_both;
1475 fd2 = sock_alloc_file(sock2, &newfile2, flags, NULL);
1476 if (unlikely(fd2 < 0)) {
1480 sock_release(sock2);
1484 audit_fd_pair(fd1, fd2);
1485 fd_install(fd1, newfile1);
1486 fd_install(fd2, newfile2);
1487 /* fd1 and fd2 may be already another descriptors.
1488 * Not kernel problem.
1491 err = put_user(fd1, &usockvec[0]);
1493 err = put_user(fd2, &usockvec[1]);
1502 sock_release(sock2);
1504 sock_release(sock1);
1510 * Bind a name to a socket. Nothing much to do here since it's
1511 * the protocol's responsibility to handle the local address.
1513 * We move the socket address to kernel space before we call
1514 * the protocol layer (having also checked the address is ok).
1517 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1519 struct socket *sock;
1520 struct sockaddr_storage address;
1521 int err, fput_needed;
1523 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1525 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1527 err = security_socket_bind(sock,
1528 (struct sockaddr *)&address,
1531 err = sock->ops->bind(sock,
1535 fput_light(sock->file, fput_needed);
1541 * Perform a listen. Basically, we allow the protocol to do anything
1542 * necessary for a listen, and if that works, we mark the socket as
1543 * ready for listening.
1546 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1548 struct socket *sock;
1549 int err, fput_needed;
1552 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1554 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1555 if ((unsigned int)backlog > somaxconn)
1556 backlog = somaxconn;
1558 err = security_socket_listen(sock, backlog);
1560 err = sock->ops->listen(sock, backlog);
1562 fput_light(sock->file, fput_needed);
1568 * For accept, we attempt to create a new socket, set up the link
1569 * with the client, wake up the client, then return the new
1570 * connected fd. We collect the address of the connector in kernel
1571 * space and move it to user at the very end. This is unclean because
1572 * we open the socket then return an error.
1574 * 1003.1g adds the ability to recvmsg() to query connection pending
1575 * status to recvmsg. We need to add that support in a way thats
1576 * clean when we restucture accept also.
1579 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1580 int __user *, upeer_addrlen, int, flags)
1582 struct socket *sock, *newsock;
1583 struct file *newfile;
1584 int err, len, newfd, fput_needed;
1585 struct sockaddr_storage address;
1587 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1590 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1591 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1593 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1598 newsock = sock_alloc();
1602 newsock->type = sock->type;
1603 newsock->ops = sock->ops;
1606 * We don't need try_module_get here, as the listening socket (sock)
1607 * has the protocol module (sock->ops->owner) held.
1609 __module_get(newsock->ops->owner);
1611 newfd = sock_alloc_file(newsock, &newfile, flags,
1612 sock->sk->sk_prot_creator->name);
1613 if (unlikely(newfd < 0)) {
1615 sock_release(newsock);
1619 err = security_socket_accept(sock, newsock);
1623 err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1627 if (upeer_sockaddr) {
1628 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1630 err = -ECONNABORTED;
1633 err = move_addr_to_user(&address,
1634 len, upeer_sockaddr, upeer_addrlen);
1639 /* File flags are not inherited via accept() unlike another OSes. */
1641 fd_install(newfd, newfile);
1645 fput_light(sock->file, fput_needed);
1650 put_unused_fd(newfd);
1654 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1655 int __user *, upeer_addrlen)
1657 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1661 * Attempt to connect to a socket with the server address. The address
1662 * is in user space so we verify it is OK and move it to kernel space.
1664 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1667 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1668 * other SEQPACKET protocols that take time to connect() as it doesn't
1669 * include the -EINPROGRESS status for such sockets.
1672 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1675 struct socket *sock;
1676 struct sockaddr_storage address;
1677 int err, fput_needed;
1679 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1682 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1687 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1691 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1692 sock->file->f_flags);
1694 fput_light(sock->file, fput_needed);
1700 * Get the local address ('name') of a socket object. Move the obtained
1701 * name to user space.
1704 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1705 int __user *, usockaddr_len)
1707 struct socket *sock;
1708 struct sockaddr_storage address;
1709 int len, err, fput_needed;
1711 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1715 err = security_socket_getsockname(sock);
1719 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1722 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1725 fput_light(sock->file, fput_needed);
1731 * Get the remote address ('name') of a socket object. Move the obtained
1732 * name to user space.
1735 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1736 int __user *, usockaddr_len)
1738 struct socket *sock;
1739 struct sockaddr_storage address;
1740 int len, err, fput_needed;
1742 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1744 err = security_socket_getpeername(sock);
1746 fput_light(sock->file, fput_needed);
1751 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1754 err = move_addr_to_user(&address, len, usockaddr,
1756 fput_light(sock->file, fput_needed);
1762 * Send a datagram to a given address. We move the address into kernel
1763 * space and check the user space data area is readable before invoking
1767 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1768 unsigned int, flags, struct sockaddr __user *, addr,
1771 struct socket *sock;
1772 struct sockaddr_storage address;
1780 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1784 iov.iov_base = buff;
1786 msg.msg_name = NULL;
1789 msg.msg_control = NULL;
1790 msg.msg_controllen = 0;
1791 msg.msg_namelen = 0;
1793 err = move_addr_to_kernel(addr, addr_len, &address);
1796 msg.msg_name = (struct sockaddr *)&address;
1797 msg.msg_namelen = addr_len;
1799 if (sock->file->f_flags & O_NONBLOCK)
1800 flags |= MSG_DONTWAIT;
1801 msg.msg_flags = flags;
1802 err = sock_sendmsg(sock, &msg, len);
1805 fput_light(sock->file, fput_needed);
1811 * Send a datagram down a socket.
1814 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1815 unsigned int, flags)
1817 return sys_sendto(fd, buff, len, flags, NULL, 0);
1821 * Receive a frame from the socket and optionally record the address of the
1822 * sender. We verify the buffers are writable and if needed move the
1823 * sender address from kernel to user space.
1826 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1827 unsigned int, flags, struct sockaddr __user *, addr,
1828 int __user *, addr_len)
1830 struct socket *sock;
1833 struct sockaddr_storage address;
1839 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1843 msg.msg_control = NULL;
1844 msg.msg_controllen = 0;
1848 iov.iov_base = ubuf;
1849 msg.msg_name = (struct sockaddr *)&address;
1850 msg.msg_namelen = sizeof(address);
1851 if (sock->file->f_flags & O_NONBLOCK)
1852 flags |= MSG_DONTWAIT;
1853 err = sock_recvmsg(sock, &msg, size, flags);
1855 if (err >= 0 && addr != NULL) {
1856 err2 = move_addr_to_user(&address,
1857 msg.msg_namelen, addr, addr_len);
1862 fput_light(sock->file, fput_needed);
1868 * Receive a datagram from a socket.
1871 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1874 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1878 * Set a socket option. Because we don't know the option lengths we have
1879 * to pass the user mode parameter for the protocols to sort out.
1882 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1883 char __user *, optval, int, optlen)
1885 int err, fput_needed;
1886 struct socket *sock;
1891 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1893 err = security_socket_setsockopt(sock, level, optname);
1897 if (level == SOL_SOCKET)
1899 sock_setsockopt(sock, level, optname, optval,
1903 sock->ops->setsockopt(sock, level, optname, optval,
1906 fput_light(sock->file, fput_needed);
1912 * Get a socket option. Because we don't know the option lengths we have
1913 * to pass a user mode parameter for the protocols to sort out.
1916 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1917 char __user *, optval, int __user *, optlen)
1919 int err, fput_needed;
1920 struct socket *sock;
1922 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1924 err = security_socket_getsockopt(sock, level, optname);
1928 if (level == SOL_SOCKET)
1930 sock_getsockopt(sock, level, optname, optval,
1934 sock->ops->getsockopt(sock, level, optname, optval,
1937 fput_light(sock->file, fput_needed);
1943 * Shutdown a socket.
1946 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1948 int err, fput_needed;
1949 struct socket *sock;
1951 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1953 err = security_socket_shutdown(sock, how);
1955 err = sock->ops->shutdown(sock, how);
1956 fput_light(sock->file, fput_needed);
1961 /* A couple of helpful macros for getting the address of the 32/64 bit
1962 * fields which are the same type (int / unsigned) on our platforms.
1964 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1965 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1966 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1968 struct used_address {
1969 struct sockaddr_storage name;
1970 unsigned int name_len;
1973 static int __sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
1974 struct msghdr *msg_sys, unsigned int flags,
1975 struct used_address *used_address)
1977 struct compat_msghdr __user *msg_compat =
1978 (struct compat_msghdr __user *)msg;
1979 struct sockaddr_storage address;
1980 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1981 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1982 __attribute__ ((aligned(sizeof(__kernel_size_t))));
1983 /* 20 is size of ipv6_pktinfo */
1984 unsigned char *ctl_buf = ctl;
1985 int err, ctl_len, total_len;
1988 if (MSG_CMSG_COMPAT & flags) {
1989 if (get_compat_msghdr(msg_sys, msg_compat))
1991 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1994 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1996 if (msg_sys->msg_iovlen > UIO_MAXIOV)
1999 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2005 /* This will also move the address data into kernel space */
2006 if (MSG_CMSG_COMPAT & flags) {
2007 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2009 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2016 if (msg_sys->msg_controllen > INT_MAX)
2018 ctl_len = msg_sys->msg_controllen;
2019 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2021 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2025 ctl_buf = msg_sys->msg_control;
2026 ctl_len = msg_sys->msg_controllen;
2027 } else if (ctl_len) {
2028 if (ctl_len > sizeof(ctl)) {
2029 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2030 if (ctl_buf == NULL)
2035 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2036 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2037 * checking falls down on this.
2039 if (copy_from_user(ctl_buf,
2040 (void __user __force *)msg_sys->msg_control,
2043 msg_sys->msg_control = ctl_buf;
2045 msg_sys->msg_flags = flags;
2047 if (sock->file->f_flags & O_NONBLOCK)
2048 msg_sys->msg_flags |= MSG_DONTWAIT;
2050 * If this is sendmmsg() and current destination address is same as
2051 * previously succeeded address, omit asking LSM's decision.
2052 * used_address->name_len is initialized to UINT_MAX so that the first
2053 * destination address never matches.
2055 if (used_address && msg_sys->msg_name &&
2056 used_address->name_len == msg_sys->msg_namelen &&
2057 !memcmp(&used_address->name, msg_sys->msg_name,
2058 used_address->name_len)) {
2059 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2062 err = sock_sendmsg(sock, msg_sys, total_len);
2064 * If this is sendmmsg() and sending to current destination address was
2065 * successful, remember it.
2067 if (used_address && err >= 0) {
2068 used_address->name_len = msg_sys->msg_namelen;
2069 if (msg_sys->msg_name)
2070 memcpy(&used_address->name, msg_sys->msg_name,
2071 used_address->name_len);
2076 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2078 if (iov != iovstack)
2085 * BSD sendmsg interface
2088 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2090 int fput_needed, err;
2091 struct msghdr msg_sys;
2092 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2097 err = __sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2099 fput_light(sock->file, fput_needed);
2105 * Linux sendmmsg interface
2108 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2111 int fput_needed, err, datagrams;
2112 struct socket *sock;
2113 struct mmsghdr __user *entry;
2114 struct compat_mmsghdr __user *compat_entry;
2115 struct msghdr msg_sys;
2116 struct used_address used_address;
2118 if (vlen > UIO_MAXIOV)
2123 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2127 used_address.name_len = UINT_MAX;
2129 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2132 while (datagrams < vlen) {
2133 if (MSG_CMSG_COMPAT & flags) {
2134 err = __sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2135 &msg_sys, flags, &used_address);
2138 err = __put_user(err, &compat_entry->msg_len);
2141 err = __sys_sendmsg(sock, (struct msghdr __user *)entry,
2142 &msg_sys, flags, &used_address);
2145 err = put_user(err, &entry->msg_len);
2154 fput_light(sock->file, fput_needed);
2156 /* We only return an error if no datagrams were able to be sent */
2163 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2164 unsigned int, vlen, unsigned int, flags)
2166 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2169 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2170 struct msghdr *msg_sys, unsigned int flags, int nosec)
2172 struct compat_msghdr __user *msg_compat =
2173 (struct compat_msghdr __user *)msg;
2174 struct iovec iovstack[UIO_FASTIOV];
2175 struct iovec *iov = iovstack;
2176 unsigned long cmsg_ptr;
2177 int err, total_len, len;
2179 /* kernel mode address */
2180 struct sockaddr_storage addr;
2182 /* user mode address pointers */
2183 struct sockaddr __user *uaddr;
2184 int __user *uaddr_len;
2186 if (MSG_CMSG_COMPAT & flags) {
2187 if (get_compat_msghdr(msg_sys, msg_compat))
2189 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
2192 if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2194 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2197 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2204 * Save the user-mode address (verify_iovec will change the
2205 * kernel msghdr to use the kernel address space)
2208 uaddr = (__force void __user *)msg_sys->msg_name;
2209 uaddr_len = COMPAT_NAMELEN(msg);
2210 if (MSG_CMSG_COMPAT & flags) {
2211 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2213 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2218 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2219 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2221 if (sock->file->f_flags & O_NONBLOCK)
2222 flags |= MSG_DONTWAIT;
2223 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2229 if (uaddr != NULL) {
2230 err = move_addr_to_user(&addr,
2231 msg_sys->msg_namelen, uaddr,
2236 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2240 if (MSG_CMSG_COMPAT & flags)
2241 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2242 &msg_compat->msg_controllen);
2244 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2245 &msg->msg_controllen);
2251 if (iov != iovstack)
2258 * BSD recvmsg interface
2261 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2262 unsigned int, flags)
2264 int fput_needed, err;
2265 struct msghdr msg_sys;
2266 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2271 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2273 fput_light(sock->file, fput_needed);
2279 * Linux recvmmsg interface
2282 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2283 unsigned int flags, struct timespec *timeout)
2285 int fput_needed, err, datagrams;
2286 struct socket *sock;
2287 struct mmsghdr __user *entry;
2288 struct compat_mmsghdr __user *compat_entry;
2289 struct msghdr msg_sys;
2290 struct timespec end_time;
2293 poll_select_set_timeout(&end_time, timeout->tv_sec,
2299 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2303 err = sock_error(sock->sk);
2308 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2310 while (datagrams < vlen) {
2312 * No need to ask LSM for more than the first datagram.
2314 if (MSG_CMSG_COMPAT & flags) {
2315 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2316 &msg_sys, flags & ~MSG_WAITFORONE,
2320 err = __put_user(err, &compat_entry->msg_len);
2323 err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2324 &msg_sys, flags & ~MSG_WAITFORONE,
2328 err = put_user(err, &entry->msg_len);
2336 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2337 if (flags & MSG_WAITFORONE)
2338 flags |= MSG_DONTWAIT;
2341 ktime_get_ts(timeout);
2342 *timeout = timespec_sub(end_time, *timeout);
2343 if (timeout->tv_sec < 0) {
2344 timeout->tv_sec = timeout->tv_nsec = 0;
2348 /* Timeout, return less than vlen datagrams */
2349 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2353 /* Out of band data, return right away */
2354 if (msg_sys.msg_flags & MSG_OOB)
2359 fput_light(sock->file, fput_needed);
2364 if (datagrams != 0) {
2366 * We may return less entries than requested (vlen) if the
2367 * sock is non block and there aren't enough datagrams...
2369 if (err != -EAGAIN) {
2371 * ... or if recvmsg returns an error after we
2372 * received some datagrams, where we record the
2373 * error to return on the next call or if the
2374 * app asks about it using getsockopt(SO_ERROR).
2376 sock->sk->sk_err = -err;
2385 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2386 unsigned int, vlen, unsigned int, flags,
2387 struct timespec __user *, timeout)
2390 struct timespec timeout_sys;
2393 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2395 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2398 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2400 if (datagrams > 0 &&
2401 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2402 datagrams = -EFAULT;
2407 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2408 /* Argument list sizes for sys_socketcall */
2409 #define AL(x) ((x) * sizeof(unsigned long))
2410 static const unsigned char nargs[21] = {
2411 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2412 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2413 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2420 * System call vectors.
2422 * Argument checking cleaned up. Saved 20% in size.
2423 * This function doesn't need to set the kernel lock because
2424 * it is set by the callees.
2427 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2430 unsigned long a0, a1;
2434 if (call < 1 || call > SYS_SENDMMSG)
2438 if (len > sizeof(a))
2441 /* copy_from_user should be SMP safe. */
2442 if (copy_from_user(a, args, len))
2445 audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2452 err = sys_socket(a0, a1, a[2]);
2455 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2458 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2461 err = sys_listen(a0, a1);
2464 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2465 (int __user *)a[2], 0);
2467 case SYS_GETSOCKNAME:
2469 sys_getsockname(a0, (struct sockaddr __user *)a1,
2470 (int __user *)a[2]);
2472 case SYS_GETPEERNAME:
2474 sys_getpeername(a0, (struct sockaddr __user *)a1,
2475 (int __user *)a[2]);
2477 case SYS_SOCKETPAIR:
2478 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2481 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2484 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2485 (struct sockaddr __user *)a[4], a[5]);
2488 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2491 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2492 (struct sockaddr __user *)a[4],
2493 (int __user *)a[5]);
2496 err = sys_shutdown(a0, a1);
2498 case SYS_SETSOCKOPT:
2499 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2501 case SYS_GETSOCKOPT:
2503 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2504 (int __user *)a[4]);
2507 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2510 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2513 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2516 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2517 (struct timespec __user *)a[4]);
2520 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2521 (int __user *)a[2], a[3]);
2530 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2533 * sock_register - add a socket protocol handler
2534 * @ops: description of protocol
2536 * This function is called by a protocol handler that wants to
2537 * advertise its address family, and have it linked into the
2538 * socket interface. The value ops->family coresponds to the
2539 * socket system call protocol family.
2541 int sock_register(const struct net_proto_family *ops)
2545 if (ops->family >= NPROTO) {
2546 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2551 spin_lock(&net_family_lock);
2552 if (rcu_dereference_protected(net_families[ops->family],
2553 lockdep_is_held(&net_family_lock)))
2556 rcu_assign_pointer(net_families[ops->family], ops);
2559 spin_unlock(&net_family_lock);
2561 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2564 EXPORT_SYMBOL(sock_register);
2567 * sock_unregister - remove a protocol handler
2568 * @family: protocol family to remove
2570 * This function is called by a protocol handler that wants to
2571 * remove its address family, and have it unlinked from the
2572 * new socket creation.
2574 * If protocol handler is a module, then it can use module reference
2575 * counts to protect against new references. If protocol handler is not
2576 * a module then it needs to provide its own protection in
2577 * the ops->create routine.
2579 void sock_unregister(int family)
2581 BUG_ON(family < 0 || family >= NPROTO);
2583 spin_lock(&net_family_lock);
2584 RCU_INIT_POINTER(net_families[family], NULL);
2585 spin_unlock(&net_family_lock);
2589 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2591 EXPORT_SYMBOL(sock_unregister);
2593 static int __init sock_init(void)
2597 * Initialize the network sysctl infrastructure.
2599 err = net_sysctl_init();
2604 * Initialize skbuff SLAB cache
2609 * Initialize the protocols module.
2614 err = register_filesystem(&sock_fs_type);
2617 sock_mnt = kern_mount(&sock_fs_type);
2618 if (IS_ERR(sock_mnt)) {
2619 err = PTR_ERR(sock_mnt);
2623 /* The real protocol initialization is performed in later initcalls.
2626 #ifdef CONFIG_NETFILTER
2630 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2631 skb_timestamping_init();
2638 unregister_filesystem(&sock_fs_type);
2643 core_initcall(sock_init); /* early initcall */
2645 #ifdef CONFIG_PROC_FS
2646 void socket_seq_show(struct seq_file *seq)
2651 for_each_possible_cpu(cpu)
2652 counter += per_cpu(sockets_in_use, cpu);
2654 /* It can be negative, by the way. 8) */
2658 seq_printf(seq, "sockets: used %d\n", counter);
2660 #endif /* CONFIG_PROC_FS */
2662 #ifdef CONFIG_COMPAT
2663 static int do_siocgstamp(struct net *net, struct socket *sock,
2664 unsigned int cmd, void __user *up)
2666 mm_segment_t old_fs = get_fs();
2671 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2674 err = compat_put_timeval(&ktv, up);
2679 static int do_siocgstampns(struct net *net, struct socket *sock,
2680 unsigned int cmd, void __user *up)
2682 mm_segment_t old_fs = get_fs();
2683 struct timespec kts;
2687 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2690 err = compat_put_timespec(&kts, up);
2695 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2697 struct ifreq __user *uifr;
2700 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2701 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2704 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2708 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2714 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2716 struct compat_ifconf ifc32;
2718 struct ifconf __user *uifc;
2719 struct compat_ifreq __user *ifr32;
2720 struct ifreq __user *ifr;
2724 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2727 memset(&ifc, 0, sizeof(ifc));
2728 if (ifc32.ifcbuf == 0) {
2732 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2734 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2735 sizeof(struct ifreq);
2736 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2738 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2739 ifr32 = compat_ptr(ifc32.ifcbuf);
2740 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2741 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2747 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2750 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2754 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2758 ifr32 = compat_ptr(ifc32.ifcbuf);
2760 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2761 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2762 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2768 if (ifc32.ifcbuf == 0) {
2769 /* Translate from 64-bit structure multiple to
2773 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2778 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2784 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2786 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2787 bool convert_in = false, convert_out = false;
2788 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2789 struct ethtool_rxnfc __user *rxnfc;
2790 struct ifreq __user *ifr;
2791 u32 rule_cnt = 0, actual_rule_cnt;
2796 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2799 compat_rxnfc = compat_ptr(data);
2801 if (get_user(ethcmd, &compat_rxnfc->cmd))
2804 /* Most ethtool structures are defined without padding.
2805 * Unfortunately struct ethtool_rxnfc is an exception.
2810 case ETHTOOL_GRXCLSRLALL:
2811 /* Buffer size is variable */
2812 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2814 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2816 buf_size += rule_cnt * sizeof(u32);
2818 case ETHTOOL_GRXRINGS:
2819 case ETHTOOL_GRXCLSRLCNT:
2820 case ETHTOOL_GRXCLSRULE:
2821 case ETHTOOL_SRXCLSRLINS:
2824 case ETHTOOL_SRXCLSRLDEL:
2825 buf_size += sizeof(struct ethtool_rxnfc);
2830 ifr = compat_alloc_user_space(buf_size);
2831 rxnfc = (void *)ifr + ALIGN(sizeof(struct ifreq), 8);
2833 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2836 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2837 &ifr->ifr_ifru.ifru_data))
2841 /* We expect there to be holes between fs.m_ext and
2842 * fs.ring_cookie and at the end of fs, but nowhere else.
2844 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2845 sizeof(compat_rxnfc->fs.m_ext) !=
2846 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2847 sizeof(rxnfc->fs.m_ext));
2849 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2850 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2851 offsetof(struct ethtool_rxnfc, fs.location) -
2852 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2854 if (copy_in_user(rxnfc, compat_rxnfc,
2855 (void *)(&rxnfc->fs.m_ext + 1) -
2857 copy_in_user(&rxnfc->fs.ring_cookie,
2858 &compat_rxnfc->fs.ring_cookie,
2859 (void *)(&rxnfc->fs.location + 1) -
2860 (void *)&rxnfc->fs.ring_cookie) ||
2861 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2862 sizeof(rxnfc->rule_cnt)))
2866 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2871 if (copy_in_user(compat_rxnfc, rxnfc,
2872 (const void *)(&rxnfc->fs.m_ext + 1) -
2873 (const void *)rxnfc) ||
2874 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2875 &rxnfc->fs.ring_cookie,
2876 (const void *)(&rxnfc->fs.location + 1) -
2877 (const void *)&rxnfc->fs.ring_cookie) ||
2878 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2879 sizeof(rxnfc->rule_cnt)))
2882 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2883 /* As an optimisation, we only copy the actual
2884 * number of rules that the underlying
2885 * function returned. Since Mallory might
2886 * change the rule count in user memory, we
2887 * check that it is less than the rule count
2888 * originally given (as the user buffer size),
2889 * which has been range-checked.
2891 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2893 if (actual_rule_cnt < rule_cnt)
2894 rule_cnt = actual_rule_cnt;
2895 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2896 &rxnfc->rule_locs[0],
2897 rule_cnt * sizeof(u32)))
2905 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2908 compat_uptr_t uptr32;
2909 struct ifreq __user *uifr;
2911 uifr = compat_alloc_user_space(sizeof(*uifr));
2912 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2915 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2918 uptr = compat_ptr(uptr32);
2920 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2923 return dev_ioctl(net, SIOCWANDEV, uifr);
2926 static int bond_ioctl(struct net *net, unsigned int cmd,
2927 struct compat_ifreq __user *ifr32)
2930 struct ifreq __user *uifr;
2931 mm_segment_t old_fs;
2937 case SIOCBONDENSLAVE:
2938 case SIOCBONDRELEASE:
2939 case SIOCBONDSETHWADDR:
2940 case SIOCBONDCHANGEACTIVE:
2941 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2946 err = dev_ioctl(net, cmd,
2947 (struct ifreq __user __force *) &kifr);
2951 case SIOCBONDSLAVEINFOQUERY:
2952 case SIOCBONDINFOQUERY:
2953 uifr = compat_alloc_user_space(sizeof(*uifr));
2954 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2957 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2960 datap = compat_ptr(data);
2961 if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2964 return dev_ioctl(net, cmd, uifr);
2966 return -ENOIOCTLCMD;
2970 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2971 struct compat_ifreq __user *u_ifreq32)
2973 struct ifreq __user *u_ifreq64;
2974 char tmp_buf[IFNAMSIZ];
2975 void __user *data64;
2978 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2981 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2983 data64 = compat_ptr(data32);
2985 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2987 /* Don't check these user accesses, just let that get trapped
2988 * in the ioctl handler instead.
2990 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2993 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2996 return dev_ioctl(net, cmd, u_ifreq64);
2999 static int dev_ifsioc(struct net *net, struct socket *sock,
3000 unsigned int cmd, struct compat_ifreq __user *uifr32)
3002 struct ifreq __user *uifr;
3005 uifr = compat_alloc_user_space(sizeof(*uifr));
3006 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3009 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3020 case SIOCGIFBRDADDR:
3021 case SIOCGIFDSTADDR:
3022 case SIOCGIFNETMASK:
3027 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3035 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3036 struct compat_ifreq __user *uifr32)
3039 struct compat_ifmap __user *uifmap32;
3040 mm_segment_t old_fs;
3043 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3044 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3045 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3046 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3047 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3048 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
3049 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
3050 err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
3056 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3059 if (cmd == SIOCGIFMAP && !err) {
3060 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3061 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3062 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3063 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3064 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
3065 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
3066 err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
3073 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
3076 compat_uptr_t uptr32;
3077 struct ifreq __user *uifr;
3079 uifr = compat_alloc_user_space(sizeof(*uifr));
3080 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
3083 if (get_user(uptr32, &uifr32->ifr_data))
3086 uptr = compat_ptr(uptr32);
3088 if (put_user(uptr, &uifr->ifr_data))
3091 return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
3096 struct sockaddr rt_dst; /* target address */
3097 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3098 struct sockaddr rt_genmask; /* target network mask (IP) */
3099 unsigned short rt_flags;
3102 unsigned char rt_tos;
3103 unsigned char rt_class;
3105 short rt_metric; /* +1 for binary compatibility! */
3106 /* char * */ u32 rt_dev; /* forcing the device at add */
3107 u32 rt_mtu; /* per route MTU/Window */
3108 u32 rt_window; /* Window clamping */
3109 unsigned short rt_irtt; /* Initial RTT */
3112 struct in6_rtmsg32 {
3113 struct in6_addr rtmsg_dst;
3114 struct in6_addr rtmsg_src;
3115 struct in6_addr rtmsg_gateway;
3125 static int routing_ioctl(struct net *net, struct socket *sock,
3126 unsigned int cmd, void __user *argp)
3130 struct in6_rtmsg r6;
3134 mm_segment_t old_fs = get_fs();
3136 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3137 struct in6_rtmsg32 __user *ur6 = argp;
3138 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3139 3 * sizeof(struct in6_addr));
3140 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3141 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3142 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3143 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3144 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3145 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3146 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3150 struct rtentry32 __user *ur4 = argp;
3151 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3152 3 * sizeof(struct sockaddr));
3153 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
3154 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
3155 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
3156 ret |= __get_user(r4.rt_window, &(ur4->rt_window));
3157 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
3158 ret |= __get_user(rtdev, &(ur4->rt_dev));
3160 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3161 r4.rt_dev = (char __user __force *)devname;
3175 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3182 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3183 * for some operations; this forces use of the newer bridge-utils that
3184 * use compatible ioctls
3186 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3190 if (get_user(tmp, argp))
3192 if (tmp == BRCTL_GET_VERSION)
3193 return BRCTL_VERSION + 1;
3197 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3198 unsigned int cmd, unsigned long arg)
3200 void __user *argp = compat_ptr(arg);
3201 struct sock *sk = sock->sk;
3202 struct net *net = sock_net(sk);
3204 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3205 return siocdevprivate_ioctl(net, cmd, argp);
3210 return old_bridge_ioctl(argp);
3212 return dev_ifname32(net, argp);
3214 return dev_ifconf(net, argp);
3216 return ethtool_ioctl(net, argp);
3218 return compat_siocwandev(net, argp);
3221 return compat_sioc_ifmap(net, cmd, argp);
3222 case SIOCBONDENSLAVE:
3223 case SIOCBONDRELEASE:
3224 case SIOCBONDSETHWADDR:
3225 case SIOCBONDSLAVEINFOQUERY:
3226 case SIOCBONDINFOQUERY:
3227 case SIOCBONDCHANGEACTIVE:
3228 return bond_ioctl(net, cmd, argp);
3231 return routing_ioctl(net, sock, cmd, argp);
3233 return do_siocgstamp(net, sock, cmd, argp);
3235 return do_siocgstampns(net, sock, cmd, argp);
3237 return compat_siocshwtstamp(net, argp);
3249 return sock_ioctl(file, cmd, arg);
3266 case SIOCSIFHWBROADCAST:
3268 case SIOCGIFBRDADDR:
3269 case SIOCSIFBRDADDR:
3270 case SIOCGIFDSTADDR:
3271 case SIOCSIFDSTADDR:
3272 case SIOCGIFNETMASK:
3273 case SIOCSIFNETMASK:
3284 return dev_ifsioc(net, sock, cmd, argp);
3290 return sock_do_ioctl(net, sock, cmd, arg);
3293 return -ENOIOCTLCMD;
3296 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3299 struct socket *sock = file->private_data;
3300 int ret = -ENOIOCTLCMD;
3307 if (sock->ops->compat_ioctl)
3308 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3310 if (ret == -ENOIOCTLCMD &&
3311 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3312 ret = compat_wext_handle_ioctl(net, cmd, arg);
3314 if (ret == -ENOIOCTLCMD)
3315 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3321 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3323 return sock->ops->bind(sock, addr, addrlen);
3325 EXPORT_SYMBOL(kernel_bind);
3327 int kernel_listen(struct socket *sock, int backlog)
3329 return sock->ops->listen(sock, backlog);
3331 EXPORT_SYMBOL(kernel_listen);
3333 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3335 struct sock *sk = sock->sk;
3338 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3343 err = sock->ops->accept(sock, *newsock, flags);
3345 sock_release(*newsock);
3350 (*newsock)->ops = sock->ops;
3351 __module_get((*newsock)->ops->owner);
3356 EXPORT_SYMBOL(kernel_accept);
3358 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3361 return sock->ops->connect(sock, addr, addrlen, flags);
3363 EXPORT_SYMBOL(kernel_connect);
3365 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3368 return sock->ops->getname(sock, addr, addrlen, 0);
3370 EXPORT_SYMBOL(kernel_getsockname);
3372 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3375 return sock->ops->getname(sock, addr, addrlen, 1);
3377 EXPORT_SYMBOL(kernel_getpeername);
3379 int kernel_getsockopt(struct socket *sock, int level, int optname,
3380 char *optval, int *optlen)
3382 mm_segment_t oldfs = get_fs();
3383 char __user *uoptval;
3384 int __user *uoptlen;
3387 uoptval = (char __user __force *) optval;
3388 uoptlen = (int __user __force *) optlen;
3391 if (level == SOL_SOCKET)
3392 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3394 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3399 EXPORT_SYMBOL(kernel_getsockopt);
3401 int kernel_setsockopt(struct socket *sock, int level, int optname,
3402 char *optval, unsigned int optlen)
3404 mm_segment_t oldfs = get_fs();
3405 char __user *uoptval;
3408 uoptval = (char __user __force *) optval;
3411 if (level == SOL_SOCKET)
3412 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3414 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3419 EXPORT_SYMBOL(kernel_setsockopt);
3421 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3422 size_t size, int flags)
3424 sock_update_classid(sock->sk);
3426 if (sock->ops->sendpage)
3427 return sock->ops->sendpage(sock, page, offset, size, flags);
3429 return sock_no_sendpage(sock, page, offset, size, flags);
3431 EXPORT_SYMBOL(kernel_sendpage);
3433 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3435 mm_segment_t oldfs = get_fs();
3439 err = sock->ops->ioctl(sock, cmd, arg);
3444 EXPORT_SYMBOL(kernel_sock_ioctl);
3446 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3448 return sock->ops->shutdown(sock, how);
3450 EXPORT_SYMBOL(kernel_sock_shutdown);