Merge tag 'powerpc-5.15-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-rpi.git] / net / sched / sch_taprio.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /* net/sched/sch_taprio.c        Time Aware Priority Scheduler
4  *
5  * Authors:     Vinicius Costa Gomes <vinicius.gomes@intel.com>
6  *
7  */
8
9 #include <linux/ethtool.h>
10 #include <linux/types.h>
11 #include <linux/slab.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/list.h>
15 #include <linux/errno.h>
16 #include <linux/skbuff.h>
17 #include <linux/math64.h>
18 #include <linux/module.h>
19 #include <linux/spinlock.h>
20 #include <linux/rcupdate.h>
21 #include <net/netlink.h>
22 #include <net/pkt_sched.h>
23 #include <net/pkt_cls.h>
24 #include <net/sch_generic.h>
25 #include <net/sock.h>
26 #include <net/tcp.h>
27
28 static LIST_HEAD(taprio_list);
29 static DEFINE_SPINLOCK(taprio_list_lock);
30
31 #define TAPRIO_ALL_GATES_OPEN -1
32
33 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
34 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
35 #define TAPRIO_FLAGS_INVALID U32_MAX
36
37 struct sched_entry {
38         struct list_head list;
39
40         /* The instant that this entry "closes" and the next one
41          * should open, the qdisc will make some effort so that no
42          * packet leaves after this time.
43          */
44         ktime_t close_time;
45         ktime_t next_txtime;
46         atomic_t budget;
47         int index;
48         u32 gate_mask;
49         u32 interval;
50         u8 command;
51 };
52
53 struct sched_gate_list {
54         struct rcu_head rcu;
55         struct list_head entries;
56         size_t num_entries;
57         ktime_t cycle_close_time;
58         s64 cycle_time;
59         s64 cycle_time_extension;
60         s64 base_time;
61 };
62
63 struct taprio_sched {
64         struct Qdisc **qdiscs;
65         struct Qdisc *root;
66         u32 flags;
67         enum tk_offsets tk_offset;
68         int clockid;
69         atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
70                                     * speeds it's sub-nanoseconds per byte
71                                     */
72
73         /* Protects the update side of the RCU protected current_entry */
74         spinlock_t current_entry_lock;
75         struct sched_entry __rcu *current_entry;
76         struct sched_gate_list __rcu *oper_sched;
77         struct sched_gate_list __rcu *admin_sched;
78         struct hrtimer advance_timer;
79         struct list_head taprio_list;
80         struct sk_buff *(*dequeue)(struct Qdisc *sch);
81         struct sk_buff *(*peek)(struct Qdisc *sch);
82         u32 txtime_delay;
83 };
84
85 struct __tc_taprio_qopt_offload {
86         refcount_t users;
87         struct tc_taprio_qopt_offload offload;
88 };
89
90 static ktime_t sched_base_time(const struct sched_gate_list *sched)
91 {
92         if (!sched)
93                 return KTIME_MAX;
94
95         return ns_to_ktime(sched->base_time);
96 }
97
98 static ktime_t taprio_get_time(struct taprio_sched *q)
99 {
100         ktime_t mono = ktime_get();
101
102         switch (q->tk_offset) {
103         case TK_OFFS_MAX:
104                 return mono;
105         default:
106                 return ktime_mono_to_any(mono, q->tk_offset);
107         }
108
109         return KTIME_MAX;
110 }
111
112 static void taprio_free_sched_cb(struct rcu_head *head)
113 {
114         struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
115         struct sched_entry *entry, *n;
116
117         list_for_each_entry_safe(entry, n, &sched->entries, list) {
118                 list_del(&entry->list);
119                 kfree(entry);
120         }
121
122         kfree(sched);
123 }
124
125 static void switch_schedules(struct taprio_sched *q,
126                              struct sched_gate_list **admin,
127                              struct sched_gate_list **oper)
128 {
129         rcu_assign_pointer(q->oper_sched, *admin);
130         rcu_assign_pointer(q->admin_sched, NULL);
131
132         if (*oper)
133                 call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
134
135         *oper = *admin;
136         *admin = NULL;
137 }
138
139 /* Get how much time has been already elapsed in the current cycle. */
140 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
141 {
142         ktime_t time_since_sched_start;
143         s32 time_elapsed;
144
145         time_since_sched_start = ktime_sub(time, sched->base_time);
146         div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
147
148         return time_elapsed;
149 }
150
151 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
152                                      struct sched_gate_list *admin,
153                                      struct sched_entry *entry,
154                                      ktime_t intv_start)
155 {
156         s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
157         ktime_t intv_end, cycle_ext_end, cycle_end;
158
159         cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
160         intv_end = ktime_add_ns(intv_start, entry->interval);
161         cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
162
163         if (ktime_before(intv_end, cycle_end))
164                 return intv_end;
165         else if (admin && admin != sched &&
166                  ktime_after(admin->base_time, cycle_end) &&
167                  ktime_before(admin->base_time, cycle_ext_end))
168                 return admin->base_time;
169         else
170                 return cycle_end;
171 }
172
173 static int length_to_duration(struct taprio_sched *q, int len)
174 {
175         return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
176 }
177
178 /* Returns the entry corresponding to next available interval. If
179  * validate_interval is set, it only validates whether the timestamp occurs
180  * when the gate corresponding to the skb's traffic class is open.
181  */
182 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
183                                                   struct Qdisc *sch,
184                                                   struct sched_gate_list *sched,
185                                                   struct sched_gate_list *admin,
186                                                   ktime_t time,
187                                                   ktime_t *interval_start,
188                                                   ktime_t *interval_end,
189                                                   bool validate_interval)
190 {
191         ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
192         ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
193         struct sched_entry *entry = NULL, *entry_found = NULL;
194         struct taprio_sched *q = qdisc_priv(sch);
195         struct net_device *dev = qdisc_dev(sch);
196         bool entry_available = false;
197         s32 cycle_elapsed;
198         int tc, n;
199
200         tc = netdev_get_prio_tc_map(dev, skb->priority);
201         packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
202
203         *interval_start = 0;
204         *interval_end = 0;
205
206         if (!sched)
207                 return NULL;
208
209         cycle = sched->cycle_time;
210         cycle_elapsed = get_cycle_time_elapsed(sched, time);
211         curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
212         cycle_end = ktime_add_ns(curr_intv_end, cycle);
213
214         list_for_each_entry(entry, &sched->entries, list) {
215                 curr_intv_start = curr_intv_end;
216                 curr_intv_end = get_interval_end_time(sched, admin, entry,
217                                                       curr_intv_start);
218
219                 if (ktime_after(curr_intv_start, cycle_end))
220                         break;
221
222                 if (!(entry->gate_mask & BIT(tc)) ||
223                     packet_transmit_time > entry->interval)
224                         continue;
225
226                 txtime = entry->next_txtime;
227
228                 if (ktime_before(txtime, time) || validate_interval) {
229                         transmit_end_time = ktime_add_ns(time, packet_transmit_time);
230                         if ((ktime_before(curr_intv_start, time) &&
231                              ktime_before(transmit_end_time, curr_intv_end)) ||
232                             (ktime_after(curr_intv_start, time) && !validate_interval)) {
233                                 entry_found = entry;
234                                 *interval_start = curr_intv_start;
235                                 *interval_end = curr_intv_end;
236                                 break;
237                         } else if (!entry_available && !validate_interval) {
238                                 /* Here, we are just trying to find out the
239                                  * first available interval in the next cycle.
240                                  */
241                                 entry_available = true;
242                                 entry_found = entry;
243                                 *interval_start = ktime_add_ns(curr_intv_start, cycle);
244                                 *interval_end = ktime_add_ns(curr_intv_end, cycle);
245                         }
246                 } else if (ktime_before(txtime, earliest_txtime) &&
247                            !entry_available) {
248                         earliest_txtime = txtime;
249                         entry_found = entry;
250                         n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
251                         *interval_start = ktime_add(curr_intv_start, n * cycle);
252                         *interval_end = ktime_add(curr_intv_end, n * cycle);
253                 }
254         }
255
256         return entry_found;
257 }
258
259 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
260 {
261         struct taprio_sched *q = qdisc_priv(sch);
262         struct sched_gate_list *sched, *admin;
263         ktime_t interval_start, interval_end;
264         struct sched_entry *entry;
265
266         rcu_read_lock();
267         sched = rcu_dereference(q->oper_sched);
268         admin = rcu_dereference(q->admin_sched);
269
270         entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
271                                        &interval_start, &interval_end, true);
272         rcu_read_unlock();
273
274         return entry;
275 }
276
277 static bool taprio_flags_valid(u32 flags)
278 {
279         /* Make sure no other flag bits are set. */
280         if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
281                       TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
282                 return false;
283         /* txtime-assist and full offload are mutually exclusive */
284         if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
285             (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
286                 return false;
287         return true;
288 }
289
290 /* This returns the tstamp value set by TCP in terms of the set clock. */
291 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
292 {
293         unsigned int offset = skb_network_offset(skb);
294         const struct ipv6hdr *ipv6h;
295         const struct iphdr *iph;
296         struct ipv6hdr _ipv6h;
297
298         ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
299         if (!ipv6h)
300                 return 0;
301
302         if (ipv6h->version == 4) {
303                 iph = (struct iphdr *)ipv6h;
304                 offset += iph->ihl * 4;
305
306                 /* special-case 6in4 tunnelling, as that is a common way to get
307                  * v6 connectivity in the home
308                  */
309                 if (iph->protocol == IPPROTO_IPV6) {
310                         ipv6h = skb_header_pointer(skb, offset,
311                                                    sizeof(_ipv6h), &_ipv6h);
312
313                         if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
314                                 return 0;
315                 } else if (iph->protocol != IPPROTO_TCP) {
316                         return 0;
317                 }
318         } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
319                 return 0;
320         }
321
322         return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
323 }
324
325 /* There are a few scenarios where we will have to modify the txtime from
326  * what is read from next_txtime in sched_entry. They are:
327  * 1. If txtime is in the past,
328  *    a. The gate for the traffic class is currently open and packet can be
329  *       transmitted before it closes, schedule the packet right away.
330  *    b. If the gate corresponding to the traffic class is going to open later
331  *       in the cycle, set the txtime of packet to the interval start.
332  * 2. If txtime is in the future, there are packets corresponding to the
333  *    current traffic class waiting to be transmitted. So, the following
334  *    possibilities exist:
335  *    a. We can transmit the packet before the window containing the txtime
336  *       closes.
337  *    b. The window might close before the transmission can be completed
338  *       successfully. So, schedule the packet in the next open window.
339  */
340 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
341 {
342         ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
343         struct taprio_sched *q = qdisc_priv(sch);
344         struct sched_gate_list *sched, *admin;
345         ktime_t minimum_time, now, txtime;
346         int len, packet_transmit_time;
347         struct sched_entry *entry;
348         bool sched_changed;
349
350         now = taprio_get_time(q);
351         minimum_time = ktime_add_ns(now, q->txtime_delay);
352
353         tcp_tstamp = get_tcp_tstamp(q, skb);
354         minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
355
356         rcu_read_lock();
357         admin = rcu_dereference(q->admin_sched);
358         sched = rcu_dereference(q->oper_sched);
359         if (admin && ktime_after(minimum_time, admin->base_time))
360                 switch_schedules(q, &admin, &sched);
361
362         /* Until the schedule starts, all the queues are open */
363         if (!sched || ktime_before(minimum_time, sched->base_time)) {
364                 txtime = minimum_time;
365                 goto done;
366         }
367
368         len = qdisc_pkt_len(skb);
369         packet_transmit_time = length_to_duration(q, len);
370
371         do {
372                 sched_changed = false;
373
374                 entry = find_entry_to_transmit(skb, sch, sched, admin,
375                                                minimum_time,
376                                                &interval_start, &interval_end,
377                                                false);
378                 if (!entry) {
379                         txtime = 0;
380                         goto done;
381                 }
382
383                 txtime = entry->next_txtime;
384                 txtime = max_t(ktime_t, txtime, minimum_time);
385                 txtime = max_t(ktime_t, txtime, interval_start);
386
387                 if (admin && admin != sched &&
388                     ktime_after(txtime, admin->base_time)) {
389                         sched = admin;
390                         sched_changed = true;
391                         continue;
392                 }
393
394                 transmit_end_time = ktime_add(txtime, packet_transmit_time);
395                 minimum_time = transmit_end_time;
396
397                 /* Update the txtime of current entry to the next time it's
398                  * interval starts.
399                  */
400                 if (ktime_after(transmit_end_time, interval_end))
401                         entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
402         } while (sched_changed || ktime_after(transmit_end_time, interval_end));
403
404         entry->next_txtime = transmit_end_time;
405
406 done:
407         rcu_read_unlock();
408         return txtime;
409 }
410
411 static int taprio_enqueue_one(struct sk_buff *skb, struct Qdisc *sch,
412                               struct Qdisc *child, struct sk_buff **to_free)
413 {
414         struct taprio_sched *q = qdisc_priv(sch);
415
416         if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
417                 if (!is_valid_interval(skb, sch))
418                         return qdisc_drop(skb, sch, to_free);
419         } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
420                 skb->tstamp = get_packet_txtime(skb, sch);
421                 if (!skb->tstamp)
422                         return qdisc_drop(skb, sch, to_free);
423         }
424
425         qdisc_qstats_backlog_inc(sch, skb);
426         sch->q.qlen++;
427
428         return qdisc_enqueue(skb, child, to_free);
429 }
430
431 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
432                           struct sk_buff **to_free)
433 {
434         struct taprio_sched *q = qdisc_priv(sch);
435         struct Qdisc *child;
436         int queue;
437
438         if (unlikely(FULL_OFFLOAD_IS_ENABLED(q->flags))) {
439                 WARN_ONCE(1, "Trying to enqueue skb into the root of a taprio qdisc configured with full offload\n");
440                 return qdisc_drop(skb, sch, to_free);
441         }
442
443         queue = skb_get_queue_mapping(skb);
444
445         child = q->qdiscs[queue];
446         if (unlikely(!child))
447                 return qdisc_drop(skb, sch, to_free);
448
449         /* Large packets might not be transmitted when the transmission duration
450          * exceeds any configured interval. Therefore, segment the skb into
451          * smaller chunks. Skip it for the full offload case, as the driver
452          * and/or the hardware is expected to handle this.
453          */
454         if (skb_is_gso(skb) && !FULL_OFFLOAD_IS_ENABLED(q->flags)) {
455                 unsigned int slen = 0, numsegs = 0, len = qdisc_pkt_len(skb);
456                 netdev_features_t features = netif_skb_features(skb);
457                 struct sk_buff *segs, *nskb;
458                 int ret;
459
460                 segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
461                 if (IS_ERR_OR_NULL(segs))
462                         return qdisc_drop(skb, sch, to_free);
463
464                 skb_list_walk_safe(segs, segs, nskb) {
465                         skb_mark_not_on_list(segs);
466                         qdisc_skb_cb(segs)->pkt_len = segs->len;
467                         slen += segs->len;
468
469                         ret = taprio_enqueue_one(segs, sch, child, to_free);
470                         if (ret != NET_XMIT_SUCCESS) {
471                                 if (net_xmit_drop_count(ret))
472                                         qdisc_qstats_drop(sch);
473                         } else {
474                                 numsegs++;
475                         }
476                 }
477
478                 if (numsegs > 1)
479                         qdisc_tree_reduce_backlog(sch, 1 - numsegs, len - slen);
480                 consume_skb(skb);
481
482                 return numsegs > 0 ? NET_XMIT_SUCCESS : NET_XMIT_DROP;
483         }
484
485         return taprio_enqueue_one(skb, sch, child, to_free);
486 }
487
488 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
489 {
490         struct taprio_sched *q = qdisc_priv(sch);
491         struct net_device *dev = qdisc_dev(sch);
492         struct sched_entry *entry;
493         struct sk_buff *skb;
494         u32 gate_mask;
495         int i;
496
497         rcu_read_lock();
498         entry = rcu_dereference(q->current_entry);
499         gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
500         rcu_read_unlock();
501
502         if (!gate_mask)
503                 return NULL;
504
505         for (i = 0; i < dev->num_tx_queues; i++) {
506                 struct Qdisc *child = q->qdiscs[i];
507                 int prio;
508                 u8 tc;
509
510                 if (unlikely(!child))
511                         continue;
512
513                 skb = child->ops->peek(child);
514                 if (!skb)
515                         continue;
516
517                 if (TXTIME_ASSIST_IS_ENABLED(q->flags))
518                         return skb;
519
520                 prio = skb->priority;
521                 tc = netdev_get_prio_tc_map(dev, prio);
522
523                 if (!(gate_mask & BIT(tc)))
524                         continue;
525
526                 return skb;
527         }
528
529         return NULL;
530 }
531
532 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
533 {
534         WARN_ONCE(1, "Trying to peek into the root of a taprio qdisc configured with full offload\n");
535
536         return NULL;
537 }
538
539 static struct sk_buff *taprio_peek(struct Qdisc *sch)
540 {
541         struct taprio_sched *q = qdisc_priv(sch);
542
543         return q->peek(sch);
544 }
545
546 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
547 {
548         atomic_set(&entry->budget,
549                    div64_u64((u64)entry->interval * 1000,
550                              atomic64_read(&q->picos_per_byte)));
551 }
552
553 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
554 {
555         struct taprio_sched *q = qdisc_priv(sch);
556         struct net_device *dev = qdisc_dev(sch);
557         struct sk_buff *skb = NULL;
558         struct sched_entry *entry;
559         u32 gate_mask;
560         int i;
561
562         rcu_read_lock();
563         entry = rcu_dereference(q->current_entry);
564         /* if there's no entry, it means that the schedule didn't
565          * start yet, so force all gates to be open, this is in
566          * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
567          * "AdminGateStates"
568          */
569         gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
570
571         if (!gate_mask)
572                 goto done;
573
574         for (i = 0; i < dev->num_tx_queues; i++) {
575                 struct Qdisc *child = q->qdiscs[i];
576                 ktime_t guard;
577                 int prio;
578                 int len;
579                 u8 tc;
580
581                 if (unlikely(!child))
582                         continue;
583
584                 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
585                         skb = child->ops->dequeue(child);
586                         if (!skb)
587                                 continue;
588                         goto skb_found;
589                 }
590
591                 skb = child->ops->peek(child);
592                 if (!skb)
593                         continue;
594
595                 prio = skb->priority;
596                 tc = netdev_get_prio_tc_map(dev, prio);
597
598                 if (!(gate_mask & BIT(tc))) {
599                         skb = NULL;
600                         continue;
601                 }
602
603                 len = qdisc_pkt_len(skb);
604                 guard = ktime_add_ns(taprio_get_time(q),
605                                      length_to_duration(q, len));
606
607                 /* In the case that there's no gate entry, there's no
608                  * guard band ...
609                  */
610                 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
611                     ktime_after(guard, entry->close_time)) {
612                         skb = NULL;
613                         continue;
614                 }
615
616                 /* ... and no budget. */
617                 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
618                     atomic_sub_return(len, &entry->budget) < 0) {
619                         skb = NULL;
620                         continue;
621                 }
622
623                 skb = child->ops->dequeue(child);
624                 if (unlikely(!skb))
625                         goto done;
626
627 skb_found:
628                 qdisc_bstats_update(sch, skb);
629                 qdisc_qstats_backlog_dec(sch, skb);
630                 sch->q.qlen--;
631
632                 goto done;
633         }
634
635 done:
636         rcu_read_unlock();
637
638         return skb;
639 }
640
641 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
642 {
643         WARN_ONCE(1, "Trying to dequeue from the root of a taprio qdisc configured with full offload\n");
644
645         return NULL;
646 }
647
648 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
649 {
650         struct taprio_sched *q = qdisc_priv(sch);
651
652         return q->dequeue(sch);
653 }
654
655 static bool should_restart_cycle(const struct sched_gate_list *oper,
656                                  const struct sched_entry *entry)
657 {
658         if (list_is_last(&entry->list, &oper->entries))
659                 return true;
660
661         if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
662                 return true;
663
664         return false;
665 }
666
667 static bool should_change_schedules(const struct sched_gate_list *admin,
668                                     const struct sched_gate_list *oper,
669                                     ktime_t close_time)
670 {
671         ktime_t next_base_time, extension_time;
672
673         if (!admin)
674                 return false;
675
676         next_base_time = sched_base_time(admin);
677
678         /* This is the simple case, the close_time would fall after
679          * the next schedule base_time.
680          */
681         if (ktime_compare(next_base_time, close_time) <= 0)
682                 return true;
683
684         /* This is the cycle_time_extension case, if the close_time
685          * plus the amount that can be extended would fall after the
686          * next schedule base_time, we can extend the current schedule
687          * for that amount.
688          */
689         extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
690
691         /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
692          * how precisely the extension should be made. So after
693          * conformance testing, this logic may change.
694          */
695         if (ktime_compare(next_base_time, extension_time) <= 0)
696                 return true;
697
698         return false;
699 }
700
701 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
702 {
703         struct taprio_sched *q = container_of(timer, struct taprio_sched,
704                                               advance_timer);
705         struct sched_gate_list *oper, *admin;
706         struct sched_entry *entry, *next;
707         struct Qdisc *sch = q->root;
708         ktime_t close_time;
709
710         spin_lock(&q->current_entry_lock);
711         entry = rcu_dereference_protected(q->current_entry,
712                                           lockdep_is_held(&q->current_entry_lock));
713         oper = rcu_dereference_protected(q->oper_sched,
714                                          lockdep_is_held(&q->current_entry_lock));
715         admin = rcu_dereference_protected(q->admin_sched,
716                                           lockdep_is_held(&q->current_entry_lock));
717
718         if (!oper)
719                 switch_schedules(q, &admin, &oper);
720
721         /* This can happen in two cases: 1. this is the very first run
722          * of this function (i.e. we weren't running any schedule
723          * previously); 2. The previous schedule just ended. The first
724          * entry of all schedules are pre-calculated during the
725          * schedule initialization.
726          */
727         if (unlikely(!entry || entry->close_time == oper->base_time)) {
728                 next = list_first_entry(&oper->entries, struct sched_entry,
729                                         list);
730                 close_time = next->close_time;
731                 goto first_run;
732         }
733
734         if (should_restart_cycle(oper, entry)) {
735                 next = list_first_entry(&oper->entries, struct sched_entry,
736                                         list);
737                 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
738                                                       oper->cycle_time);
739         } else {
740                 next = list_next_entry(entry, list);
741         }
742
743         close_time = ktime_add_ns(entry->close_time, next->interval);
744         close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
745
746         if (should_change_schedules(admin, oper, close_time)) {
747                 /* Set things so the next time this runs, the new
748                  * schedule runs.
749                  */
750                 close_time = sched_base_time(admin);
751                 switch_schedules(q, &admin, &oper);
752         }
753
754         next->close_time = close_time;
755         taprio_set_budget(q, next);
756
757 first_run:
758         rcu_assign_pointer(q->current_entry, next);
759         spin_unlock(&q->current_entry_lock);
760
761         hrtimer_set_expires(&q->advance_timer, close_time);
762
763         rcu_read_lock();
764         __netif_schedule(sch);
765         rcu_read_unlock();
766
767         return HRTIMER_RESTART;
768 }
769
770 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
771         [TCA_TAPRIO_SCHED_ENTRY_INDEX]     = { .type = NLA_U32 },
772         [TCA_TAPRIO_SCHED_ENTRY_CMD]       = { .type = NLA_U8 },
773         [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
774         [TCA_TAPRIO_SCHED_ENTRY_INTERVAL]  = { .type = NLA_U32 },
775 };
776
777 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
778         [TCA_TAPRIO_ATTR_PRIOMAP]              = {
779                 .len = sizeof(struct tc_mqprio_qopt)
780         },
781         [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST]           = { .type = NLA_NESTED },
782         [TCA_TAPRIO_ATTR_SCHED_BASE_TIME]            = { .type = NLA_S64 },
783         [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]         = { .type = NLA_NESTED },
784         [TCA_TAPRIO_ATTR_SCHED_CLOCKID]              = { .type = NLA_S32 },
785         [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]           = { .type = NLA_S64 },
786         [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
787         [TCA_TAPRIO_ATTR_FLAGS]                      = { .type = NLA_U32 },
788         [TCA_TAPRIO_ATTR_TXTIME_DELAY]               = { .type = NLA_U32 },
789 };
790
791 static int fill_sched_entry(struct taprio_sched *q, struct nlattr **tb,
792                             struct sched_entry *entry,
793                             struct netlink_ext_ack *extack)
794 {
795         int min_duration = length_to_duration(q, ETH_ZLEN);
796         u32 interval = 0;
797
798         if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
799                 entry->command = nla_get_u8(
800                         tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
801
802         if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
803                 entry->gate_mask = nla_get_u32(
804                         tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
805
806         if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
807                 interval = nla_get_u32(
808                         tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
809
810         /* The interval should allow at least the minimum ethernet
811          * frame to go out.
812          */
813         if (interval < min_duration) {
814                 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
815                 return -EINVAL;
816         }
817
818         entry->interval = interval;
819
820         return 0;
821 }
822
823 static int parse_sched_entry(struct taprio_sched *q, struct nlattr *n,
824                              struct sched_entry *entry, int index,
825                              struct netlink_ext_ack *extack)
826 {
827         struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
828         int err;
829
830         err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
831                                           entry_policy, NULL);
832         if (err < 0) {
833                 NL_SET_ERR_MSG(extack, "Could not parse nested entry");
834                 return -EINVAL;
835         }
836
837         entry->index = index;
838
839         return fill_sched_entry(q, tb, entry, extack);
840 }
841
842 static int parse_sched_list(struct taprio_sched *q, struct nlattr *list,
843                             struct sched_gate_list *sched,
844                             struct netlink_ext_ack *extack)
845 {
846         struct nlattr *n;
847         int err, rem;
848         int i = 0;
849
850         if (!list)
851                 return -EINVAL;
852
853         nla_for_each_nested(n, list, rem) {
854                 struct sched_entry *entry;
855
856                 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
857                         NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
858                         continue;
859                 }
860
861                 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
862                 if (!entry) {
863                         NL_SET_ERR_MSG(extack, "Not enough memory for entry");
864                         return -ENOMEM;
865                 }
866
867                 err = parse_sched_entry(q, n, entry, i, extack);
868                 if (err < 0) {
869                         kfree(entry);
870                         return err;
871                 }
872
873                 list_add_tail(&entry->list, &sched->entries);
874                 i++;
875         }
876
877         sched->num_entries = i;
878
879         return i;
880 }
881
882 static int parse_taprio_schedule(struct taprio_sched *q, struct nlattr **tb,
883                                  struct sched_gate_list *new,
884                                  struct netlink_ext_ack *extack)
885 {
886         int err = 0;
887
888         if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
889                 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
890                 return -ENOTSUPP;
891         }
892
893         if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
894                 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
895
896         if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
897                 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
898
899         if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
900                 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
901
902         if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
903                 err = parse_sched_list(q, tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST],
904                                        new, extack);
905         if (err < 0)
906                 return err;
907
908         if (!new->cycle_time) {
909                 struct sched_entry *entry;
910                 ktime_t cycle = 0;
911
912                 list_for_each_entry(entry, &new->entries, list)
913                         cycle = ktime_add_ns(cycle, entry->interval);
914
915                 if (!cycle) {
916                         NL_SET_ERR_MSG(extack, "'cycle_time' can never be 0");
917                         return -EINVAL;
918                 }
919
920                 new->cycle_time = cycle;
921         }
922
923         return 0;
924 }
925
926 static int taprio_parse_mqprio_opt(struct net_device *dev,
927                                    struct tc_mqprio_qopt *qopt,
928                                    struct netlink_ext_ack *extack,
929                                    u32 taprio_flags)
930 {
931         int i, j;
932
933         if (!qopt && !dev->num_tc) {
934                 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
935                 return -EINVAL;
936         }
937
938         /* If num_tc is already set, it means that the user already
939          * configured the mqprio part
940          */
941         if (dev->num_tc)
942                 return 0;
943
944         /* Verify num_tc is not out of max range */
945         if (qopt->num_tc > TC_MAX_QUEUE) {
946                 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
947                 return -EINVAL;
948         }
949
950         /* taprio imposes that traffic classes map 1:n to tx queues */
951         if (qopt->num_tc > dev->num_tx_queues) {
952                 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
953                 return -EINVAL;
954         }
955
956         /* Verify priority mapping uses valid tcs */
957         for (i = 0; i <= TC_BITMASK; i++) {
958                 if (qopt->prio_tc_map[i] >= qopt->num_tc) {
959                         NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
960                         return -EINVAL;
961                 }
962         }
963
964         for (i = 0; i < qopt->num_tc; i++) {
965                 unsigned int last = qopt->offset[i] + qopt->count[i];
966
967                 /* Verify the queue count is in tx range being equal to the
968                  * real_num_tx_queues indicates the last queue is in use.
969                  */
970                 if (qopt->offset[i] >= dev->num_tx_queues ||
971                     !qopt->count[i] ||
972                     last > dev->real_num_tx_queues) {
973                         NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
974                         return -EINVAL;
975                 }
976
977                 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
978                         continue;
979
980                 /* Verify that the offset and counts do not overlap */
981                 for (j = i + 1; j < qopt->num_tc; j++) {
982                         if (last > qopt->offset[j]) {
983                                 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
984                                 return -EINVAL;
985                         }
986                 }
987         }
988
989         return 0;
990 }
991
992 static int taprio_get_start_time(struct Qdisc *sch,
993                                  struct sched_gate_list *sched,
994                                  ktime_t *start)
995 {
996         struct taprio_sched *q = qdisc_priv(sch);
997         ktime_t now, base, cycle;
998         s64 n;
999
1000         base = sched_base_time(sched);
1001         now = taprio_get_time(q);
1002
1003         if (ktime_after(base, now)) {
1004                 *start = base;
1005                 return 0;
1006         }
1007
1008         cycle = sched->cycle_time;
1009
1010         /* The qdisc is expected to have at least one sched_entry.  Moreover,
1011          * any entry must have 'interval' > 0. Thus if the cycle time is zero,
1012          * something went really wrong. In that case, we should warn about this
1013          * inconsistent state and return error.
1014          */
1015         if (WARN_ON(!cycle))
1016                 return -EFAULT;
1017
1018         /* Schedule the start time for the beginning of the next
1019          * cycle.
1020          */
1021         n = div64_s64(ktime_sub_ns(now, base), cycle);
1022         *start = ktime_add_ns(base, (n + 1) * cycle);
1023         return 0;
1024 }
1025
1026 static void setup_first_close_time(struct taprio_sched *q,
1027                                    struct sched_gate_list *sched, ktime_t base)
1028 {
1029         struct sched_entry *first;
1030         ktime_t cycle;
1031
1032         first = list_first_entry(&sched->entries,
1033                                  struct sched_entry, list);
1034
1035         cycle = sched->cycle_time;
1036
1037         /* FIXME: find a better place to do this */
1038         sched->cycle_close_time = ktime_add_ns(base, cycle);
1039
1040         first->close_time = ktime_add_ns(base, first->interval);
1041         taprio_set_budget(q, first);
1042         rcu_assign_pointer(q->current_entry, NULL);
1043 }
1044
1045 static void taprio_start_sched(struct Qdisc *sch,
1046                                ktime_t start, struct sched_gate_list *new)
1047 {
1048         struct taprio_sched *q = qdisc_priv(sch);
1049         ktime_t expires;
1050
1051         if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1052                 return;
1053
1054         expires = hrtimer_get_expires(&q->advance_timer);
1055         if (expires == 0)
1056                 expires = KTIME_MAX;
1057
1058         /* If the new schedule starts before the next expiration, we
1059          * reprogram it to the earliest one, so we change the admin
1060          * schedule to the operational one at the right time.
1061          */
1062         start = min_t(ktime_t, start, expires);
1063
1064         hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1065 }
1066
1067 static void taprio_set_picos_per_byte(struct net_device *dev,
1068                                       struct taprio_sched *q)
1069 {
1070         struct ethtool_link_ksettings ecmd;
1071         int speed = SPEED_10;
1072         int picos_per_byte;
1073         int err;
1074
1075         err = __ethtool_get_link_ksettings(dev, &ecmd);
1076         if (err < 0)
1077                 goto skip;
1078
1079         if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1080                 speed = ecmd.base.speed;
1081
1082 skip:
1083         picos_per_byte = (USEC_PER_SEC * 8) / speed;
1084
1085         atomic64_set(&q->picos_per_byte, picos_per_byte);
1086         netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1087                    dev->name, (long long)atomic64_read(&q->picos_per_byte),
1088                    ecmd.base.speed);
1089 }
1090
1091 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1092                                void *ptr)
1093 {
1094         struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1095         struct net_device *qdev;
1096         struct taprio_sched *q;
1097         bool found = false;
1098
1099         ASSERT_RTNL();
1100
1101         if (event != NETDEV_UP && event != NETDEV_CHANGE)
1102                 return NOTIFY_DONE;
1103
1104         spin_lock(&taprio_list_lock);
1105         list_for_each_entry(q, &taprio_list, taprio_list) {
1106                 qdev = qdisc_dev(q->root);
1107                 if (qdev == dev) {
1108                         found = true;
1109                         break;
1110                 }
1111         }
1112         spin_unlock(&taprio_list_lock);
1113
1114         if (found)
1115                 taprio_set_picos_per_byte(dev, q);
1116
1117         return NOTIFY_DONE;
1118 }
1119
1120 static void setup_txtime(struct taprio_sched *q,
1121                          struct sched_gate_list *sched, ktime_t base)
1122 {
1123         struct sched_entry *entry;
1124         u32 interval = 0;
1125
1126         list_for_each_entry(entry, &sched->entries, list) {
1127                 entry->next_txtime = ktime_add_ns(base, interval);
1128                 interval += entry->interval;
1129         }
1130 }
1131
1132 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1133 {
1134         struct __tc_taprio_qopt_offload *__offload;
1135
1136         __offload = kzalloc(struct_size(__offload, offload.entries, num_entries),
1137                             GFP_KERNEL);
1138         if (!__offload)
1139                 return NULL;
1140
1141         refcount_set(&__offload->users, 1);
1142
1143         return &__offload->offload;
1144 }
1145
1146 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1147                                                   *offload)
1148 {
1149         struct __tc_taprio_qopt_offload *__offload;
1150
1151         __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1152                                  offload);
1153
1154         refcount_inc(&__offload->users);
1155
1156         return offload;
1157 }
1158 EXPORT_SYMBOL_GPL(taprio_offload_get);
1159
1160 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1161 {
1162         struct __tc_taprio_qopt_offload *__offload;
1163
1164         __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1165                                  offload);
1166
1167         if (!refcount_dec_and_test(&__offload->users))
1168                 return;
1169
1170         kfree(__offload);
1171 }
1172 EXPORT_SYMBOL_GPL(taprio_offload_free);
1173
1174 /* The function will only serve to keep the pointers to the "oper" and "admin"
1175  * schedules valid in relation to their base times, so when calling dump() the
1176  * users looks at the right schedules.
1177  * When using full offload, the admin configuration is promoted to oper at the
1178  * base_time in the PHC time domain.  But because the system time is not
1179  * necessarily in sync with that, we can't just trigger a hrtimer to call
1180  * switch_schedules at the right hardware time.
1181  * At the moment we call this by hand right away from taprio, but in the future
1182  * it will be useful to create a mechanism for drivers to notify taprio of the
1183  * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1184  * This is left as TODO.
1185  */
1186 static void taprio_offload_config_changed(struct taprio_sched *q)
1187 {
1188         struct sched_gate_list *oper, *admin;
1189
1190         spin_lock(&q->current_entry_lock);
1191
1192         oper = rcu_dereference_protected(q->oper_sched,
1193                                          lockdep_is_held(&q->current_entry_lock));
1194         admin = rcu_dereference_protected(q->admin_sched,
1195                                           lockdep_is_held(&q->current_entry_lock));
1196
1197         switch_schedules(q, &admin, &oper);
1198
1199         spin_unlock(&q->current_entry_lock);
1200 }
1201
1202 static u32 tc_map_to_queue_mask(struct net_device *dev, u32 tc_mask)
1203 {
1204         u32 i, queue_mask = 0;
1205
1206         for (i = 0; i < dev->num_tc; i++) {
1207                 u32 offset, count;
1208
1209                 if (!(tc_mask & BIT(i)))
1210                         continue;
1211
1212                 offset = dev->tc_to_txq[i].offset;
1213                 count = dev->tc_to_txq[i].count;
1214
1215                 queue_mask |= GENMASK(offset + count - 1, offset);
1216         }
1217
1218         return queue_mask;
1219 }
1220
1221 static void taprio_sched_to_offload(struct net_device *dev,
1222                                     struct sched_gate_list *sched,
1223                                     struct tc_taprio_qopt_offload *offload)
1224 {
1225         struct sched_entry *entry;
1226         int i = 0;
1227
1228         offload->base_time = sched->base_time;
1229         offload->cycle_time = sched->cycle_time;
1230         offload->cycle_time_extension = sched->cycle_time_extension;
1231
1232         list_for_each_entry(entry, &sched->entries, list) {
1233                 struct tc_taprio_sched_entry *e = &offload->entries[i];
1234
1235                 e->command = entry->command;
1236                 e->interval = entry->interval;
1237                 e->gate_mask = tc_map_to_queue_mask(dev, entry->gate_mask);
1238
1239                 i++;
1240         }
1241
1242         offload->num_entries = i;
1243 }
1244
1245 static int taprio_enable_offload(struct net_device *dev,
1246                                  struct taprio_sched *q,
1247                                  struct sched_gate_list *sched,
1248                                  struct netlink_ext_ack *extack)
1249 {
1250         const struct net_device_ops *ops = dev->netdev_ops;
1251         struct tc_taprio_qopt_offload *offload;
1252         int err = 0;
1253
1254         if (!ops->ndo_setup_tc) {
1255                 NL_SET_ERR_MSG(extack,
1256                                "Device does not support taprio offload");
1257                 return -EOPNOTSUPP;
1258         }
1259
1260         offload = taprio_offload_alloc(sched->num_entries);
1261         if (!offload) {
1262                 NL_SET_ERR_MSG(extack,
1263                                "Not enough memory for enabling offload mode");
1264                 return -ENOMEM;
1265         }
1266         offload->enable = 1;
1267         taprio_sched_to_offload(dev, sched, offload);
1268
1269         err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1270         if (err < 0) {
1271                 NL_SET_ERR_MSG(extack,
1272                                "Device failed to setup taprio offload");
1273                 goto done;
1274         }
1275
1276 done:
1277         taprio_offload_free(offload);
1278
1279         return err;
1280 }
1281
1282 static int taprio_disable_offload(struct net_device *dev,
1283                                   struct taprio_sched *q,
1284                                   struct netlink_ext_ack *extack)
1285 {
1286         const struct net_device_ops *ops = dev->netdev_ops;
1287         struct tc_taprio_qopt_offload *offload;
1288         int err;
1289
1290         if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1291                 return 0;
1292
1293         if (!ops->ndo_setup_tc)
1294                 return -EOPNOTSUPP;
1295
1296         offload = taprio_offload_alloc(0);
1297         if (!offload) {
1298                 NL_SET_ERR_MSG(extack,
1299                                "Not enough memory to disable offload mode");
1300                 return -ENOMEM;
1301         }
1302         offload->enable = 0;
1303
1304         err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1305         if (err < 0) {
1306                 NL_SET_ERR_MSG(extack,
1307                                "Device failed to disable offload");
1308                 goto out;
1309         }
1310
1311 out:
1312         taprio_offload_free(offload);
1313
1314         return err;
1315 }
1316
1317 /* If full offload is enabled, the only possible clockid is the net device's
1318  * PHC. For that reason, specifying a clockid through netlink is incorrect.
1319  * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1320  * in sync with the specified clockid via a user space daemon such as phc2sys.
1321  * For both software taprio and txtime-assist, the clockid is used for the
1322  * hrtimer that advances the schedule and hence mandatory.
1323  */
1324 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1325                                 struct netlink_ext_ack *extack)
1326 {
1327         struct taprio_sched *q = qdisc_priv(sch);
1328         struct net_device *dev = qdisc_dev(sch);
1329         int err = -EINVAL;
1330
1331         if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1332                 const struct ethtool_ops *ops = dev->ethtool_ops;
1333                 struct ethtool_ts_info info = {
1334                         .cmd = ETHTOOL_GET_TS_INFO,
1335                         .phc_index = -1,
1336                 };
1337
1338                 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1339                         NL_SET_ERR_MSG(extack,
1340                                        "The 'clockid' cannot be specified for full offload");
1341                         goto out;
1342                 }
1343
1344                 if (ops && ops->get_ts_info)
1345                         err = ops->get_ts_info(dev, &info);
1346
1347                 if (err || info.phc_index < 0) {
1348                         NL_SET_ERR_MSG(extack,
1349                                        "Device does not have a PTP clock");
1350                         err = -ENOTSUPP;
1351                         goto out;
1352                 }
1353         } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1354                 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1355
1356                 /* We only support static clockids and we don't allow
1357                  * for it to be modified after the first init.
1358                  */
1359                 if (clockid < 0 ||
1360                     (q->clockid != -1 && q->clockid != clockid)) {
1361                         NL_SET_ERR_MSG(extack,
1362                                        "Changing the 'clockid' of a running schedule is not supported");
1363                         err = -ENOTSUPP;
1364                         goto out;
1365                 }
1366
1367                 switch (clockid) {
1368                 case CLOCK_REALTIME:
1369                         q->tk_offset = TK_OFFS_REAL;
1370                         break;
1371                 case CLOCK_MONOTONIC:
1372                         q->tk_offset = TK_OFFS_MAX;
1373                         break;
1374                 case CLOCK_BOOTTIME:
1375                         q->tk_offset = TK_OFFS_BOOT;
1376                         break;
1377                 case CLOCK_TAI:
1378                         q->tk_offset = TK_OFFS_TAI;
1379                         break;
1380                 default:
1381                         NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1382                         err = -EINVAL;
1383                         goto out;
1384                 }
1385
1386                 q->clockid = clockid;
1387         } else {
1388                 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1389                 goto out;
1390         }
1391
1392         /* Everything went ok, return success. */
1393         err = 0;
1394
1395 out:
1396         return err;
1397 }
1398
1399 static int taprio_mqprio_cmp(const struct net_device *dev,
1400                              const struct tc_mqprio_qopt *mqprio)
1401 {
1402         int i;
1403
1404         if (!mqprio || mqprio->num_tc != dev->num_tc)
1405                 return -1;
1406
1407         for (i = 0; i < mqprio->num_tc; i++)
1408                 if (dev->tc_to_txq[i].count != mqprio->count[i] ||
1409                     dev->tc_to_txq[i].offset != mqprio->offset[i])
1410                         return -1;
1411
1412         for (i = 0; i <= TC_BITMASK; i++)
1413                 if (dev->prio_tc_map[i] != mqprio->prio_tc_map[i])
1414                         return -1;
1415
1416         return 0;
1417 }
1418
1419 /* The semantics of the 'flags' argument in relation to 'change()'
1420  * requests, are interpreted following two rules (which are applied in
1421  * this order): (1) an omitted 'flags' argument is interpreted as
1422  * zero; (2) the 'flags' of a "running" taprio instance cannot be
1423  * changed.
1424  */
1425 static int taprio_new_flags(const struct nlattr *attr, u32 old,
1426                             struct netlink_ext_ack *extack)
1427 {
1428         u32 new = 0;
1429
1430         if (attr)
1431                 new = nla_get_u32(attr);
1432
1433         if (old != TAPRIO_FLAGS_INVALID && old != new) {
1434                 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1435                 return -EOPNOTSUPP;
1436         }
1437
1438         if (!taprio_flags_valid(new)) {
1439                 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1440                 return -EINVAL;
1441         }
1442
1443         return new;
1444 }
1445
1446 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1447                          struct netlink_ext_ack *extack)
1448 {
1449         struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1450         struct sched_gate_list *oper, *admin, *new_admin;
1451         struct taprio_sched *q = qdisc_priv(sch);
1452         struct net_device *dev = qdisc_dev(sch);
1453         struct tc_mqprio_qopt *mqprio = NULL;
1454         unsigned long flags;
1455         ktime_t start;
1456         int i, err;
1457
1458         err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1459                                           taprio_policy, extack);
1460         if (err < 0)
1461                 return err;
1462
1463         if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1464                 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1465
1466         err = taprio_new_flags(tb[TCA_TAPRIO_ATTR_FLAGS],
1467                                q->flags, extack);
1468         if (err < 0)
1469                 return err;
1470
1471         q->flags = err;
1472
1473         err = taprio_parse_mqprio_opt(dev, mqprio, extack, q->flags);
1474         if (err < 0)
1475                 return err;
1476
1477         new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1478         if (!new_admin) {
1479                 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1480                 return -ENOMEM;
1481         }
1482         INIT_LIST_HEAD(&new_admin->entries);
1483
1484         rcu_read_lock();
1485         oper = rcu_dereference(q->oper_sched);
1486         admin = rcu_dereference(q->admin_sched);
1487         rcu_read_unlock();
1488
1489         /* no changes - no new mqprio settings */
1490         if (!taprio_mqprio_cmp(dev, mqprio))
1491                 mqprio = NULL;
1492
1493         if (mqprio && (oper || admin)) {
1494                 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1495                 err = -ENOTSUPP;
1496                 goto free_sched;
1497         }
1498
1499         err = parse_taprio_schedule(q, tb, new_admin, extack);
1500         if (err < 0)
1501                 goto free_sched;
1502
1503         if (new_admin->num_entries == 0) {
1504                 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1505                 err = -EINVAL;
1506                 goto free_sched;
1507         }
1508
1509         err = taprio_parse_clockid(sch, tb, extack);
1510         if (err < 0)
1511                 goto free_sched;
1512
1513         taprio_set_picos_per_byte(dev, q);
1514
1515         if (mqprio) {
1516                 err = netdev_set_num_tc(dev, mqprio->num_tc);
1517                 if (err)
1518                         goto free_sched;
1519                 for (i = 0; i < mqprio->num_tc; i++)
1520                         netdev_set_tc_queue(dev, i,
1521                                             mqprio->count[i],
1522                                             mqprio->offset[i]);
1523
1524                 /* Always use supplied priority mappings */
1525                 for (i = 0; i <= TC_BITMASK; i++)
1526                         netdev_set_prio_tc_map(dev, i,
1527                                                mqprio->prio_tc_map[i]);
1528         }
1529
1530         if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1531                 err = taprio_enable_offload(dev, q, new_admin, extack);
1532         else
1533                 err = taprio_disable_offload(dev, q, extack);
1534         if (err)
1535                 goto free_sched;
1536
1537         /* Protects against enqueue()/dequeue() */
1538         spin_lock_bh(qdisc_lock(sch));
1539
1540         if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1541                 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1542                         NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1543                         err = -EINVAL;
1544                         goto unlock;
1545                 }
1546
1547                 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1548         }
1549
1550         if (!TXTIME_ASSIST_IS_ENABLED(q->flags) &&
1551             !FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1552             !hrtimer_active(&q->advance_timer)) {
1553                 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1554                 q->advance_timer.function = advance_sched;
1555         }
1556
1557         if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1558                 q->dequeue = taprio_dequeue_offload;
1559                 q->peek = taprio_peek_offload;
1560         } else {
1561                 /* Be sure to always keep the function pointers
1562                  * in a consistent state.
1563                  */
1564                 q->dequeue = taprio_dequeue_soft;
1565                 q->peek = taprio_peek_soft;
1566         }
1567
1568         err = taprio_get_start_time(sch, new_admin, &start);
1569         if (err < 0) {
1570                 NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1571                 goto unlock;
1572         }
1573
1574         setup_txtime(q, new_admin, start);
1575
1576         if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1577                 if (!oper) {
1578                         rcu_assign_pointer(q->oper_sched, new_admin);
1579                         err = 0;
1580                         new_admin = NULL;
1581                         goto unlock;
1582                 }
1583
1584                 rcu_assign_pointer(q->admin_sched, new_admin);
1585                 if (admin)
1586                         call_rcu(&admin->rcu, taprio_free_sched_cb);
1587         } else {
1588                 setup_first_close_time(q, new_admin, start);
1589
1590                 /* Protects against advance_sched() */
1591                 spin_lock_irqsave(&q->current_entry_lock, flags);
1592
1593                 taprio_start_sched(sch, start, new_admin);
1594
1595                 rcu_assign_pointer(q->admin_sched, new_admin);
1596                 if (admin)
1597                         call_rcu(&admin->rcu, taprio_free_sched_cb);
1598
1599                 spin_unlock_irqrestore(&q->current_entry_lock, flags);
1600
1601                 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1602                         taprio_offload_config_changed(q);
1603         }
1604
1605         new_admin = NULL;
1606         err = 0;
1607
1608 unlock:
1609         spin_unlock_bh(qdisc_lock(sch));
1610
1611 free_sched:
1612         if (new_admin)
1613                 call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1614
1615         return err;
1616 }
1617
1618 static void taprio_reset(struct Qdisc *sch)
1619 {
1620         struct taprio_sched *q = qdisc_priv(sch);
1621         struct net_device *dev = qdisc_dev(sch);
1622         int i;
1623
1624         hrtimer_cancel(&q->advance_timer);
1625         if (q->qdiscs) {
1626                 for (i = 0; i < dev->num_tx_queues; i++)
1627                         if (q->qdiscs[i])
1628                                 qdisc_reset(q->qdiscs[i]);
1629         }
1630         sch->qstats.backlog = 0;
1631         sch->q.qlen = 0;
1632 }
1633
1634 static void taprio_destroy(struct Qdisc *sch)
1635 {
1636         struct taprio_sched *q = qdisc_priv(sch);
1637         struct net_device *dev = qdisc_dev(sch);
1638         unsigned int i;
1639
1640         spin_lock(&taprio_list_lock);
1641         list_del(&q->taprio_list);
1642         spin_unlock(&taprio_list_lock);
1643
1644         /* Note that taprio_reset() might not be called if an error
1645          * happens in qdisc_create(), after taprio_init() has been called.
1646          */
1647         hrtimer_cancel(&q->advance_timer);
1648
1649         taprio_disable_offload(dev, q, NULL);
1650
1651         if (q->qdiscs) {
1652                 for (i = 0; i < dev->num_tx_queues; i++)
1653                         qdisc_put(q->qdiscs[i]);
1654
1655                 kfree(q->qdiscs);
1656         }
1657         q->qdiscs = NULL;
1658
1659         netdev_reset_tc(dev);
1660
1661         if (q->oper_sched)
1662                 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1663
1664         if (q->admin_sched)
1665                 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1666 }
1667
1668 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1669                        struct netlink_ext_ack *extack)
1670 {
1671         struct taprio_sched *q = qdisc_priv(sch);
1672         struct net_device *dev = qdisc_dev(sch);
1673         int i;
1674
1675         spin_lock_init(&q->current_entry_lock);
1676
1677         hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1678         q->advance_timer.function = advance_sched;
1679
1680         q->dequeue = taprio_dequeue_soft;
1681         q->peek = taprio_peek_soft;
1682
1683         q->root = sch;
1684
1685         /* We only support static clockids. Use an invalid value as default
1686          * and get the valid one on taprio_change().
1687          */
1688         q->clockid = -1;
1689         q->flags = TAPRIO_FLAGS_INVALID;
1690
1691         spin_lock(&taprio_list_lock);
1692         list_add(&q->taprio_list, &taprio_list);
1693         spin_unlock(&taprio_list_lock);
1694
1695         if (sch->parent != TC_H_ROOT)
1696                 return -EOPNOTSUPP;
1697
1698         if (!netif_is_multiqueue(dev))
1699                 return -EOPNOTSUPP;
1700
1701         /* pre-allocate qdisc, attachment can't fail */
1702         q->qdiscs = kcalloc(dev->num_tx_queues,
1703                             sizeof(q->qdiscs[0]),
1704                             GFP_KERNEL);
1705
1706         if (!q->qdiscs)
1707                 return -ENOMEM;
1708
1709         if (!opt)
1710                 return -EINVAL;
1711
1712         for (i = 0; i < dev->num_tx_queues; i++) {
1713                 struct netdev_queue *dev_queue;
1714                 struct Qdisc *qdisc;
1715
1716                 dev_queue = netdev_get_tx_queue(dev, i);
1717                 qdisc = qdisc_create_dflt(dev_queue,
1718                                           &pfifo_qdisc_ops,
1719                                           TC_H_MAKE(TC_H_MAJ(sch->handle),
1720                                                     TC_H_MIN(i + 1)),
1721                                           extack);
1722                 if (!qdisc)
1723                         return -ENOMEM;
1724
1725                 if (i < dev->real_num_tx_queues)
1726                         qdisc_hash_add(qdisc, false);
1727
1728                 q->qdiscs[i] = qdisc;
1729         }
1730
1731         return taprio_change(sch, opt, extack);
1732 }
1733
1734 static void taprio_attach(struct Qdisc *sch)
1735 {
1736         struct taprio_sched *q = qdisc_priv(sch);
1737         struct net_device *dev = qdisc_dev(sch);
1738         unsigned int ntx;
1739
1740         /* Attach underlying qdisc */
1741         for (ntx = 0; ntx < dev->num_tx_queues; ntx++) {
1742                 struct Qdisc *qdisc = q->qdiscs[ntx];
1743                 struct Qdisc *old;
1744
1745                 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1746                         qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1747                         old = dev_graft_qdisc(qdisc->dev_queue, qdisc);
1748                 } else {
1749                         old = dev_graft_qdisc(qdisc->dev_queue, sch);
1750                         qdisc_refcount_inc(sch);
1751                 }
1752                 if (old)
1753                         qdisc_put(old);
1754         }
1755
1756         /* access to the child qdiscs is not needed in offload mode */
1757         if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1758                 kfree(q->qdiscs);
1759                 q->qdiscs = NULL;
1760         }
1761 }
1762
1763 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1764                                              unsigned long cl)
1765 {
1766         struct net_device *dev = qdisc_dev(sch);
1767         unsigned long ntx = cl - 1;
1768
1769         if (ntx >= dev->num_tx_queues)
1770                 return NULL;
1771
1772         return netdev_get_tx_queue(dev, ntx);
1773 }
1774
1775 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1776                         struct Qdisc *new, struct Qdisc **old,
1777                         struct netlink_ext_ack *extack)
1778 {
1779         struct taprio_sched *q = qdisc_priv(sch);
1780         struct net_device *dev = qdisc_dev(sch);
1781         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1782
1783         if (!dev_queue)
1784                 return -EINVAL;
1785
1786         if (dev->flags & IFF_UP)
1787                 dev_deactivate(dev);
1788
1789         if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1790                 *old = dev_graft_qdisc(dev_queue, new);
1791         } else {
1792                 *old = q->qdiscs[cl - 1];
1793                 q->qdiscs[cl - 1] = new;
1794         }
1795
1796         if (new)
1797                 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1798
1799         if (dev->flags & IFF_UP)
1800                 dev_activate(dev);
1801
1802         return 0;
1803 }
1804
1805 static int dump_entry(struct sk_buff *msg,
1806                       const struct sched_entry *entry)
1807 {
1808         struct nlattr *item;
1809
1810         item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1811         if (!item)
1812                 return -ENOSPC;
1813
1814         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1815                 goto nla_put_failure;
1816
1817         if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1818                 goto nla_put_failure;
1819
1820         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1821                         entry->gate_mask))
1822                 goto nla_put_failure;
1823
1824         if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1825                         entry->interval))
1826                 goto nla_put_failure;
1827
1828         return nla_nest_end(msg, item);
1829
1830 nla_put_failure:
1831         nla_nest_cancel(msg, item);
1832         return -1;
1833 }
1834
1835 static int dump_schedule(struct sk_buff *msg,
1836                          const struct sched_gate_list *root)
1837 {
1838         struct nlattr *entry_list;
1839         struct sched_entry *entry;
1840
1841         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1842                         root->base_time, TCA_TAPRIO_PAD))
1843                 return -1;
1844
1845         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1846                         root->cycle_time, TCA_TAPRIO_PAD))
1847                 return -1;
1848
1849         if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1850                         root->cycle_time_extension, TCA_TAPRIO_PAD))
1851                 return -1;
1852
1853         entry_list = nla_nest_start_noflag(msg,
1854                                            TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1855         if (!entry_list)
1856                 goto error_nest;
1857
1858         list_for_each_entry(entry, &root->entries, list) {
1859                 if (dump_entry(msg, entry) < 0)
1860                         goto error_nest;
1861         }
1862
1863         nla_nest_end(msg, entry_list);
1864         return 0;
1865
1866 error_nest:
1867         nla_nest_cancel(msg, entry_list);
1868         return -1;
1869 }
1870
1871 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1872 {
1873         struct taprio_sched *q = qdisc_priv(sch);
1874         struct net_device *dev = qdisc_dev(sch);
1875         struct sched_gate_list *oper, *admin;
1876         struct tc_mqprio_qopt opt = { 0 };
1877         struct nlattr *nest, *sched_nest;
1878         unsigned int i;
1879
1880         rcu_read_lock();
1881         oper = rcu_dereference(q->oper_sched);
1882         admin = rcu_dereference(q->admin_sched);
1883
1884         opt.num_tc = netdev_get_num_tc(dev);
1885         memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1886
1887         for (i = 0; i < netdev_get_num_tc(dev); i++) {
1888                 opt.count[i] = dev->tc_to_txq[i].count;
1889                 opt.offset[i] = dev->tc_to_txq[i].offset;
1890         }
1891
1892         nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1893         if (!nest)
1894                 goto start_error;
1895
1896         if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1897                 goto options_error;
1898
1899         if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1900             nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1901                 goto options_error;
1902
1903         if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1904                 goto options_error;
1905
1906         if (q->txtime_delay &&
1907             nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1908                 goto options_error;
1909
1910         if (oper && dump_schedule(skb, oper))
1911                 goto options_error;
1912
1913         if (!admin)
1914                 goto done;
1915
1916         sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1917         if (!sched_nest)
1918                 goto options_error;
1919
1920         if (dump_schedule(skb, admin))
1921                 goto admin_error;
1922
1923         nla_nest_end(skb, sched_nest);
1924
1925 done:
1926         rcu_read_unlock();
1927
1928         return nla_nest_end(skb, nest);
1929
1930 admin_error:
1931         nla_nest_cancel(skb, sched_nest);
1932
1933 options_error:
1934         nla_nest_cancel(skb, nest);
1935
1936 start_error:
1937         rcu_read_unlock();
1938         return -ENOSPC;
1939 }
1940
1941 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1942 {
1943         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1944
1945         if (!dev_queue)
1946                 return NULL;
1947
1948         return dev_queue->qdisc_sleeping;
1949 }
1950
1951 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1952 {
1953         unsigned int ntx = TC_H_MIN(classid);
1954
1955         if (!taprio_queue_get(sch, ntx))
1956                 return 0;
1957         return ntx;
1958 }
1959
1960 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1961                              struct sk_buff *skb, struct tcmsg *tcm)
1962 {
1963         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1964
1965         tcm->tcm_parent = TC_H_ROOT;
1966         tcm->tcm_handle |= TC_H_MIN(cl);
1967         tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1968
1969         return 0;
1970 }
1971
1972 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1973                                    struct gnet_dump *d)
1974         __releases(d->lock)
1975         __acquires(d->lock)
1976 {
1977         struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1978
1979         sch = dev_queue->qdisc_sleeping;
1980         if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1981             qdisc_qstats_copy(d, sch) < 0)
1982                 return -1;
1983         return 0;
1984 }
1985
1986 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1987 {
1988         struct net_device *dev = qdisc_dev(sch);
1989         unsigned long ntx;
1990
1991         if (arg->stop)
1992                 return;
1993
1994         arg->count = arg->skip;
1995         for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1996                 if (arg->fn(sch, ntx + 1, arg) < 0) {
1997                         arg->stop = 1;
1998                         break;
1999                 }
2000                 arg->count++;
2001         }
2002 }
2003
2004 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
2005                                                 struct tcmsg *tcm)
2006 {
2007         return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
2008 }
2009
2010 static const struct Qdisc_class_ops taprio_class_ops = {
2011         .graft          = taprio_graft,
2012         .leaf           = taprio_leaf,
2013         .find           = taprio_find,
2014         .walk           = taprio_walk,
2015         .dump           = taprio_dump_class,
2016         .dump_stats     = taprio_dump_class_stats,
2017         .select_queue   = taprio_select_queue,
2018 };
2019
2020 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
2021         .cl_ops         = &taprio_class_ops,
2022         .id             = "taprio",
2023         .priv_size      = sizeof(struct taprio_sched),
2024         .init           = taprio_init,
2025         .change         = taprio_change,
2026         .destroy        = taprio_destroy,
2027         .reset          = taprio_reset,
2028         .attach         = taprio_attach,
2029         .peek           = taprio_peek,
2030         .dequeue        = taprio_dequeue,
2031         .enqueue        = taprio_enqueue,
2032         .dump           = taprio_dump,
2033         .owner          = THIS_MODULE,
2034 };
2035
2036 static struct notifier_block taprio_device_notifier = {
2037         .notifier_call = taprio_dev_notifier,
2038 };
2039
2040 static int __init taprio_module_init(void)
2041 {
2042         int err = register_netdevice_notifier(&taprio_device_notifier);
2043
2044         if (err)
2045                 return err;
2046
2047         return register_qdisc(&taprio_qdisc_ops);
2048 }
2049
2050 static void __exit taprio_module_exit(void)
2051 {
2052         unregister_qdisc(&taprio_qdisc_ops);
2053         unregister_netdevice_notifier(&taprio_device_notifier);
2054 }
2055
2056 module_init(taprio_module_init);
2057 module_exit(taprio_module_exit);
2058 MODULE_LICENSE("GPL");