1 // SPDX-License-Identifier: GPL-2.0
3 /* net/sched/sch_taprio.c Time Aware Priority Scheduler
5 * Authors: Vinicius Costa Gomes <vinicius.gomes@intel.com>
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/list.h>
14 #include <linux/errno.h>
15 #include <linux/skbuff.h>
16 #include <linux/math64.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/rcupdate.h>
20 #include <net/netlink.h>
21 #include <net/pkt_sched.h>
22 #include <net/pkt_cls.h>
23 #include <net/sch_generic.h>
27 static LIST_HEAD(taprio_list);
28 static DEFINE_SPINLOCK(taprio_list_lock);
30 #define TAPRIO_ALL_GATES_OPEN -1
32 #define TXTIME_ASSIST_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST)
33 #define FULL_OFFLOAD_IS_ENABLED(flags) ((flags) & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD)
36 struct list_head list;
38 /* The instant that this entry "closes" and the next one
39 * should open, the qdisc will make some effort so that no
40 * packet leaves after this time.
51 struct sched_gate_list {
53 struct list_head entries;
55 ktime_t cycle_close_time;
57 s64 cycle_time_extension;
62 struct Qdisc **qdiscs;
65 enum tk_offsets tk_offset;
67 atomic64_t picos_per_byte; /* Using picoseconds because for 10Gbps+
68 * speeds it's sub-nanoseconds per byte
71 /* Protects the update side of the RCU protected current_entry */
72 spinlock_t current_entry_lock;
73 struct sched_entry __rcu *current_entry;
74 struct sched_gate_list __rcu *oper_sched;
75 struct sched_gate_list __rcu *admin_sched;
76 struct hrtimer advance_timer;
77 struct list_head taprio_list;
78 struct sk_buff *(*dequeue)(struct Qdisc *sch);
79 struct sk_buff *(*peek)(struct Qdisc *sch);
83 struct __tc_taprio_qopt_offload {
85 struct tc_taprio_qopt_offload offload;
88 static ktime_t sched_base_time(const struct sched_gate_list *sched)
93 return ns_to_ktime(sched->base_time);
96 static ktime_t taprio_get_time(struct taprio_sched *q)
98 ktime_t mono = ktime_get();
100 switch (q->tk_offset) {
104 return ktime_mono_to_any(mono, q->tk_offset);
110 static void taprio_free_sched_cb(struct rcu_head *head)
112 struct sched_gate_list *sched = container_of(head, struct sched_gate_list, rcu);
113 struct sched_entry *entry, *n;
118 list_for_each_entry_safe(entry, n, &sched->entries, list) {
119 list_del(&entry->list);
126 static void switch_schedules(struct taprio_sched *q,
127 struct sched_gate_list **admin,
128 struct sched_gate_list **oper)
130 rcu_assign_pointer(q->oper_sched, *admin);
131 rcu_assign_pointer(q->admin_sched, NULL);
134 call_rcu(&(*oper)->rcu, taprio_free_sched_cb);
140 /* Get how much time has been already elapsed in the current cycle. */
141 static s32 get_cycle_time_elapsed(struct sched_gate_list *sched, ktime_t time)
143 ktime_t time_since_sched_start;
146 time_since_sched_start = ktime_sub(time, sched->base_time);
147 div_s64_rem(time_since_sched_start, sched->cycle_time, &time_elapsed);
152 static ktime_t get_interval_end_time(struct sched_gate_list *sched,
153 struct sched_gate_list *admin,
154 struct sched_entry *entry,
157 s32 cycle_elapsed = get_cycle_time_elapsed(sched, intv_start);
158 ktime_t intv_end, cycle_ext_end, cycle_end;
160 cycle_end = ktime_add_ns(intv_start, sched->cycle_time - cycle_elapsed);
161 intv_end = ktime_add_ns(intv_start, entry->interval);
162 cycle_ext_end = ktime_add(cycle_end, sched->cycle_time_extension);
164 if (ktime_before(intv_end, cycle_end))
166 else if (admin && admin != sched &&
167 ktime_after(admin->base_time, cycle_end) &&
168 ktime_before(admin->base_time, cycle_ext_end))
169 return admin->base_time;
174 static int length_to_duration(struct taprio_sched *q, int len)
176 return div_u64(len * atomic64_read(&q->picos_per_byte), 1000);
179 /* Returns the entry corresponding to next available interval. If
180 * validate_interval is set, it only validates whether the timestamp occurs
181 * when the gate corresponding to the skb's traffic class is open.
183 static struct sched_entry *find_entry_to_transmit(struct sk_buff *skb,
185 struct sched_gate_list *sched,
186 struct sched_gate_list *admin,
188 ktime_t *interval_start,
189 ktime_t *interval_end,
190 bool validate_interval)
192 ktime_t curr_intv_start, curr_intv_end, cycle_end, packet_transmit_time;
193 ktime_t earliest_txtime = KTIME_MAX, txtime, cycle, transmit_end_time;
194 struct sched_entry *entry = NULL, *entry_found = NULL;
195 struct taprio_sched *q = qdisc_priv(sch);
196 struct net_device *dev = qdisc_dev(sch);
197 bool entry_available = false;
201 tc = netdev_get_prio_tc_map(dev, skb->priority);
202 packet_transmit_time = length_to_duration(q, qdisc_pkt_len(skb));
210 cycle = sched->cycle_time;
211 cycle_elapsed = get_cycle_time_elapsed(sched, time);
212 curr_intv_end = ktime_sub_ns(time, cycle_elapsed);
213 cycle_end = ktime_add_ns(curr_intv_end, cycle);
215 list_for_each_entry(entry, &sched->entries, list) {
216 curr_intv_start = curr_intv_end;
217 curr_intv_end = get_interval_end_time(sched, admin, entry,
220 if (ktime_after(curr_intv_start, cycle_end))
223 if (!(entry->gate_mask & BIT(tc)) ||
224 packet_transmit_time > entry->interval)
227 txtime = entry->next_txtime;
229 if (ktime_before(txtime, time) || validate_interval) {
230 transmit_end_time = ktime_add_ns(time, packet_transmit_time);
231 if ((ktime_before(curr_intv_start, time) &&
232 ktime_before(transmit_end_time, curr_intv_end)) ||
233 (ktime_after(curr_intv_start, time) && !validate_interval)) {
235 *interval_start = curr_intv_start;
236 *interval_end = curr_intv_end;
238 } else if (!entry_available && !validate_interval) {
239 /* Here, we are just trying to find out the
240 * first available interval in the next cycle.
244 *interval_start = ktime_add_ns(curr_intv_start, cycle);
245 *interval_end = ktime_add_ns(curr_intv_end, cycle);
247 } else if (ktime_before(txtime, earliest_txtime) &&
249 earliest_txtime = txtime;
251 n = div_s64(ktime_sub(txtime, curr_intv_start), cycle);
252 *interval_start = ktime_add(curr_intv_start, n * cycle);
253 *interval_end = ktime_add(curr_intv_end, n * cycle);
260 static bool is_valid_interval(struct sk_buff *skb, struct Qdisc *sch)
262 struct taprio_sched *q = qdisc_priv(sch);
263 struct sched_gate_list *sched, *admin;
264 ktime_t interval_start, interval_end;
265 struct sched_entry *entry;
268 sched = rcu_dereference(q->oper_sched);
269 admin = rcu_dereference(q->admin_sched);
271 entry = find_entry_to_transmit(skb, sch, sched, admin, skb->tstamp,
272 &interval_start, &interval_end, true);
278 static bool taprio_flags_valid(u32 flags)
280 /* Make sure no other flag bits are set. */
281 if (flags & ~(TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST |
282 TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
284 /* txtime-assist and full offload are mutually exclusive */
285 if ((flags & TCA_TAPRIO_ATTR_FLAG_TXTIME_ASSIST) &&
286 (flags & TCA_TAPRIO_ATTR_FLAG_FULL_OFFLOAD))
291 /* This returns the tstamp value set by TCP in terms of the set clock. */
292 static ktime_t get_tcp_tstamp(struct taprio_sched *q, struct sk_buff *skb)
294 unsigned int offset = skb_network_offset(skb);
295 const struct ipv6hdr *ipv6h;
296 const struct iphdr *iph;
297 struct ipv6hdr _ipv6h;
299 ipv6h = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
303 if (ipv6h->version == 4) {
304 iph = (struct iphdr *)ipv6h;
305 offset += iph->ihl * 4;
307 /* special-case 6in4 tunnelling, as that is a common way to get
308 * v6 connectivity in the home
310 if (iph->protocol == IPPROTO_IPV6) {
311 ipv6h = skb_header_pointer(skb, offset,
312 sizeof(_ipv6h), &_ipv6h);
314 if (!ipv6h || ipv6h->nexthdr != IPPROTO_TCP)
316 } else if (iph->protocol != IPPROTO_TCP) {
319 } else if (ipv6h->version == 6 && ipv6h->nexthdr != IPPROTO_TCP) {
323 return ktime_mono_to_any(skb->skb_mstamp_ns, q->tk_offset);
326 /* There are a few scenarios where we will have to modify the txtime from
327 * what is read from next_txtime in sched_entry. They are:
328 * 1. If txtime is in the past,
329 * a. The gate for the traffic class is currently open and packet can be
330 * transmitted before it closes, schedule the packet right away.
331 * b. If the gate corresponding to the traffic class is going to open later
332 * in the cycle, set the txtime of packet to the interval start.
333 * 2. If txtime is in the future, there are packets corresponding to the
334 * current traffic class waiting to be transmitted. So, the following
335 * possibilities exist:
336 * a. We can transmit the packet before the window containing the txtime
338 * b. The window might close before the transmission can be completed
339 * successfully. So, schedule the packet in the next open window.
341 static long get_packet_txtime(struct sk_buff *skb, struct Qdisc *sch)
343 ktime_t transmit_end_time, interval_end, interval_start, tcp_tstamp;
344 struct taprio_sched *q = qdisc_priv(sch);
345 struct sched_gate_list *sched, *admin;
346 ktime_t minimum_time, now, txtime;
347 int len, packet_transmit_time;
348 struct sched_entry *entry;
351 now = taprio_get_time(q);
352 minimum_time = ktime_add_ns(now, q->txtime_delay);
354 tcp_tstamp = get_tcp_tstamp(q, skb);
355 minimum_time = max_t(ktime_t, minimum_time, tcp_tstamp);
358 admin = rcu_dereference(q->admin_sched);
359 sched = rcu_dereference(q->oper_sched);
360 if (admin && ktime_after(minimum_time, admin->base_time))
361 switch_schedules(q, &admin, &sched);
363 /* Until the schedule starts, all the queues are open */
364 if (!sched || ktime_before(minimum_time, sched->base_time)) {
365 txtime = minimum_time;
369 len = qdisc_pkt_len(skb);
370 packet_transmit_time = length_to_duration(q, len);
375 entry = find_entry_to_transmit(skb, sch, sched, admin,
377 &interval_start, &interval_end,
384 txtime = entry->next_txtime;
385 txtime = max_t(ktime_t, txtime, minimum_time);
386 txtime = max_t(ktime_t, txtime, interval_start);
388 if (admin && admin != sched &&
389 ktime_after(txtime, admin->base_time)) {
395 transmit_end_time = ktime_add(txtime, packet_transmit_time);
396 minimum_time = transmit_end_time;
398 /* Update the txtime of current entry to the next time it's
401 if (ktime_after(transmit_end_time, interval_end))
402 entry->next_txtime = ktime_add(interval_start, sched->cycle_time);
403 } while (sched_changed || ktime_after(transmit_end_time, interval_end));
405 entry->next_txtime = transmit_end_time;
412 static int taprio_enqueue(struct sk_buff *skb, struct Qdisc *sch,
413 struct sk_buff **to_free)
415 struct taprio_sched *q = qdisc_priv(sch);
419 queue = skb_get_queue_mapping(skb);
421 child = q->qdiscs[queue];
422 if (unlikely(!child))
423 return qdisc_drop(skb, sch, to_free);
425 if (skb->sk && sock_flag(skb->sk, SOCK_TXTIME)) {
426 if (!is_valid_interval(skb, sch))
427 return qdisc_drop(skb, sch, to_free);
428 } else if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
429 skb->tstamp = get_packet_txtime(skb, sch);
431 return qdisc_drop(skb, sch, to_free);
434 qdisc_qstats_backlog_inc(sch, skb);
437 return qdisc_enqueue(skb, child, to_free);
440 static struct sk_buff *taprio_peek_soft(struct Qdisc *sch)
442 struct taprio_sched *q = qdisc_priv(sch);
443 struct net_device *dev = qdisc_dev(sch);
444 struct sched_entry *entry;
450 entry = rcu_dereference(q->current_entry);
451 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
457 for (i = 0; i < dev->num_tx_queues; i++) {
458 struct Qdisc *child = q->qdiscs[i];
462 if (unlikely(!child))
465 skb = child->ops->peek(child);
469 if (TXTIME_ASSIST_IS_ENABLED(q->flags))
472 prio = skb->priority;
473 tc = netdev_get_prio_tc_map(dev, prio);
475 if (!(gate_mask & BIT(tc)))
484 static struct sk_buff *taprio_peek_offload(struct Qdisc *sch)
486 struct taprio_sched *q = qdisc_priv(sch);
487 struct net_device *dev = qdisc_dev(sch);
491 for (i = 0; i < dev->num_tx_queues; i++) {
492 struct Qdisc *child = q->qdiscs[i];
494 if (unlikely(!child))
497 skb = child->ops->peek(child);
507 static struct sk_buff *taprio_peek(struct Qdisc *sch)
509 struct taprio_sched *q = qdisc_priv(sch);
514 static void taprio_set_budget(struct taprio_sched *q, struct sched_entry *entry)
516 atomic_set(&entry->budget,
517 div64_u64((u64)entry->interval * 1000,
518 atomic64_read(&q->picos_per_byte)));
521 static struct sk_buff *taprio_dequeue_soft(struct Qdisc *sch)
523 struct taprio_sched *q = qdisc_priv(sch);
524 struct net_device *dev = qdisc_dev(sch);
525 struct sk_buff *skb = NULL;
526 struct sched_entry *entry;
531 entry = rcu_dereference(q->current_entry);
532 /* if there's no entry, it means that the schedule didn't
533 * start yet, so force all gates to be open, this is in
534 * accordance to IEEE 802.1Qbv-2015 Section 8.6.9.4.5
537 gate_mask = entry ? entry->gate_mask : TAPRIO_ALL_GATES_OPEN;
542 for (i = 0; i < dev->num_tx_queues; i++) {
543 struct Qdisc *child = q->qdiscs[i];
549 if (unlikely(!child))
552 if (TXTIME_ASSIST_IS_ENABLED(q->flags)) {
553 skb = child->ops->dequeue(child);
559 skb = child->ops->peek(child);
563 prio = skb->priority;
564 tc = netdev_get_prio_tc_map(dev, prio);
566 if (!(gate_mask & BIT(tc)))
569 len = qdisc_pkt_len(skb);
570 guard = ktime_add_ns(taprio_get_time(q),
571 length_to_duration(q, len));
573 /* In the case that there's no gate entry, there's no
576 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
577 ktime_after(guard, entry->close_time))
580 /* ... and no budget. */
581 if (gate_mask != TAPRIO_ALL_GATES_OPEN &&
582 atomic_sub_return(len, &entry->budget) < 0)
585 skb = child->ops->dequeue(child);
590 qdisc_bstats_update(sch, skb);
591 qdisc_qstats_backlog_dec(sch, skb);
603 static struct sk_buff *taprio_dequeue_offload(struct Qdisc *sch)
605 struct taprio_sched *q = qdisc_priv(sch);
606 struct net_device *dev = qdisc_dev(sch);
610 for (i = 0; i < dev->num_tx_queues; i++) {
611 struct Qdisc *child = q->qdiscs[i];
613 if (unlikely(!child))
616 skb = child->ops->dequeue(child);
620 qdisc_bstats_update(sch, skb);
621 qdisc_qstats_backlog_dec(sch, skb);
630 static struct sk_buff *taprio_dequeue(struct Qdisc *sch)
632 struct taprio_sched *q = qdisc_priv(sch);
634 return q->dequeue(sch);
637 static bool should_restart_cycle(const struct sched_gate_list *oper,
638 const struct sched_entry *entry)
640 if (list_is_last(&entry->list, &oper->entries))
643 if (ktime_compare(entry->close_time, oper->cycle_close_time) == 0)
649 static bool should_change_schedules(const struct sched_gate_list *admin,
650 const struct sched_gate_list *oper,
653 ktime_t next_base_time, extension_time;
658 next_base_time = sched_base_time(admin);
660 /* This is the simple case, the close_time would fall after
661 * the next schedule base_time.
663 if (ktime_compare(next_base_time, close_time) <= 0)
666 /* This is the cycle_time_extension case, if the close_time
667 * plus the amount that can be extended would fall after the
668 * next schedule base_time, we can extend the current schedule
671 extension_time = ktime_add_ns(close_time, oper->cycle_time_extension);
673 /* FIXME: the IEEE 802.1Q-2018 Specification isn't clear about
674 * how precisely the extension should be made. So after
675 * conformance testing, this logic may change.
677 if (ktime_compare(next_base_time, extension_time) <= 0)
683 static enum hrtimer_restart advance_sched(struct hrtimer *timer)
685 struct taprio_sched *q = container_of(timer, struct taprio_sched,
687 struct sched_gate_list *oper, *admin;
688 struct sched_entry *entry, *next;
689 struct Qdisc *sch = q->root;
692 spin_lock(&q->current_entry_lock);
693 entry = rcu_dereference_protected(q->current_entry,
694 lockdep_is_held(&q->current_entry_lock));
695 oper = rcu_dereference_protected(q->oper_sched,
696 lockdep_is_held(&q->current_entry_lock));
697 admin = rcu_dereference_protected(q->admin_sched,
698 lockdep_is_held(&q->current_entry_lock));
701 switch_schedules(q, &admin, &oper);
703 /* This can happen in two cases: 1. this is the very first run
704 * of this function (i.e. we weren't running any schedule
705 * previously); 2. The previous schedule just ended. The first
706 * entry of all schedules are pre-calculated during the
707 * schedule initialization.
709 if (unlikely(!entry || entry->close_time == oper->base_time)) {
710 next = list_first_entry(&oper->entries, struct sched_entry,
712 close_time = next->close_time;
716 if (should_restart_cycle(oper, entry)) {
717 next = list_first_entry(&oper->entries, struct sched_entry,
719 oper->cycle_close_time = ktime_add_ns(oper->cycle_close_time,
722 next = list_next_entry(entry, list);
725 close_time = ktime_add_ns(entry->close_time, next->interval);
726 close_time = min_t(ktime_t, close_time, oper->cycle_close_time);
728 if (should_change_schedules(admin, oper, close_time)) {
729 /* Set things so the next time this runs, the new
732 close_time = sched_base_time(admin);
733 switch_schedules(q, &admin, &oper);
736 next->close_time = close_time;
737 taprio_set_budget(q, next);
740 rcu_assign_pointer(q->current_entry, next);
741 spin_unlock(&q->current_entry_lock);
743 hrtimer_set_expires(&q->advance_timer, close_time);
746 __netif_schedule(sch);
749 return HRTIMER_RESTART;
752 static const struct nla_policy entry_policy[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = {
753 [TCA_TAPRIO_SCHED_ENTRY_INDEX] = { .type = NLA_U32 },
754 [TCA_TAPRIO_SCHED_ENTRY_CMD] = { .type = NLA_U8 },
755 [TCA_TAPRIO_SCHED_ENTRY_GATE_MASK] = { .type = NLA_U32 },
756 [TCA_TAPRIO_SCHED_ENTRY_INTERVAL] = { .type = NLA_U32 },
759 static const struct nla_policy taprio_policy[TCA_TAPRIO_ATTR_MAX + 1] = {
760 [TCA_TAPRIO_ATTR_PRIOMAP] = {
761 .len = sizeof(struct tc_mqprio_qopt)
763 [TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST] = { .type = NLA_NESTED },
764 [TCA_TAPRIO_ATTR_SCHED_BASE_TIME] = { .type = NLA_S64 },
765 [TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY] = { .type = NLA_NESTED },
766 [TCA_TAPRIO_ATTR_SCHED_CLOCKID] = { .type = NLA_S32 },
767 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME] = { .type = NLA_S64 },
768 [TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION] = { .type = NLA_S64 },
771 static int fill_sched_entry(struct nlattr **tb, struct sched_entry *entry,
772 struct netlink_ext_ack *extack)
776 if (tb[TCA_TAPRIO_SCHED_ENTRY_CMD])
777 entry->command = nla_get_u8(
778 tb[TCA_TAPRIO_SCHED_ENTRY_CMD]);
780 if (tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK])
781 entry->gate_mask = nla_get_u32(
782 tb[TCA_TAPRIO_SCHED_ENTRY_GATE_MASK]);
784 if (tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL])
785 interval = nla_get_u32(
786 tb[TCA_TAPRIO_SCHED_ENTRY_INTERVAL]);
789 NL_SET_ERR_MSG(extack, "Invalid interval for schedule entry");
793 entry->interval = interval;
798 static int parse_sched_entry(struct nlattr *n, struct sched_entry *entry,
799 int index, struct netlink_ext_ack *extack)
801 struct nlattr *tb[TCA_TAPRIO_SCHED_ENTRY_MAX + 1] = { };
804 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_SCHED_ENTRY_MAX, n,
807 NL_SET_ERR_MSG(extack, "Could not parse nested entry");
811 entry->index = index;
813 return fill_sched_entry(tb, entry, extack);
816 static int parse_sched_list(struct nlattr *list,
817 struct sched_gate_list *sched,
818 struct netlink_ext_ack *extack)
827 nla_for_each_nested(n, list, rem) {
828 struct sched_entry *entry;
830 if (nla_type(n) != TCA_TAPRIO_SCHED_ENTRY) {
831 NL_SET_ERR_MSG(extack, "Attribute is not of type 'entry'");
835 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
837 NL_SET_ERR_MSG(extack, "Not enough memory for entry");
841 err = parse_sched_entry(n, entry, i, extack);
847 list_add_tail(&entry->list, &sched->entries);
851 sched->num_entries = i;
856 static int parse_taprio_schedule(struct nlattr **tb,
857 struct sched_gate_list *new,
858 struct netlink_ext_ack *extack)
862 if (tb[TCA_TAPRIO_ATTR_SCHED_SINGLE_ENTRY]) {
863 NL_SET_ERR_MSG(extack, "Adding a single entry is not supported");
867 if (tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME])
868 new->base_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_BASE_TIME]);
870 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION])
871 new->cycle_time_extension = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION]);
873 if (tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME])
874 new->cycle_time = nla_get_s64(tb[TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME]);
876 if (tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST])
877 err = parse_sched_list(
878 tb[TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST], new, extack);
882 if (!new->cycle_time) {
883 struct sched_entry *entry;
886 list_for_each_entry(entry, &new->entries, list)
887 cycle = ktime_add_ns(cycle, entry->interval);
888 new->cycle_time = cycle;
894 static int taprio_parse_mqprio_opt(struct net_device *dev,
895 struct tc_mqprio_qopt *qopt,
896 struct netlink_ext_ack *extack,
901 if (!qopt && !dev->num_tc) {
902 NL_SET_ERR_MSG(extack, "'mqprio' configuration is necessary");
906 /* If num_tc is already set, it means that the user already
907 * configured the mqprio part
912 /* Verify num_tc is not out of max range */
913 if (qopt->num_tc > TC_MAX_QUEUE) {
914 NL_SET_ERR_MSG(extack, "Number of traffic classes is outside valid range");
918 /* taprio imposes that traffic classes map 1:n to tx queues */
919 if (qopt->num_tc > dev->num_tx_queues) {
920 NL_SET_ERR_MSG(extack, "Number of traffic classes is greater than number of HW queues");
924 /* Verify priority mapping uses valid tcs */
925 for (i = 0; i < TC_BITMASK + 1; i++) {
926 if (qopt->prio_tc_map[i] >= qopt->num_tc) {
927 NL_SET_ERR_MSG(extack, "Invalid traffic class in priority to traffic class mapping");
932 for (i = 0; i < qopt->num_tc; i++) {
933 unsigned int last = qopt->offset[i] + qopt->count[i];
935 /* Verify the queue count is in tx range being equal to the
936 * real_num_tx_queues indicates the last queue is in use.
938 if (qopt->offset[i] >= dev->num_tx_queues ||
940 last > dev->real_num_tx_queues) {
941 NL_SET_ERR_MSG(extack, "Invalid queue in traffic class to queue mapping");
945 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags))
948 /* Verify that the offset and counts do not overlap */
949 for (j = i + 1; j < qopt->num_tc; j++) {
950 if (last > qopt->offset[j]) {
951 NL_SET_ERR_MSG(extack, "Detected overlap in the traffic class to queue mapping");
960 static int taprio_get_start_time(struct Qdisc *sch,
961 struct sched_gate_list *sched,
964 struct taprio_sched *q = qdisc_priv(sch);
965 ktime_t now, base, cycle;
968 base = sched_base_time(sched);
969 now = taprio_get_time(q);
971 if (ktime_after(base, now)) {
976 cycle = sched->cycle_time;
978 /* The qdisc is expected to have at least one sched_entry. Moreover,
979 * any entry must have 'interval' > 0. Thus if the cycle time is zero,
980 * something went really wrong. In that case, we should warn about this
981 * inconsistent state and return error.
986 /* Schedule the start time for the beginning of the next
989 n = div64_s64(ktime_sub_ns(now, base), cycle);
990 *start = ktime_add_ns(base, (n + 1) * cycle);
994 static void setup_first_close_time(struct taprio_sched *q,
995 struct sched_gate_list *sched, ktime_t base)
997 struct sched_entry *first;
1000 first = list_first_entry(&sched->entries,
1001 struct sched_entry, list);
1003 cycle = sched->cycle_time;
1005 /* FIXME: find a better place to do this */
1006 sched->cycle_close_time = ktime_add_ns(base, cycle);
1008 first->close_time = ktime_add_ns(base, first->interval);
1009 taprio_set_budget(q, first);
1010 rcu_assign_pointer(q->current_entry, NULL);
1013 static void taprio_start_sched(struct Qdisc *sch,
1014 ktime_t start, struct sched_gate_list *new)
1016 struct taprio_sched *q = qdisc_priv(sch);
1019 if (FULL_OFFLOAD_IS_ENABLED(q->flags))
1022 expires = hrtimer_get_expires(&q->advance_timer);
1024 expires = KTIME_MAX;
1026 /* If the new schedule starts before the next expiration, we
1027 * reprogram it to the earliest one, so we change the admin
1028 * schedule to the operational one at the right time.
1030 start = min_t(ktime_t, start, expires);
1032 hrtimer_start(&q->advance_timer, start, HRTIMER_MODE_ABS);
1035 static void taprio_set_picos_per_byte(struct net_device *dev,
1036 struct taprio_sched *q)
1038 struct ethtool_link_ksettings ecmd;
1039 int speed = SPEED_10;
1043 err = __ethtool_get_link_ksettings(dev, &ecmd);
1047 if (ecmd.base.speed && ecmd.base.speed != SPEED_UNKNOWN)
1048 speed = ecmd.base.speed;
1051 picos_per_byte = (USEC_PER_SEC * 8) / speed;
1053 atomic64_set(&q->picos_per_byte, picos_per_byte);
1054 netdev_dbg(dev, "taprio: set %s's picos_per_byte to: %lld, linkspeed: %d\n",
1055 dev->name, (long long)atomic64_read(&q->picos_per_byte),
1059 static int taprio_dev_notifier(struct notifier_block *nb, unsigned long event,
1062 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1063 struct net_device *qdev;
1064 struct taprio_sched *q;
1069 if (event != NETDEV_UP && event != NETDEV_CHANGE)
1072 spin_lock(&taprio_list_lock);
1073 list_for_each_entry(q, &taprio_list, taprio_list) {
1074 qdev = qdisc_dev(q->root);
1080 spin_unlock(&taprio_list_lock);
1083 taprio_set_picos_per_byte(dev, q);
1088 static void setup_txtime(struct taprio_sched *q,
1089 struct sched_gate_list *sched, ktime_t base)
1091 struct sched_entry *entry;
1094 list_for_each_entry(entry, &sched->entries, list) {
1095 entry->next_txtime = ktime_add_ns(base, interval);
1096 interval += entry->interval;
1100 static struct tc_taprio_qopt_offload *taprio_offload_alloc(int num_entries)
1102 size_t size = sizeof(struct tc_taprio_sched_entry) * num_entries +
1103 sizeof(struct __tc_taprio_qopt_offload);
1104 struct __tc_taprio_qopt_offload *__offload;
1106 __offload = kzalloc(size, GFP_KERNEL);
1110 refcount_set(&__offload->users, 1);
1112 return &__offload->offload;
1115 struct tc_taprio_qopt_offload *taprio_offload_get(struct tc_taprio_qopt_offload
1118 struct __tc_taprio_qopt_offload *__offload;
1120 __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1123 refcount_inc(&__offload->users);
1127 EXPORT_SYMBOL_GPL(taprio_offload_get);
1129 void taprio_offload_free(struct tc_taprio_qopt_offload *offload)
1131 struct __tc_taprio_qopt_offload *__offload;
1133 __offload = container_of(offload, struct __tc_taprio_qopt_offload,
1136 if (!refcount_dec_and_test(&__offload->users))
1141 EXPORT_SYMBOL_GPL(taprio_offload_free);
1143 /* The function will only serve to keep the pointers to the "oper" and "admin"
1144 * schedules valid in relation to their base times, so when calling dump() the
1145 * users looks at the right schedules.
1146 * When using full offload, the admin configuration is promoted to oper at the
1147 * base_time in the PHC time domain. But because the system time is not
1148 * necessarily in sync with that, we can't just trigger a hrtimer to call
1149 * switch_schedules at the right hardware time.
1150 * At the moment we call this by hand right away from taprio, but in the future
1151 * it will be useful to create a mechanism for drivers to notify taprio of the
1152 * offload state (PENDING, ACTIVE, INACTIVE) so it can be visible in dump().
1153 * This is left as TODO.
1155 static void taprio_offload_config_changed(struct taprio_sched *q)
1157 struct sched_gate_list *oper, *admin;
1159 spin_lock(&q->current_entry_lock);
1161 oper = rcu_dereference_protected(q->oper_sched,
1162 lockdep_is_held(&q->current_entry_lock));
1163 admin = rcu_dereference_protected(q->admin_sched,
1164 lockdep_is_held(&q->current_entry_lock));
1166 switch_schedules(q, &admin, &oper);
1168 spin_unlock(&q->current_entry_lock);
1171 static void taprio_sched_to_offload(struct taprio_sched *q,
1172 struct sched_gate_list *sched,
1173 const struct tc_mqprio_qopt *mqprio,
1174 struct tc_taprio_qopt_offload *offload)
1176 struct sched_entry *entry;
1179 offload->base_time = sched->base_time;
1180 offload->cycle_time = sched->cycle_time;
1181 offload->cycle_time_extension = sched->cycle_time_extension;
1183 list_for_each_entry(entry, &sched->entries, list) {
1184 struct tc_taprio_sched_entry *e = &offload->entries[i];
1186 e->command = entry->command;
1187 e->interval = entry->interval;
1188 e->gate_mask = entry->gate_mask;
1192 offload->num_entries = i;
1195 static int taprio_enable_offload(struct net_device *dev,
1196 struct tc_mqprio_qopt *mqprio,
1197 struct taprio_sched *q,
1198 struct sched_gate_list *sched,
1199 struct netlink_ext_ack *extack)
1201 const struct net_device_ops *ops = dev->netdev_ops;
1202 struct tc_taprio_qopt_offload *offload;
1205 if (!ops->ndo_setup_tc) {
1206 NL_SET_ERR_MSG(extack,
1207 "Device does not support taprio offload");
1211 offload = taprio_offload_alloc(sched->num_entries);
1213 NL_SET_ERR_MSG(extack,
1214 "Not enough memory for enabling offload mode");
1217 offload->enable = 1;
1218 taprio_sched_to_offload(q, sched, mqprio, offload);
1220 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1222 NL_SET_ERR_MSG(extack,
1223 "Device failed to setup taprio offload");
1227 taprio_offload_config_changed(q);
1230 taprio_offload_free(offload);
1235 static int taprio_disable_offload(struct net_device *dev,
1236 struct taprio_sched *q,
1237 struct netlink_ext_ack *extack)
1239 const struct net_device_ops *ops = dev->netdev_ops;
1240 struct tc_taprio_qopt_offload *offload;
1243 if (!FULL_OFFLOAD_IS_ENABLED(q->flags))
1246 if (!ops->ndo_setup_tc)
1249 offload = taprio_offload_alloc(0);
1251 NL_SET_ERR_MSG(extack,
1252 "Not enough memory to disable offload mode");
1255 offload->enable = 0;
1257 err = ops->ndo_setup_tc(dev, TC_SETUP_QDISC_TAPRIO, offload);
1259 NL_SET_ERR_MSG(extack,
1260 "Device failed to disable offload");
1265 taprio_offload_free(offload);
1270 /* If full offload is enabled, the only possible clockid is the net device's
1271 * PHC. For that reason, specifying a clockid through netlink is incorrect.
1272 * For txtime-assist, it is implicitly assumed that the device's PHC is kept
1273 * in sync with the specified clockid via a user space daemon such as phc2sys.
1274 * For both software taprio and txtime-assist, the clockid is used for the
1275 * hrtimer that advances the schedule and hence mandatory.
1277 static int taprio_parse_clockid(struct Qdisc *sch, struct nlattr **tb,
1278 struct netlink_ext_ack *extack)
1280 struct taprio_sched *q = qdisc_priv(sch);
1281 struct net_device *dev = qdisc_dev(sch);
1284 if (FULL_OFFLOAD_IS_ENABLED(q->flags)) {
1285 const struct ethtool_ops *ops = dev->ethtool_ops;
1286 struct ethtool_ts_info info = {
1287 .cmd = ETHTOOL_GET_TS_INFO,
1291 if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1292 NL_SET_ERR_MSG(extack,
1293 "The 'clockid' cannot be specified for full offload");
1297 if (ops && ops->get_ts_info)
1298 err = ops->get_ts_info(dev, &info);
1300 if (err || info.phc_index < 0) {
1301 NL_SET_ERR_MSG(extack,
1302 "Device does not have a PTP clock");
1306 } else if (tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]) {
1307 int clockid = nla_get_s32(tb[TCA_TAPRIO_ATTR_SCHED_CLOCKID]);
1309 /* We only support static clockids and we don't allow
1310 * for it to be modified after the first init.
1313 (q->clockid != -1 && q->clockid != clockid)) {
1314 NL_SET_ERR_MSG(extack,
1315 "Changing the 'clockid' of a running schedule is not supported");
1321 case CLOCK_REALTIME:
1322 q->tk_offset = TK_OFFS_REAL;
1324 case CLOCK_MONOTONIC:
1325 q->tk_offset = TK_OFFS_MAX;
1327 case CLOCK_BOOTTIME:
1328 q->tk_offset = TK_OFFS_BOOT;
1331 q->tk_offset = TK_OFFS_TAI;
1334 NL_SET_ERR_MSG(extack, "Invalid 'clockid'");
1339 q->clockid = clockid;
1341 NL_SET_ERR_MSG(extack, "Specifying a 'clockid' is mandatory");
1345 /* Everything went ok, return success. */
1352 static int taprio_change(struct Qdisc *sch, struct nlattr *opt,
1353 struct netlink_ext_ack *extack)
1355 struct nlattr *tb[TCA_TAPRIO_ATTR_MAX + 1] = { };
1356 struct sched_gate_list *oper, *admin, *new_admin;
1357 struct taprio_sched *q = qdisc_priv(sch);
1358 struct net_device *dev = qdisc_dev(sch);
1359 struct tc_mqprio_qopt *mqprio = NULL;
1360 u32 taprio_flags = 0;
1361 unsigned long flags;
1365 err = nla_parse_nested_deprecated(tb, TCA_TAPRIO_ATTR_MAX, opt,
1366 taprio_policy, extack);
1370 if (tb[TCA_TAPRIO_ATTR_PRIOMAP])
1371 mqprio = nla_data(tb[TCA_TAPRIO_ATTR_PRIOMAP]);
1373 if (tb[TCA_TAPRIO_ATTR_FLAGS]) {
1374 taprio_flags = nla_get_u32(tb[TCA_TAPRIO_ATTR_FLAGS]);
1376 if (q->flags != 0 && q->flags != taprio_flags) {
1377 NL_SET_ERR_MSG_MOD(extack, "Changing 'flags' of a running schedule is not supported");
1379 } else if (!taprio_flags_valid(taprio_flags)) {
1380 NL_SET_ERR_MSG_MOD(extack, "Specified 'flags' are not valid");
1384 q->flags = taprio_flags;
1387 err = taprio_parse_mqprio_opt(dev, mqprio, extack, taprio_flags);
1391 new_admin = kzalloc(sizeof(*new_admin), GFP_KERNEL);
1393 NL_SET_ERR_MSG(extack, "Not enough memory for a new schedule");
1396 INIT_LIST_HEAD(&new_admin->entries);
1399 oper = rcu_dereference(q->oper_sched);
1400 admin = rcu_dereference(q->admin_sched);
1403 if (mqprio && (oper || admin)) {
1404 NL_SET_ERR_MSG(extack, "Changing the traffic mapping of a running schedule is not supported");
1409 err = parse_taprio_schedule(tb, new_admin, extack);
1413 if (new_admin->num_entries == 0) {
1414 NL_SET_ERR_MSG(extack, "There should be at least one entry in the schedule");
1419 err = taprio_parse_clockid(sch, tb, extack);
1423 taprio_set_picos_per_byte(dev, q);
1425 if (FULL_OFFLOAD_IS_ENABLED(taprio_flags))
1426 err = taprio_enable_offload(dev, mqprio, q, new_admin, extack);
1428 err = taprio_disable_offload(dev, q, extack);
1432 /* Protects against enqueue()/dequeue() */
1433 spin_lock_bh(qdisc_lock(sch));
1435 if (tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]) {
1436 if (!TXTIME_ASSIST_IS_ENABLED(q->flags)) {
1437 NL_SET_ERR_MSG_MOD(extack, "txtime-delay can only be set when txtime-assist mode is enabled");
1442 q->txtime_delay = nla_get_u32(tb[TCA_TAPRIO_ATTR_TXTIME_DELAY]);
1445 if (!TXTIME_ASSIST_IS_ENABLED(taprio_flags) &&
1446 !FULL_OFFLOAD_IS_ENABLED(taprio_flags) &&
1447 !hrtimer_active(&q->advance_timer)) {
1448 hrtimer_init(&q->advance_timer, q->clockid, HRTIMER_MODE_ABS);
1449 q->advance_timer.function = advance_sched;
1453 netdev_set_num_tc(dev, mqprio->num_tc);
1454 for (i = 0; i < mqprio->num_tc; i++)
1455 netdev_set_tc_queue(dev, i,
1459 /* Always use supplied priority mappings */
1460 for (i = 0; i < TC_BITMASK + 1; i++)
1461 netdev_set_prio_tc_map(dev, i,
1462 mqprio->prio_tc_map[i]);
1465 if (FULL_OFFLOAD_IS_ENABLED(taprio_flags)) {
1466 q->dequeue = taprio_dequeue_offload;
1467 q->peek = taprio_peek_offload;
1469 /* Be sure to always keep the function pointers
1470 * in a consistent state.
1472 q->dequeue = taprio_dequeue_soft;
1473 q->peek = taprio_peek_soft;
1476 err = taprio_get_start_time(sch, new_admin, &start);
1478 NL_SET_ERR_MSG(extack, "Internal error: failed get start time");
1482 if (TXTIME_ASSIST_IS_ENABLED(taprio_flags)) {
1483 setup_txtime(q, new_admin, start);
1486 rcu_assign_pointer(q->oper_sched, new_admin);
1492 rcu_assign_pointer(q->admin_sched, new_admin);
1494 call_rcu(&admin->rcu, taprio_free_sched_cb);
1496 setup_first_close_time(q, new_admin, start);
1498 /* Protects against advance_sched() */
1499 spin_lock_irqsave(&q->current_entry_lock, flags);
1501 taprio_start_sched(sch, start, new_admin);
1503 rcu_assign_pointer(q->admin_sched, new_admin);
1505 call_rcu(&admin->rcu, taprio_free_sched_cb);
1507 spin_unlock_irqrestore(&q->current_entry_lock, flags);
1514 spin_unlock_bh(qdisc_lock(sch));
1518 call_rcu(&new_admin->rcu, taprio_free_sched_cb);
1523 static void taprio_destroy(struct Qdisc *sch)
1525 struct taprio_sched *q = qdisc_priv(sch);
1526 struct net_device *dev = qdisc_dev(sch);
1529 spin_lock(&taprio_list_lock);
1530 list_del(&q->taprio_list);
1531 spin_unlock(&taprio_list_lock);
1533 hrtimer_cancel(&q->advance_timer);
1535 taprio_disable_offload(dev, q, NULL);
1538 for (i = 0; i < dev->num_tx_queues && q->qdiscs[i]; i++)
1539 qdisc_put(q->qdiscs[i]);
1545 netdev_set_num_tc(dev, 0);
1548 call_rcu(&q->oper_sched->rcu, taprio_free_sched_cb);
1551 call_rcu(&q->admin_sched->rcu, taprio_free_sched_cb);
1554 static int taprio_init(struct Qdisc *sch, struct nlattr *opt,
1555 struct netlink_ext_ack *extack)
1557 struct taprio_sched *q = qdisc_priv(sch);
1558 struct net_device *dev = qdisc_dev(sch);
1561 spin_lock_init(&q->current_entry_lock);
1563 hrtimer_init(&q->advance_timer, CLOCK_TAI, HRTIMER_MODE_ABS);
1564 q->advance_timer.function = advance_sched;
1566 q->dequeue = taprio_dequeue_soft;
1567 q->peek = taprio_peek_soft;
1571 /* We only support static clockids. Use an invalid value as default
1572 * and get the valid one on taprio_change().
1576 spin_lock(&taprio_list_lock);
1577 list_add(&q->taprio_list, &taprio_list);
1578 spin_unlock(&taprio_list_lock);
1580 if (sch->parent != TC_H_ROOT)
1583 if (!netif_is_multiqueue(dev))
1586 /* pre-allocate qdisc, attachment can't fail */
1587 q->qdiscs = kcalloc(dev->num_tx_queues,
1588 sizeof(q->qdiscs[0]),
1597 for (i = 0; i < dev->num_tx_queues; i++) {
1598 struct netdev_queue *dev_queue;
1599 struct Qdisc *qdisc;
1601 dev_queue = netdev_get_tx_queue(dev, i);
1602 qdisc = qdisc_create_dflt(dev_queue,
1604 TC_H_MAKE(TC_H_MAJ(sch->handle),
1610 if (i < dev->real_num_tx_queues)
1611 qdisc_hash_add(qdisc, false);
1613 q->qdiscs[i] = qdisc;
1616 return taprio_change(sch, opt, extack);
1619 static struct netdev_queue *taprio_queue_get(struct Qdisc *sch,
1622 struct net_device *dev = qdisc_dev(sch);
1623 unsigned long ntx = cl - 1;
1625 if (ntx >= dev->num_tx_queues)
1628 return netdev_get_tx_queue(dev, ntx);
1631 static int taprio_graft(struct Qdisc *sch, unsigned long cl,
1632 struct Qdisc *new, struct Qdisc **old,
1633 struct netlink_ext_ack *extack)
1635 struct taprio_sched *q = qdisc_priv(sch);
1636 struct net_device *dev = qdisc_dev(sch);
1637 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1642 if (dev->flags & IFF_UP)
1643 dev_deactivate(dev);
1645 *old = q->qdiscs[cl - 1];
1646 q->qdiscs[cl - 1] = new;
1649 new->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1651 if (dev->flags & IFF_UP)
1657 static int dump_entry(struct sk_buff *msg,
1658 const struct sched_entry *entry)
1660 struct nlattr *item;
1662 item = nla_nest_start_noflag(msg, TCA_TAPRIO_SCHED_ENTRY);
1666 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INDEX, entry->index))
1667 goto nla_put_failure;
1669 if (nla_put_u8(msg, TCA_TAPRIO_SCHED_ENTRY_CMD, entry->command))
1670 goto nla_put_failure;
1672 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_GATE_MASK,
1674 goto nla_put_failure;
1676 if (nla_put_u32(msg, TCA_TAPRIO_SCHED_ENTRY_INTERVAL,
1678 goto nla_put_failure;
1680 return nla_nest_end(msg, item);
1683 nla_nest_cancel(msg, item);
1687 static int dump_schedule(struct sk_buff *msg,
1688 const struct sched_gate_list *root)
1690 struct nlattr *entry_list;
1691 struct sched_entry *entry;
1693 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_BASE_TIME,
1694 root->base_time, TCA_TAPRIO_PAD))
1697 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME,
1698 root->cycle_time, TCA_TAPRIO_PAD))
1701 if (nla_put_s64(msg, TCA_TAPRIO_ATTR_SCHED_CYCLE_TIME_EXTENSION,
1702 root->cycle_time_extension, TCA_TAPRIO_PAD))
1705 entry_list = nla_nest_start_noflag(msg,
1706 TCA_TAPRIO_ATTR_SCHED_ENTRY_LIST);
1710 list_for_each_entry(entry, &root->entries, list) {
1711 if (dump_entry(msg, entry) < 0)
1715 nla_nest_end(msg, entry_list);
1719 nla_nest_cancel(msg, entry_list);
1723 static int taprio_dump(struct Qdisc *sch, struct sk_buff *skb)
1725 struct taprio_sched *q = qdisc_priv(sch);
1726 struct net_device *dev = qdisc_dev(sch);
1727 struct sched_gate_list *oper, *admin;
1728 struct tc_mqprio_qopt opt = { 0 };
1729 struct nlattr *nest, *sched_nest;
1733 oper = rcu_dereference(q->oper_sched);
1734 admin = rcu_dereference(q->admin_sched);
1736 opt.num_tc = netdev_get_num_tc(dev);
1737 memcpy(opt.prio_tc_map, dev->prio_tc_map, sizeof(opt.prio_tc_map));
1739 for (i = 0; i < netdev_get_num_tc(dev); i++) {
1740 opt.count[i] = dev->tc_to_txq[i].count;
1741 opt.offset[i] = dev->tc_to_txq[i].offset;
1744 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
1748 if (nla_put(skb, TCA_TAPRIO_ATTR_PRIOMAP, sizeof(opt), &opt))
1751 if (!FULL_OFFLOAD_IS_ENABLED(q->flags) &&
1752 nla_put_s32(skb, TCA_TAPRIO_ATTR_SCHED_CLOCKID, q->clockid))
1755 if (q->flags && nla_put_u32(skb, TCA_TAPRIO_ATTR_FLAGS, q->flags))
1758 if (q->txtime_delay &&
1759 nla_put_u32(skb, TCA_TAPRIO_ATTR_TXTIME_DELAY, q->txtime_delay))
1762 if (oper && dump_schedule(skb, oper))
1768 sched_nest = nla_nest_start_noflag(skb, TCA_TAPRIO_ATTR_ADMIN_SCHED);
1772 if (dump_schedule(skb, admin))
1775 nla_nest_end(skb, sched_nest);
1780 return nla_nest_end(skb, nest);
1783 nla_nest_cancel(skb, sched_nest);
1786 nla_nest_cancel(skb, nest);
1793 static struct Qdisc *taprio_leaf(struct Qdisc *sch, unsigned long cl)
1795 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1800 return dev_queue->qdisc_sleeping;
1803 static unsigned long taprio_find(struct Qdisc *sch, u32 classid)
1805 unsigned int ntx = TC_H_MIN(classid);
1807 if (!taprio_queue_get(sch, ntx))
1812 static int taprio_dump_class(struct Qdisc *sch, unsigned long cl,
1813 struct sk_buff *skb, struct tcmsg *tcm)
1815 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1817 tcm->tcm_parent = TC_H_ROOT;
1818 tcm->tcm_handle |= TC_H_MIN(cl);
1819 tcm->tcm_info = dev_queue->qdisc_sleeping->handle;
1824 static int taprio_dump_class_stats(struct Qdisc *sch, unsigned long cl,
1825 struct gnet_dump *d)
1829 struct netdev_queue *dev_queue = taprio_queue_get(sch, cl);
1831 sch = dev_queue->qdisc_sleeping;
1832 if (gnet_stats_copy_basic(&sch->running, d, NULL, &sch->bstats) < 0 ||
1833 qdisc_qstats_copy(d, sch) < 0)
1838 static void taprio_walk(struct Qdisc *sch, struct qdisc_walker *arg)
1840 struct net_device *dev = qdisc_dev(sch);
1846 arg->count = arg->skip;
1847 for (ntx = arg->skip; ntx < dev->num_tx_queues; ntx++) {
1848 if (arg->fn(sch, ntx + 1, arg) < 0) {
1856 static struct netdev_queue *taprio_select_queue(struct Qdisc *sch,
1859 return taprio_queue_get(sch, TC_H_MIN(tcm->tcm_parent));
1862 static const struct Qdisc_class_ops taprio_class_ops = {
1863 .graft = taprio_graft,
1864 .leaf = taprio_leaf,
1865 .find = taprio_find,
1866 .walk = taprio_walk,
1867 .dump = taprio_dump_class,
1868 .dump_stats = taprio_dump_class_stats,
1869 .select_queue = taprio_select_queue,
1872 static struct Qdisc_ops taprio_qdisc_ops __read_mostly = {
1873 .cl_ops = &taprio_class_ops,
1875 .priv_size = sizeof(struct taprio_sched),
1876 .init = taprio_init,
1877 .change = taprio_change,
1878 .destroy = taprio_destroy,
1879 .peek = taprio_peek,
1880 .dequeue = taprio_dequeue,
1881 .enqueue = taprio_enqueue,
1882 .dump = taprio_dump,
1883 .owner = THIS_MODULE,
1886 static struct notifier_block taprio_device_notifier = {
1887 .notifier_call = taprio_dev_notifier,
1890 static int __init taprio_module_init(void)
1892 int err = register_netdevice_notifier(&taprio_device_notifier);
1897 return register_qdisc(&taprio_qdisc_ops);
1900 static void __exit taprio_module_exit(void)
1902 unregister_qdisc(&taprio_qdisc_ops);
1903 unregister_netdevice_notifier(&taprio_device_notifier);
1906 module_init(taprio_module_init);
1907 module_exit(taprio_module_exit);
1908 MODULE_LICENSE("GPL");