Merge tag 'net-5.18-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[platform/kernel/linux-starfive.git] / net / sched / sch_sfb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * net/sched/sch_sfb.c    Stochastic Fair Blue
4  *
5  * Copyright (c) 2008-2011 Juliusz Chroboczek <jch@pps.jussieu.fr>
6  * Copyright (c) 2011 Eric Dumazet <eric.dumazet@gmail.com>
7  *
8  * W. Feng, D. Kandlur, D. Saha, K. Shin. Blue:
9  * A New Class of Active Queue Management Algorithms.
10  * U. Michigan CSE-TR-387-99, April 1999.
11  *
12  * http://www.thefengs.com/wuchang/blue/CSE-TR-387-99.pdf
13  */
14
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/skbuff.h>
20 #include <linux/random.h>
21 #include <linux/siphash.h>
22 #include <net/ip.h>
23 #include <net/pkt_sched.h>
24 #include <net/pkt_cls.h>
25 #include <net/inet_ecn.h>
26
27 /*
28  * SFB uses two B[l][n] : L x N arrays of bins (L levels, N bins per level)
29  * This implementation uses L = 8 and N = 16
30  * This permits us to split one 32bit hash (provided per packet by rxhash or
31  * external classifier) into 8 subhashes of 4 bits.
32  */
33 #define SFB_BUCKET_SHIFT 4
34 #define SFB_NUMBUCKETS  (1 << SFB_BUCKET_SHIFT) /* N bins per Level */
35 #define SFB_BUCKET_MASK (SFB_NUMBUCKETS - 1)
36 #define SFB_LEVELS      (32 / SFB_BUCKET_SHIFT) /* L */
37
38 /* SFB algo uses a virtual queue, named "bin" */
39 struct sfb_bucket {
40         u16             qlen; /* length of virtual queue */
41         u16             p_mark; /* marking probability */
42 };
43
44 /* We use a double buffering right before hash change
45  * (Section 4.4 of SFB reference : moving hash functions)
46  */
47 struct sfb_bins {
48         siphash_key_t     perturbation; /* siphash key */
49         struct sfb_bucket bins[SFB_LEVELS][SFB_NUMBUCKETS];
50 };
51
52 struct sfb_sched_data {
53         struct Qdisc    *qdisc;
54         struct tcf_proto __rcu *filter_list;
55         struct tcf_block *block;
56         unsigned long   rehash_interval;
57         unsigned long   warmup_time;    /* double buffering warmup time in jiffies */
58         u32             max;
59         u32             bin_size;       /* maximum queue length per bin */
60         u32             increment;      /* d1 */
61         u32             decrement;      /* d2 */
62         u32             limit;          /* HARD maximal queue length */
63         u32             penalty_rate;
64         u32             penalty_burst;
65         u32             tokens_avail;
66         unsigned long   rehash_time;
67         unsigned long   token_time;
68
69         u8              slot;           /* current active bins (0 or 1) */
70         bool            double_buffering;
71         struct sfb_bins bins[2];
72
73         struct {
74                 u32     earlydrop;
75                 u32     penaltydrop;
76                 u32     bucketdrop;
77                 u32     queuedrop;
78                 u32     childdrop;      /* drops in child qdisc */
79                 u32     marked;         /* ECN mark */
80         } stats;
81 };
82
83 /*
84  * Each queued skb might be hashed on one or two bins
85  * We store in skb_cb the two hash values.
86  * (A zero value means double buffering was not used)
87  */
88 struct sfb_skb_cb {
89         u32 hashes[2];
90 };
91
92 static inline struct sfb_skb_cb *sfb_skb_cb(const struct sk_buff *skb)
93 {
94         qdisc_cb_private_validate(skb, sizeof(struct sfb_skb_cb));
95         return (struct sfb_skb_cb *)qdisc_skb_cb(skb)->data;
96 }
97
98 /*
99  * If using 'internal' SFB flow classifier, hash comes from skb rxhash
100  * If using external classifier, hash comes from the classid.
101  */
102 static u32 sfb_hash(const struct sk_buff *skb, u32 slot)
103 {
104         return sfb_skb_cb(skb)->hashes[slot];
105 }
106
107 /* Probabilities are coded as Q0.16 fixed-point values,
108  * with 0xFFFF representing 65535/65536 (almost 1.0)
109  * Addition and subtraction are saturating in [0, 65535]
110  */
111 static u32 prob_plus(u32 p1, u32 p2)
112 {
113         u32 res = p1 + p2;
114
115         return min_t(u32, res, SFB_MAX_PROB);
116 }
117
118 static u32 prob_minus(u32 p1, u32 p2)
119 {
120         return p1 > p2 ? p1 - p2 : 0;
121 }
122
123 static void increment_one_qlen(u32 sfbhash, u32 slot, struct sfb_sched_data *q)
124 {
125         int i;
126         struct sfb_bucket *b = &q->bins[slot].bins[0][0];
127
128         for (i = 0; i < SFB_LEVELS; i++) {
129                 u32 hash = sfbhash & SFB_BUCKET_MASK;
130
131                 sfbhash >>= SFB_BUCKET_SHIFT;
132                 if (b[hash].qlen < 0xFFFF)
133                         b[hash].qlen++;
134                 b += SFB_NUMBUCKETS; /* next level */
135         }
136 }
137
138 static void increment_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
139 {
140         u32 sfbhash;
141
142         sfbhash = sfb_hash(skb, 0);
143         if (sfbhash)
144                 increment_one_qlen(sfbhash, 0, q);
145
146         sfbhash = sfb_hash(skb, 1);
147         if (sfbhash)
148                 increment_one_qlen(sfbhash, 1, q);
149 }
150
151 static void decrement_one_qlen(u32 sfbhash, u32 slot,
152                                struct sfb_sched_data *q)
153 {
154         int i;
155         struct sfb_bucket *b = &q->bins[slot].bins[0][0];
156
157         for (i = 0; i < SFB_LEVELS; i++) {
158                 u32 hash = sfbhash & SFB_BUCKET_MASK;
159
160                 sfbhash >>= SFB_BUCKET_SHIFT;
161                 if (b[hash].qlen > 0)
162                         b[hash].qlen--;
163                 b += SFB_NUMBUCKETS; /* next level */
164         }
165 }
166
167 static void decrement_qlen(const struct sk_buff *skb, struct sfb_sched_data *q)
168 {
169         u32 sfbhash;
170
171         sfbhash = sfb_hash(skb, 0);
172         if (sfbhash)
173                 decrement_one_qlen(sfbhash, 0, q);
174
175         sfbhash = sfb_hash(skb, 1);
176         if (sfbhash)
177                 decrement_one_qlen(sfbhash, 1, q);
178 }
179
180 static void decrement_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
181 {
182         b->p_mark = prob_minus(b->p_mark, q->decrement);
183 }
184
185 static void increment_prob(struct sfb_bucket *b, struct sfb_sched_data *q)
186 {
187         b->p_mark = prob_plus(b->p_mark, q->increment);
188 }
189
190 static void sfb_zero_all_buckets(struct sfb_sched_data *q)
191 {
192         memset(&q->bins, 0, sizeof(q->bins));
193 }
194
195 /*
196  * compute max qlen, max p_mark, and avg p_mark
197  */
198 static u32 sfb_compute_qlen(u32 *prob_r, u32 *avgpm_r, const struct sfb_sched_data *q)
199 {
200         int i;
201         u32 qlen = 0, prob = 0, totalpm = 0;
202         const struct sfb_bucket *b = &q->bins[q->slot].bins[0][0];
203
204         for (i = 0; i < SFB_LEVELS * SFB_NUMBUCKETS; i++) {
205                 if (qlen < b->qlen)
206                         qlen = b->qlen;
207                 totalpm += b->p_mark;
208                 if (prob < b->p_mark)
209                         prob = b->p_mark;
210                 b++;
211         }
212         *prob_r = prob;
213         *avgpm_r = totalpm / (SFB_LEVELS * SFB_NUMBUCKETS);
214         return qlen;
215 }
216
217
218 static void sfb_init_perturbation(u32 slot, struct sfb_sched_data *q)
219 {
220         get_random_bytes(&q->bins[slot].perturbation,
221                          sizeof(q->bins[slot].perturbation));
222 }
223
224 static void sfb_swap_slot(struct sfb_sched_data *q)
225 {
226         sfb_init_perturbation(q->slot, q);
227         q->slot ^= 1;
228         q->double_buffering = false;
229 }
230
231 /* Non elastic flows are allowed to use part of the bandwidth, expressed
232  * in "penalty_rate" packets per second, with "penalty_burst" burst
233  */
234 static bool sfb_rate_limit(struct sk_buff *skb, struct sfb_sched_data *q)
235 {
236         if (q->penalty_rate == 0 || q->penalty_burst == 0)
237                 return true;
238
239         if (q->tokens_avail < 1) {
240                 unsigned long age = min(10UL * HZ, jiffies - q->token_time);
241
242                 q->tokens_avail = (age * q->penalty_rate) / HZ;
243                 if (q->tokens_avail > q->penalty_burst)
244                         q->tokens_avail = q->penalty_burst;
245                 q->token_time = jiffies;
246                 if (q->tokens_avail < 1)
247                         return true;
248         }
249
250         q->tokens_avail--;
251         return false;
252 }
253
254 static bool sfb_classify(struct sk_buff *skb, struct tcf_proto *fl,
255                          int *qerr, u32 *salt)
256 {
257         struct tcf_result res;
258         int result;
259
260         result = tcf_classify(skb, NULL, fl, &res, false);
261         if (result >= 0) {
262 #ifdef CONFIG_NET_CLS_ACT
263                 switch (result) {
264                 case TC_ACT_STOLEN:
265                 case TC_ACT_QUEUED:
266                 case TC_ACT_TRAP:
267                         *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
268                         fallthrough;
269                 case TC_ACT_SHOT:
270                         return false;
271                 }
272 #endif
273                 *salt = TC_H_MIN(res.classid);
274                 return true;
275         }
276         return false;
277 }
278
279 static int sfb_enqueue(struct sk_buff *skb, struct Qdisc *sch,
280                        struct sk_buff **to_free)
281 {
282
283         struct sfb_sched_data *q = qdisc_priv(sch);
284         struct Qdisc *child = q->qdisc;
285         struct tcf_proto *fl;
286         int i;
287         u32 p_min = ~0;
288         u32 minqlen = ~0;
289         u32 r, sfbhash;
290         u32 slot = q->slot;
291         int ret = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
292
293         if (unlikely(sch->q.qlen >= q->limit)) {
294                 qdisc_qstats_overlimit(sch);
295                 q->stats.queuedrop++;
296                 goto drop;
297         }
298
299         if (q->rehash_interval > 0) {
300                 unsigned long limit = q->rehash_time + q->rehash_interval;
301
302                 if (unlikely(time_after(jiffies, limit))) {
303                         sfb_swap_slot(q);
304                         q->rehash_time = jiffies;
305                 } else if (unlikely(!q->double_buffering && q->warmup_time > 0 &&
306                                     time_after(jiffies, limit - q->warmup_time))) {
307                         q->double_buffering = true;
308                 }
309         }
310
311         fl = rcu_dereference_bh(q->filter_list);
312         if (fl) {
313                 u32 salt;
314
315                 /* If using external classifiers, get result and record it. */
316                 if (!sfb_classify(skb, fl, &ret, &salt))
317                         goto other_drop;
318                 sfbhash = siphash_1u32(salt, &q->bins[slot].perturbation);
319         } else {
320                 sfbhash = skb_get_hash_perturb(skb, &q->bins[slot].perturbation);
321         }
322
323
324         if (!sfbhash)
325                 sfbhash = 1;
326         sfb_skb_cb(skb)->hashes[slot] = sfbhash;
327
328         for (i = 0; i < SFB_LEVELS; i++) {
329                 u32 hash = sfbhash & SFB_BUCKET_MASK;
330                 struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
331
332                 sfbhash >>= SFB_BUCKET_SHIFT;
333                 if (b->qlen == 0)
334                         decrement_prob(b, q);
335                 else if (b->qlen >= q->bin_size)
336                         increment_prob(b, q);
337                 if (minqlen > b->qlen)
338                         minqlen = b->qlen;
339                 if (p_min > b->p_mark)
340                         p_min = b->p_mark;
341         }
342
343         slot ^= 1;
344         sfb_skb_cb(skb)->hashes[slot] = 0;
345
346         if (unlikely(minqlen >= q->max)) {
347                 qdisc_qstats_overlimit(sch);
348                 q->stats.bucketdrop++;
349                 goto drop;
350         }
351
352         if (unlikely(p_min >= SFB_MAX_PROB)) {
353                 /* Inelastic flow */
354                 if (q->double_buffering) {
355                         sfbhash = skb_get_hash_perturb(skb,
356                             &q->bins[slot].perturbation);
357                         if (!sfbhash)
358                                 sfbhash = 1;
359                         sfb_skb_cb(skb)->hashes[slot] = sfbhash;
360
361                         for (i = 0; i < SFB_LEVELS; i++) {
362                                 u32 hash = sfbhash & SFB_BUCKET_MASK;
363                                 struct sfb_bucket *b = &q->bins[slot].bins[i][hash];
364
365                                 sfbhash >>= SFB_BUCKET_SHIFT;
366                                 if (b->qlen == 0)
367                                         decrement_prob(b, q);
368                                 else if (b->qlen >= q->bin_size)
369                                         increment_prob(b, q);
370                         }
371                 }
372                 if (sfb_rate_limit(skb, q)) {
373                         qdisc_qstats_overlimit(sch);
374                         q->stats.penaltydrop++;
375                         goto drop;
376                 }
377                 goto enqueue;
378         }
379
380         r = prandom_u32() & SFB_MAX_PROB;
381
382         if (unlikely(r < p_min)) {
383                 if (unlikely(p_min > SFB_MAX_PROB / 2)) {
384                         /* If we're marking that many packets, then either
385                          * this flow is unresponsive, or we're badly congested.
386                          * In either case, we want to start dropping packets.
387                          */
388                         if (r < (p_min - SFB_MAX_PROB / 2) * 2) {
389                                 q->stats.earlydrop++;
390                                 goto drop;
391                         }
392                 }
393                 if (INET_ECN_set_ce(skb)) {
394                         q->stats.marked++;
395                 } else {
396                         q->stats.earlydrop++;
397                         goto drop;
398                 }
399         }
400
401 enqueue:
402         ret = qdisc_enqueue(skb, child, to_free);
403         if (likely(ret == NET_XMIT_SUCCESS)) {
404                 qdisc_qstats_backlog_inc(sch, skb);
405                 sch->q.qlen++;
406                 increment_qlen(skb, q);
407         } else if (net_xmit_drop_count(ret)) {
408                 q->stats.childdrop++;
409                 qdisc_qstats_drop(sch);
410         }
411         return ret;
412
413 drop:
414         qdisc_drop(skb, sch, to_free);
415         return NET_XMIT_CN;
416 other_drop:
417         if (ret & __NET_XMIT_BYPASS)
418                 qdisc_qstats_drop(sch);
419         kfree_skb(skb);
420         return ret;
421 }
422
423 static struct sk_buff *sfb_dequeue(struct Qdisc *sch)
424 {
425         struct sfb_sched_data *q = qdisc_priv(sch);
426         struct Qdisc *child = q->qdisc;
427         struct sk_buff *skb;
428
429         skb = child->dequeue(q->qdisc);
430
431         if (skb) {
432                 qdisc_bstats_update(sch, skb);
433                 qdisc_qstats_backlog_dec(sch, skb);
434                 sch->q.qlen--;
435                 decrement_qlen(skb, q);
436         }
437
438         return skb;
439 }
440
441 static struct sk_buff *sfb_peek(struct Qdisc *sch)
442 {
443         struct sfb_sched_data *q = qdisc_priv(sch);
444         struct Qdisc *child = q->qdisc;
445
446         return child->ops->peek(child);
447 }
448
449 /* No sfb_drop -- impossible since the child doesn't return the dropped skb. */
450
451 static void sfb_reset(struct Qdisc *sch)
452 {
453         struct sfb_sched_data *q = qdisc_priv(sch);
454
455         qdisc_reset(q->qdisc);
456         sch->qstats.backlog = 0;
457         sch->q.qlen = 0;
458         q->slot = 0;
459         q->double_buffering = false;
460         sfb_zero_all_buckets(q);
461         sfb_init_perturbation(0, q);
462 }
463
464 static void sfb_destroy(struct Qdisc *sch)
465 {
466         struct sfb_sched_data *q = qdisc_priv(sch);
467
468         tcf_block_put(q->block);
469         qdisc_put(q->qdisc);
470 }
471
472 static const struct nla_policy sfb_policy[TCA_SFB_MAX + 1] = {
473         [TCA_SFB_PARMS] = { .len = sizeof(struct tc_sfb_qopt) },
474 };
475
476 static const struct tc_sfb_qopt sfb_default_ops = {
477         .rehash_interval = 600 * MSEC_PER_SEC,
478         .warmup_time = 60 * MSEC_PER_SEC,
479         .limit = 0,
480         .max = 25,
481         .bin_size = 20,
482         .increment = (SFB_MAX_PROB + 500) / 1000, /* 0.1 % */
483         .decrement = (SFB_MAX_PROB + 3000) / 6000,
484         .penalty_rate = 10,
485         .penalty_burst = 20,
486 };
487
488 static int sfb_change(struct Qdisc *sch, struct nlattr *opt,
489                       struct netlink_ext_ack *extack)
490 {
491         struct sfb_sched_data *q = qdisc_priv(sch);
492         struct Qdisc *child, *old;
493         struct nlattr *tb[TCA_SFB_MAX + 1];
494         const struct tc_sfb_qopt *ctl = &sfb_default_ops;
495         u32 limit;
496         int err;
497
498         if (opt) {
499                 err = nla_parse_nested_deprecated(tb, TCA_SFB_MAX, opt,
500                                                   sfb_policy, NULL);
501                 if (err < 0)
502                         return -EINVAL;
503
504                 if (tb[TCA_SFB_PARMS] == NULL)
505                         return -EINVAL;
506
507                 ctl = nla_data(tb[TCA_SFB_PARMS]);
508         }
509
510         limit = ctl->limit;
511         if (limit == 0)
512                 limit = qdisc_dev(sch)->tx_queue_len;
513
514         child = fifo_create_dflt(sch, &pfifo_qdisc_ops, limit, extack);
515         if (IS_ERR(child))
516                 return PTR_ERR(child);
517
518         if (child != &noop_qdisc)
519                 qdisc_hash_add(child, true);
520         sch_tree_lock(sch);
521
522         qdisc_purge_queue(q->qdisc);
523         old = q->qdisc;
524         q->qdisc = child;
525
526         q->rehash_interval = msecs_to_jiffies(ctl->rehash_interval);
527         q->warmup_time = msecs_to_jiffies(ctl->warmup_time);
528         q->rehash_time = jiffies;
529         q->limit = limit;
530         q->increment = ctl->increment;
531         q->decrement = ctl->decrement;
532         q->max = ctl->max;
533         q->bin_size = ctl->bin_size;
534         q->penalty_rate = ctl->penalty_rate;
535         q->penalty_burst = ctl->penalty_burst;
536         q->tokens_avail = ctl->penalty_burst;
537         q->token_time = jiffies;
538
539         q->slot = 0;
540         q->double_buffering = false;
541         sfb_zero_all_buckets(q);
542         sfb_init_perturbation(0, q);
543         sfb_init_perturbation(1, q);
544
545         sch_tree_unlock(sch);
546         qdisc_put(old);
547
548         return 0;
549 }
550
551 static int sfb_init(struct Qdisc *sch, struct nlattr *opt,
552                     struct netlink_ext_ack *extack)
553 {
554         struct sfb_sched_data *q = qdisc_priv(sch);
555         int err;
556
557         err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
558         if (err)
559                 return err;
560
561         q->qdisc = &noop_qdisc;
562         return sfb_change(sch, opt, extack);
563 }
564
565 static int sfb_dump(struct Qdisc *sch, struct sk_buff *skb)
566 {
567         struct sfb_sched_data *q = qdisc_priv(sch);
568         struct nlattr *opts;
569         struct tc_sfb_qopt opt = {
570                 .rehash_interval = jiffies_to_msecs(q->rehash_interval),
571                 .warmup_time = jiffies_to_msecs(q->warmup_time),
572                 .limit = q->limit,
573                 .max = q->max,
574                 .bin_size = q->bin_size,
575                 .increment = q->increment,
576                 .decrement = q->decrement,
577                 .penalty_rate = q->penalty_rate,
578                 .penalty_burst = q->penalty_burst,
579         };
580
581         sch->qstats.backlog = q->qdisc->qstats.backlog;
582         opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
583         if (opts == NULL)
584                 goto nla_put_failure;
585         if (nla_put(skb, TCA_SFB_PARMS, sizeof(opt), &opt))
586                 goto nla_put_failure;
587         return nla_nest_end(skb, opts);
588
589 nla_put_failure:
590         nla_nest_cancel(skb, opts);
591         return -EMSGSIZE;
592 }
593
594 static int sfb_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
595 {
596         struct sfb_sched_data *q = qdisc_priv(sch);
597         struct tc_sfb_xstats st = {
598                 .earlydrop = q->stats.earlydrop,
599                 .penaltydrop = q->stats.penaltydrop,
600                 .bucketdrop = q->stats.bucketdrop,
601                 .queuedrop = q->stats.queuedrop,
602                 .childdrop = q->stats.childdrop,
603                 .marked = q->stats.marked,
604         };
605
606         st.maxqlen = sfb_compute_qlen(&st.maxprob, &st.avgprob, q);
607
608         return gnet_stats_copy_app(d, &st, sizeof(st));
609 }
610
611 static int sfb_dump_class(struct Qdisc *sch, unsigned long cl,
612                           struct sk_buff *skb, struct tcmsg *tcm)
613 {
614         return -ENOSYS;
615 }
616
617 static int sfb_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
618                      struct Qdisc **old, struct netlink_ext_ack *extack)
619 {
620         struct sfb_sched_data *q = qdisc_priv(sch);
621
622         if (new == NULL)
623                 new = &noop_qdisc;
624
625         *old = qdisc_replace(sch, new, &q->qdisc);
626         return 0;
627 }
628
629 static struct Qdisc *sfb_leaf(struct Qdisc *sch, unsigned long arg)
630 {
631         struct sfb_sched_data *q = qdisc_priv(sch);
632
633         return q->qdisc;
634 }
635
636 static unsigned long sfb_find(struct Qdisc *sch, u32 classid)
637 {
638         return 1;
639 }
640
641 static void sfb_unbind(struct Qdisc *sch, unsigned long arg)
642 {
643 }
644
645 static int sfb_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
646                             struct nlattr **tca, unsigned long *arg,
647                             struct netlink_ext_ack *extack)
648 {
649         return -ENOSYS;
650 }
651
652 static int sfb_delete(struct Qdisc *sch, unsigned long cl,
653                       struct netlink_ext_ack *extack)
654 {
655         return -ENOSYS;
656 }
657
658 static void sfb_walk(struct Qdisc *sch, struct qdisc_walker *walker)
659 {
660         if (!walker->stop) {
661                 if (walker->count >= walker->skip)
662                         if (walker->fn(sch, 1, walker) < 0) {
663                                 walker->stop = 1;
664                                 return;
665                         }
666                 walker->count++;
667         }
668 }
669
670 static struct tcf_block *sfb_tcf_block(struct Qdisc *sch, unsigned long cl,
671                                        struct netlink_ext_ack *extack)
672 {
673         struct sfb_sched_data *q = qdisc_priv(sch);
674
675         if (cl)
676                 return NULL;
677         return q->block;
678 }
679
680 static unsigned long sfb_bind(struct Qdisc *sch, unsigned long parent,
681                               u32 classid)
682 {
683         return 0;
684 }
685
686
687 static const struct Qdisc_class_ops sfb_class_ops = {
688         .graft          =       sfb_graft,
689         .leaf           =       sfb_leaf,
690         .find           =       sfb_find,
691         .change         =       sfb_change_class,
692         .delete         =       sfb_delete,
693         .walk           =       sfb_walk,
694         .tcf_block      =       sfb_tcf_block,
695         .bind_tcf       =       sfb_bind,
696         .unbind_tcf     =       sfb_unbind,
697         .dump           =       sfb_dump_class,
698 };
699
700 static struct Qdisc_ops sfb_qdisc_ops __read_mostly = {
701         .id             =       "sfb",
702         .priv_size      =       sizeof(struct sfb_sched_data),
703         .cl_ops         =       &sfb_class_ops,
704         .enqueue        =       sfb_enqueue,
705         .dequeue        =       sfb_dequeue,
706         .peek           =       sfb_peek,
707         .init           =       sfb_init,
708         .reset          =       sfb_reset,
709         .destroy        =       sfb_destroy,
710         .change         =       sfb_change,
711         .dump           =       sfb_dump,
712         .dump_stats     =       sfb_dump_stats,
713         .owner          =       THIS_MODULE,
714 };
715
716 static int __init sfb_module_init(void)
717 {
718         return register_qdisc(&sfb_qdisc_ops);
719 }
720
721 static void __exit sfb_module_exit(void)
722 {
723         unregister_qdisc(&sfb_qdisc_ops);
724 }
725
726 module_init(sfb_module_init)
727 module_exit(sfb_module_exit)
728
729 MODULE_DESCRIPTION("Stochastic Fair Blue queue discipline");
730 MODULE_AUTHOR("Juliusz Chroboczek");
731 MODULE_AUTHOR("Eric Dumazet");
732 MODULE_LICENSE("GPL");