2 * net/sched/sch_qfq.c Quick Fair Queueing Scheduler.
4 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * version 2 as published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/bitops.h>
14 #include <linux/errno.h>
15 #include <linux/netdevice.h>
16 #include <linux/pkt_sched.h>
17 #include <net/sch_generic.h>
18 #include <net/pkt_sched.h>
19 #include <net/pkt_cls.h>
22 /* Quick Fair Queueing
27 Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
28 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
31 http://retis.sssup.it/~fabio/linux/qfq/
36 Virtual time computations.
38 S, F and V are all computed in fixed point arithmetic with
39 FRAC_BITS decimal bits.
41 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
43 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
45 The layout of the bits is as below:
47 [ MTU_SHIFT ][ FRAC_BITS ]
48 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
52 where MIN_SLOT_SHIFT is derived by difference from the others.
54 The max group index corresponds to Lmax/w_min, where
55 Lmax=1<<MTU_SHIFT, w_min = 1 .
56 From this, and knowing how many groups (MAX_INDEX) we want,
57 we can derive the shift corresponding to each group.
59 Because we often need to compute
60 F = S + len/w_i and V = V + len/wsum
61 instead of storing w_i store the value
62 inv_w = (1<<FRAC_BITS)/w_i
63 so we can do F = S + len * inv_w * wsum.
64 We use W_TOT in the formulas so we can easily move between
65 static and adaptive weight sum.
67 The per-scheduler-instance data contain all the data structures
68 for the scheduler: bitmaps and bucket lists.
73 * Maximum number of consecutive slots occupied by backlogged classes
76 #define QFQ_MAX_SLOTS 32
79 * Shifts used for class<->group mapping. We allow class weights that are
80 * in the range [1, 2^MAX_WSHIFT], and we try to map each class i to the
81 * group with the smallest index that can support the L_i / r_i configured
84 * grp->index is the index of the group; and grp->slot_shift
85 * is the shift for the corresponding (scaled) sigma_i.
87 #define QFQ_MAX_INDEX 19
88 #define QFQ_MAX_WSHIFT 16
90 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT)
91 #define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT)
93 #define FRAC_BITS 30 /* fixed point arithmetic */
94 #define ONE_FP (1UL << FRAC_BITS)
95 #define IWSUM (ONE_FP/QFQ_MAX_WSUM)
97 #define QFQ_MTU_SHIFT 11
98 #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX)
101 * Possible group states. These values are used as indexes for the bitmaps
102 * array of struct qfq_queue.
104 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
109 struct Qdisc_class_common common;
112 unsigned int filter_cnt;
114 struct gnet_stats_basic_packed bstats;
115 struct gnet_stats_queue qstats;
116 struct gnet_stats_rate_est rate_est;
119 struct hlist_node next; /* Link for the slot list. */
120 u64 S, F; /* flow timestamps (exact) */
122 /* group we belong to. In principle we would need the index,
123 * which is log_2(lmax/weight), but we never reference it
124 * directly, only the group.
126 struct qfq_group *grp;
128 /* these are copied from the flowset. */
129 u32 inv_w; /* ONE_FP/weight */
130 u32 lmax; /* Max packet size for this flow. */
134 u64 S, F; /* group timestamps (approx). */
135 unsigned int slot_shift; /* Slot shift. */
136 unsigned int index; /* Group index. */
137 unsigned int front; /* Index of the front slot. */
138 unsigned long full_slots; /* non-empty slots */
140 /* Array of RR lists of active classes. */
141 struct hlist_head slots[QFQ_MAX_SLOTS];
145 struct tcf_proto *filter_list;
146 struct Qdisc_class_hash clhash;
148 u64 V; /* Precise virtual time. */
149 u32 wsum; /* weight sum */
151 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
152 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
155 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
157 struct qfq_sched *q = qdisc_priv(sch);
158 struct Qdisc_class_common *clc;
160 clc = qdisc_class_find(&q->clhash, classid);
163 return container_of(clc, struct qfq_class, common);
166 static void qfq_purge_queue(struct qfq_class *cl)
168 unsigned int len = cl->qdisc->q.qlen;
170 qdisc_reset(cl->qdisc);
171 qdisc_tree_decrease_qlen(cl->qdisc, len);
174 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
175 [TCA_QFQ_WEIGHT] = { .type = NLA_U32 },
176 [TCA_QFQ_LMAX] = { .type = NLA_U32 },
180 * Calculate a flow index, given its weight and maximum packet length.
181 * index = log_2(maxlen/weight) but we need to apply the scaling.
182 * This is used only once at flow creation.
184 static int qfq_calc_index(u32 inv_w, unsigned int maxlen)
186 u64 slot_size = (u64)maxlen * inv_w;
187 unsigned long size_map;
190 size_map = slot_size >> QFQ_MIN_SLOT_SHIFT;
194 index = __fls(size_map) + 1; /* basically a log_2 */
195 index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1)));
200 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
201 (unsigned long) ONE_FP/inv_w, maxlen, index);
206 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
207 struct nlattr **tca, unsigned long *arg)
209 struct qfq_sched *q = qdisc_priv(sch);
210 struct qfq_class *cl = (struct qfq_class *)*arg;
211 struct nlattr *tb[TCA_QFQ_MAX + 1];
212 u32 weight, lmax, inv_w;
216 if (tca[TCA_OPTIONS] == NULL) {
217 pr_notice("qfq: no options\n");
221 err = nla_parse_nested(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS], qfq_policy);
225 if (tb[TCA_QFQ_WEIGHT]) {
226 weight = nla_get_u32(tb[TCA_QFQ_WEIGHT]);
227 if (!weight || weight > (1UL << QFQ_MAX_WSHIFT)) {
228 pr_notice("qfq: invalid weight %u\n", weight);
234 inv_w = ONE_FP / weight;
235 weight = ONE_FP / inv_w;
236 delta_w = weight - (cl ? ONE_FP / cl->inv_w : 0);
237 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
238 pr_notice("qfq: total weight out of range (%u + %u)\n",
243 if (tb[TCA_QFQ_LMAX]) {
244 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
245 if (!lmax || lmax > (1UL << QFQ_MTU_SHIFT)) {
246 pr_notice("qfq: invalid max length %u\n", lmax);
250 lmax = 1UL << QFQ_MTU_SHIFT;
254 err = gen_replace_estimator(&cl->bstats, &cl->rate_est,
255 qdisc_root_sleeping_lock(sch),
261 if (inv_w != cl->inv_w) {
265 sch_tree_unlock(sch);
270 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
275 cl->common.classid = classid;
278 i = qfq_calc_index(cl->inv_w, cl->lmax);
280 cl->grp = &q->groups[i];
282 cl->qdisc = qdisc_create_dflt(sch->dev_queue,
283 &pfifo_qdisc_ops, classid);
284 if (cl->qdisc == NULL)
285 cl->qdisc = &noop_qdisc;
288 err = gen_new_estimator(&cl->bstats, &cl->rate_est,
289 qdisc_root_sleeping_lock(sch),
292 qdisc_destroy(cl->qdisc);
300 qdisc_class_hash_insert(&q->clhash, &cl->common);
301 sch_tree_unlock(sch);
303 qdisc_class_hash_grow(sch, &q->clhash);
305 *arg = (unsigned long)cl;
309 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
311 struct qfq_sched *q = qdisc_priv(sch);
314 q->wsum -= ONE_FP / cl->inv_w;
318 gen_kill_estimator(&cl->bstats, &cl->rate_est);
319 qdisc_destroy(cl->qdisc);
323 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg)
325 struct qfq_sched *q = qdisc_priv(sch);
326 struct qfq_class *cl = (struct qfq_class *)arg;
328 if (cl->filter_cnt > 0)
334 qdisc_class_hash_remove(&q->clhash, &cl->common);
336 BUG_ON(--cl->refcnt == 0);
338 * This shouldn't happen: we "hold" one cops->get() when called
339 * from tc_ctl_tclass; the destroy method is done from cops->put().
342 sch_tree_unlock(sch);
346 static unsigned long qfq_get_class(struct Qdisc *sch, u32 classid)
348 struct qfq_class *cl = qfq_find_class(sch, classid);
353 return (unsigned long)cl;
356 static void qfq_put_class(struct Qdisc *sch, unsigned long arg)
358 struct qfq_class *cl = (struct qfq_class *)arg;
360 if (--cl->refcnt == 0)
361 qfq_destroy_class(sch, cl);
364 static struct tcf_proto **qfq_tcf_chain(struct Qdisc *sch, unsigned long cl)
366 struct qfq_sched *q = qdisc_priv(sch);
371 return &q->filter_list;
374 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
377 struct qfq_class *cl = qfq_find_class(sch, classid);
382 return (unsigned long)cl;
385 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
387 struct qfq_class *cl = (struct qfq_class *)arg;
392 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
393 struct Qdisc *new, struct Qdisc **old)
395 struct qfq_class *cl = (struct qfq_class *)arg;
398 new = qdisc_create_dflt(sch->dev_queue,
399 &pfifo_qdisc_ops, cl->common.classid);
408 sch_tree_unlock(sch);
412 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
414 struct qfq_class *cl = (struct qfq_class *)arg;
419 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
420 struct sk_buff *skb, struct tcmsg *tcm)
422 struct qfq_class *cl = (struct qfq_class *)arg;
425 tcm->tcm_parent = TC_H_ROOT;
426 tcm->tcm_handle = cl->common.classid;
427 tcm->tcm_info = cl->qdisc->handle;
429 nest = nla_nest_start(skb, TCA_OPTIONS);
431 goto nla_put_failure;
432 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, ONE_FP/cl->inv_w) ||
433 nla_put_u32(skb, TCA_QFQ_LMAX, cl->lmax))
434 goto nla_put_failure;
435 return nla_nest_end(skb, nest);
438 nla_nest_cancel(skb, nest);
442 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
445 struct qfq_class *cl = (struct qfq_class *)arg;
446 struct tc_qfq_stats xstats;
448 memset(&xstats, 0, sizeof(xstats));
449 cl->qdisc->qstats.qlen = cl->qdisc->q.qlen;
451 xstats.weight = ONE_FP/cl->inv_w;
452 xstats.lmax = cl->lmax;
454 if (gnet_stats_copy_basic(d, &cl->bstats) < 0 ||
455 gnet_stats_copy_rate_est(d, &cl->bstats, &cl->rate_est) < 0 ||
456 gnet_stats_copy_queue(d, &cl->qdisc->qstats) < 0)
459 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
462 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
464 struct qfq_sched *q = qdisc_priv(sch);
465 struct qfq_class *cl;
466 struct hlist_node *n;
472 for (i = 0; i < q->clhash.hashsize; i++) {
473 hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode) {
474 if (arg->count < arg->skip) {
478 if (arg->fn(sch, (unsigned long)cl, arg) < 0) {
487 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
490 struct qfq_sched *q = qdisc_priv(sch);
491 struct qfq_class *cl;
492 struct tcf_result res;
495 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
496 pr_debug("qfq_classify: found %d\n", skb->priority);
497 cl = qfq_find_class(sch, skb->priority);
502 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
503 result = tc_classify(skb, q->filter_list, &res);
505 #ifdef CONFIG_NET_CLS_ACT
509 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
514 cl = (struct qfq_class *)res.class;
516 cl = qfq_find_class(sch, res.classid);
523 /* Generic comparison function, handling wraparound. */
524 static inline int qfq_gt(u64 a, u64 b)
526 return (s64)(a - b) > 0;
529 /* Round a precise timestamp to its slotted value. */
530 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
532 return ts & ~((1ULL << shift) - 1);
535 /* return the pointer to the group with lowest index in the bitmap */
536 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
537 unsigned long bitmap)
539 int index = __ffs(bitmap);
540 return &q->groups[index];
542 /* Calculate a mask to mimic what would be ffs_from(). */
543 static inline unsigned long mask_from(unsigned long bitmap, int from)
545 return bitmap & ~((1UL << from) - 1);
549 * The state computation relies on ER=0, IR=1, EB=2, IB=3
550 * First compute eligibility comparing grp->S, q->V,
551 * then check if someone is blocking us and possibly add EB
553 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
555 /* if S > V we are not eligible */
556 unsigned int state = qfq_gt(grp->S, q->V);
557 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
558 struct qfq_group *next;
561 next = qfq_ffs(q, mask);
562 if (qfq_gt(grp->F, next->F))
572 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
573 * q->bitmaps[src] &= ~mask;
574 * but we should make sure that src != dst
576 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
579 q->bitmaps[dst] |= q->bitmaps[src] & mask;
580 q->bitmaps[src] &= ~mask;
583 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
585 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
586 struct qfq_group *next;
589 next = qfq_ffs(q, mask);
590 if (!qfq_gt(next->F, old_F))
594 mask = (1UL << index) - 1;
595 qfq_move_groups(q, mask, EB, ER);
596 qfq_move_groups(q, mask, IB, IR);
603 old_V >>= QFQ_MIN_SLOT_SHIFT;
609 static void qfq_make_eligible(struct qfq_sched *q, u64 old_V)
611 unsigned long vslot = q->V >> QFQ_MIN_SLOT_SHIFT;
612 unsigned long old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT;
614 if (vslot != old_vslot) {
615 unsigned long mask = (1UL << fls(vslot ^ old_vslot)) - 1;
616 qfq_move_groups(q, mask, IR, ER);
617 qfq_move_groups(q, mask, IB, EB);
623 * XXX we should make sure that slot becomes less than 32.
624 * This is guaranteed by the input values.
625 * roundedS is always cl->S rounded on grp->slot_shift bits.
627 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl,
630 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
631 unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS;
633 hlist_add_head(&cl->next, &grp->slots[i]);
634 __set_bit(slot, &grp->full_slots);
637 /* Maybe introduce hlist_first_entry?? */
638 static struct qfq_class *qfq_slot_head(struct qfq_group *grp)
640 return hlist_entry(grp->slots[grp->front].first,
641 struct qfq_class, next);
645 * remove the entry from the slot
647 static void qfq_front_slot_remove(struct qfq_group *grp)
649 struct qfq_class *cl = qfq_slot_head(grp);
652 hlist_del(&cl->next);
653 if (hlist_empty(&grp->slots[grp->front]))
654 __clear_bit(0, &grp->full_slots);
658 * Returns the first full queue in a group. As a side effect,
659 * adjust the bucket list so the first non-empty bucket is at
660 * position 0 in full_slots.
662 static struct qfq_class *qfq_slot_scan(struct qfq_group *grp)
666 pr_debug("qfq slot_scan: grp %u full %#lx\n",
667 grp->index, grp->full_slots);
669 if (grp->full_slots == 0)
672 i = __ffs(grp->full_slots); /* zero based */
674 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
675 grp->full_slots >>= i;
678 return qfq_slot_head(grp);
682 * adjust the bucket list. When the start time of a group decreases,
683 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
684 * move the objects. The mask of occupied slots must be shifted
685 * because we use ffs() to find the first non-empty slot.
686 * This covers decreases in the group's start time, but what about
687 * increases of the start time ?
688 * Here too we should make sure that i is less than 32
690 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
692 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
694 grp->full_slots <<= i;
695 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
698 static void qfq_update_eligible(struct qfq_sched *q, u64 old_V)
700 struct qfq_group *grp;
701 unsigned long ineligible;
703 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
705 if (!q->bitmaps[ER]) {
706 grp = qfq_ffs(q, ineligible);
707 if (qfq_gt(grp->S, q->V))
710 qfq_make_eligible(q, old_V);
714 /* What is length of next packet in queue (0 if queue is empty) */
715 static unsigned int qdisc_peek_len(struct Qdisc *sch)
719 skb = sch->ops->peek(sch);
720 return skb ? qdisc_pkt_len(skb) : 0;
724 * Updates the class, returns true if also the group needs to be updated.
726 static bool qfq_update_class(struct qfq_group *grp, struct qfq_class *cl)
728 unsigned int len = qdisc_peek_len(cl->qdisc);
732 qfq_front_slot_remove(grp); /* queue is empty */
736 cl->F = cl->S + (u64)len * cl->inv_w;
737 roundedS = qfq_round_down(cl->S, grp->slot_shift);
738 if (roundedS == grp->S)
741 qfq_front_slot_remove(grp);
742 qfq_slot_insert(grp, cl, roundedS);
748 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
750 struct qfq_sched *q = qdisc_priv(sch);
751 struct qfq_group *grp;
752 struct qfq_class *cl;
760 grp = qfq_ffs(q, q->bitmaps[ER]);
762 cl = qfq_slot_head(grp);
763 skb = qdisc_dequeue_peeked(cl->qdisc);
765 WARN_ONCE(1, "qfq_dequeue: non-workconserving leaf\n");
770 qdisc_bstats_update(sch, skb);
773 len = qdisc_pkt_len(skb);
774 q->V += (u64)len * IWSUM;
775 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
776 len, (unsigned long long) cl->F, (unsigned long long) q->V);
778 if (qfq_update_class(grp, cl)) {
781 cl = qfq_slot_scan(grp);
783 __clear_bit(grp->index, &q->bitmaps[ER]);
785 u64 roundedS = qfq_round_down(cl->S, grp->slot_shift);
788 if (grp->S == roundedS)
791 grp->F = roundedS + (2ULL << grp->slot_shift);
792 __clear_bit(grp->index, &q->bitmaps[ER]);
793 s = qfq_calc_state(q, grp);
794 __set_bit(grp->index, &q->bitmaps[s]);
797 qfq_unblock_groups(q, grp->index, old_F);
801 qfq_update_eligible(q, old_V);
807 * Assign a reasonable start time for a new flow k in group i.
808 * Admissible values for \hat(F) are multiples of \sigma_i
809 * no greater than V+\sigma_i . Larger values mean that
810 * we had a wraparound so we consider the timestamp to be stale.
812 * If F is not stale and F >= V then we set S = F.
813 * Otherwise we should assign S = V, but this may violate
814 * the ordering in ER. So, if we have groups in ER, set S to
815 * the F_j of the first group j which would be blocking us.
816 * We are guaranteed not to move S backward because
817 * otherwise our group i would still be blocked.
819 static void qfq_update_start(struct qfq_sched *q, struct qfq_class *cl)
823 int slot_shift = cl->grp->slot_shift;
825 roundedF = qfq_round_down(cl->F, slot_shift);
826 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
828 if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) {
829 /* timestamp was stale */
830 mask = mask_from(q->bitmaps[ER], cl->grp->index);
832 struct qfq_group *next = qfq_ffs(q, mask);
833 if (qfq_gt(roundedF, next->F)) {
839 } else /* timestamp is not stale */
843 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
845 struct qfq_sched *q = qdisc_priv(sch);
846 struct qfq_group *grp;
847 struct qfq_class *cl;
852 cl = qfq_classify(skb, sch, &err);
854 if (err & __NET_XMIT_BYPASS)
859 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
861 err = qdisc_enqueue(skb, cl->qdisc);
862 if (unlikely(err != NET_XMIT_SUCCESS)) {
863 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
864 if (net_xmit_drop_count(err)) {
871 bstats_update(&cl->bstats, skb);
874 /* If the new skb is not the head of queue, then done here. */
875 if (cl->qdisc->q.qlen != 1)
878 /* If reach this point, queue q was idle */
880 qfq_update_start(q, cl);
882 /* compute new finish time and rounded start. */
883 cl->F = cl->S + (u64)qdisc_pkt_len(skb) * cl->inv_w;
884 roundedS = qfq_round_down(cl->S, grp->slot_shift);
887 * insert cl in the correct bucket.
888 * If cl->S >= grp->S we don't need to adjust the
889 * bucket list and simply go to the insertion phase.
890 * Otherwise grp->S is decreasing, we must make room
891 * in the bucket list, and also recompute the group state.
892 * Finally, if there were no flows in this group and nobody
893 * was in ER make sure to adjust V.
895 if (grp->full_slots) {
896 if (!qfq_gt(grp->S, cl->S))
899 /* create a slot for this cl->S */
900 qfq_slot_rotate(grp, roundedS);
901 /* group was surely ineligible, remove */
902 __clear_bit(grp->index, &q->bitmaps[IR]);
903 __clear_bit(grp->index, &q->bitmaps[IB]);
904 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V))
908 grp->F = roundedS + (2ULL << grp->slot_shift);
909 s = qfq_calc_state(q, grp);
910 __set_bit(grp->index, &q->bitmaps[s]);
912 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
914 (unsigned long long) cl->S,
915 (unsigned long long) cl->F,
916 (unsigned long long) q->V);
919 qfq_slot_insert(grp, cl, roundedS);
925 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
926 struct qfq_class *cl)
928 unsigned int i, offset;
931 roundedS = qfq_round_down(cl->S, grp->slot_shift);
932 offset = (roundedS - grp->S) >> grp->slot_shift;
933 i = (grp->front + offset) % QFQ_MAX_SLOTS;
935 hlist_del(&cl->next);
936 if (hlist_empty(&grp->slots[i]))
937 __clear_bit(offset, &grp->full_slots);
941 * called to forcibly destroy a queue.
942 * If the queue is not in the front bucket, or if it has
943 * other queues in the front bucket, we can simply remove
944 * the queue with no other side effects.
945 * Otherwise we must propagate the event up.
947 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
949 struct qfq_group *grp = cl->grp;
955 qfq_slot_remove(q, grp, cl);
957 if (!grp->full_slots) {
958 __clear_bit(grp->index, &q->bitmaps[IR]);
959 __clear_bit(grp->index, &q->bitmaps[EB]);
960 __clear_bit(grp->index, &q->bitmaps[IB]);
962 if (test_bit(grp->index, &q->bitmaps[ER]) &&
963 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
964 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
966 mask = ~((1UL << __fls(mask)) - 1);
969 qfq_move_groups(q, mask, EB, ER);
970 qfq_move_groups(q, mask, IB, IR);
972 __clear_bit(grp->index, &q->bitmaps[ER]);
973 } else if (hlist_empty(&grp->slots[grp->front])) {
974 cl = qfq_slot_scan(grp);
975 roundedS = qfq_round_down(cl->S, grp->slot_shift);
976 if (grp->S != roundedS) {
977 __clear_bit(grp->index, &q->bitmaps[ER]);
978 __clear_bit(grp->index, &q->bitmaps[IR]);
979 __clear_bit(grp->index, &q->bitmaps[EB]);
980 __clear_bit(grp->index, &q->bitmaps[IB]);
982 grp->F = roundedS + (2ULL << grp->slot_shift);
983 s = qfq_calc_state(q, grp);
984 __set_bit(grp->index, &q->bitmaps[s]);
988 qfq_update_eligible(q, q->V);
991 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
993 struct qfq_sched *q = qdisc_priv(sch);
994 struct qfq_class *cl = (struct qfq_class *)arg;
996 if (cl->qdisc->q.qlen == 0)
997 qfq_deactivate_class(q, cl);
1000 static unsigned int qfq_drop(struct Qdisc *sch)
1002 struct qfq_sched *q = qdisc_priv(sch);
1003 struct qfq_group *grp;
1004 unsigned int i, j, len;
1006 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1007 grp = &q->groups[i];
1008 for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1009 struct qfq_class *cl;
1010 struct hlist_node *n;
1012 hlist_for_each_entry(cl, n, &grp->slots[j], next) {
1014 if (!cl->qdisc->ops->drop)
1017 len = cl->qdisc->ops->drop(cl->qdisc);
1020 if (!cl->qdisc->q.qlen)
1021 qfq_deactivate_class(q, cl);
1032 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt)
1034 struct qfq_sched *q = qdisc_priv(sch);
1035 struct qfq_group *grp;
1038 err = qdisc_class_hash_init(&q->clhash);
1042 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1043 grp = &q->groups[i];
1045 grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS
1046 - (QFQ_MAX_INDEX - i);
1047 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1048 INIT_HLIST_HEAD(&grp->slots[j]);
1054 static void qfq_reset_qdisc(struct Qdisc *sch)
1056 struct qfq_sched *q = qdisc_priv(sch);
1057 struct qfq_group *grp;
1058 struct qfq_class *cl;
1059 struct hlist_node *n, *tmp;
1062 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1063 grp = &q->groups[i];
1064 for (j = 0; j < QFQ_MAX_SLOTS; j++) {
1065 hlist_for_each_entry_safe(cl, n, tmp,
1066 &grp->slots[j], next) {
1067 qfq_deactivate_class(q, cl);
1072 for (i = 0; i < q->clhash.hashsize; i++) {
1073 hlist_for_each_entry(cl, n, &q->clhash.hash[i], common.hnode)
1074 qdisc_reset(cl->qdisc);
1079 static void qfq_destroy_qdisc(struct Qdisc *sch)
1081 struct qfq_sched *q = qdisc_priv(sch);
1082 struct qfq_class *cl;
1083 struct hlist_node *n, *next;
1086 tcf_destroy_chain(&q->filter_list);
1088 for (i = 0; i < q->clhash.hashsize; i++) {
1089 hlist_for_each_entry_safe(cl, n, next, &q->clhash.hash[i],
1091 qfq_destroy_class(sch, cl);
1094 qdisc_class_hash_destroy(&q->clhash);
1097 static const struct Qdisc_class_ops qfq_class_ops = {
1098 .change = qfq_change_class,
1099 .delete = qfq_delete_class,
1100 .get = qfq_get_class,
1101 .put = qfq_put_class,
1102 .tcf_chain = qfq_tcf_chain,
1103 .bind_tcf = qfq_bind_tcf,
1104 .unbind_tcf = qfq_unbind_tcf,
1105 .graft = qfq_graft_class,
1106 .leaf = qfq_class_leaf,
1107 .qlen_notify = qfq_qlen_notify,
1108 .dump = qfq_dump_class,
1109 .dump_stats = qfq_dump_class_stats,
1113 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1114 .cl_ops = &qfq_class_ops,
1116 .priv_size = sizeof(struct qfq_sched),
1117 .enqueue = qfq_enqueue,
1118 .dequeue = qfq_dequeue,
1119 .peek = qdisc_peek_dequeued,
1121 .init = qfq_init_qdisc,
1122 .reset = qfq_reset_qdisc,
1123 .destroy = qfq_destroy_qdisc,
1124 .owner = THIS_MODULE,
1127 static int __init qfq_init(void)
1129 return register_qdisc(&qfq_qdisc_ops);
1132 static void __exit qfq_exit(void)
1134 unregister_qdisc(&qfq_qdisc_ops);
1137 module_init(qfq_init);
1138 module_exit(qfq_exit);
1139 MODULE_LICENSE("GPL");