1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
5 * Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
7 * Meant to be mostly used for locally generated traffic :
8 * Fast classification depends on skb->sk being set before reaching us.
9 * If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
10 * All packets belonging to a socket are considered as a 'flow'.
12 * Flows are dynamically allocated and stored in a hash table of RB trees
13 * They are also part of one Round Robin 'queues' (new or old flows)
15 * Burst avoidance (aka pacing) capability :
17 * Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
18 * bunch of packets, and this packet scheduler adds delay between
19 * packets to respect rate limitation.
22 * - lookup one RB tree (out of 1024 or more) to find the flow.
23 * If non existent flow, create it, add it to the tree.
24 * Add skb to the per flow list of skb (fifo).
25 * - Use a special fifo for high prio packets
27 * dequeue() : serves flows in Round Robin
28 * Note : When a flow becomes empty, we do not immediately remove it from
29 * rb trees, for performance reasons (its expected to send additional packets,
30 * or SLAB cache will reuse socket for another flow)
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/jiffies.h>
37 #include <linux/string.h>
39 #include <linux/errno.h>
40 #include <linux/init.h>
41 #include <linux/skbuff.h>
42 #include <linux/slab.h>
43 #include <linux/rbtree.h>
44 #include <linux/hash.h>
45 #include <linux/prefetch.h>
46 #include <linux/vmalloc.h>
47 #include <net/netlink.h>
48 #include <net/pkt_sched.h>
50 #include <net/tcp_states.h>
57 static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
59 qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
60 return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
64 * Per flow structure, dynamically allocated.
65 * If packets have monotically increasing time_to_send, they are placed in O(1)
66 * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
69 struct rb_root t_root;
70 struct sk_buff *head; /* list of skbs for this flow : first skb */
72 struct sk_buff *tail; /* last skb in the list */
73 unsigned long age; /* jiffies when flow was emptied, for gc */
75 struct rb_node fq_node; /* anchor in fq_root[] trees */
77 int qlen; /* number of packets in flow queue */
79 u32 socket_hash; /* sk_hash */
80 struct fq_flow *next; /* next pointer in RR lists, or &detached */
82 struct rb_node rate_node; /* anchor in q->delayed tree */
87 struct fq_flow *first;
91 struct fq_sched_data {
92 struct fq_flow_head new_flows;
94 struct fq_flow_head old_flows;
96 struct rb_root delayed; /* for rate limited flows */
97 u64 time_next_delayed_flow;
98 unsigned long unthrottle_latency_ns;
100 struct fq_flow internal; /* for non classified or high prio packets */
103 u32 flow_refill_delay;
104 u32 flow_plimit; /* max packets per flow */
105 unsigned long flow_max_rate; /* optional max rate per flow */
107 u32 orphan_mask; /* mask for orphaned skb */
108 u32 low_rate_threshold;
109 struct rb_root *fq_root;
118 u64 stat_internal_packets;
121 u64 stat_flows_plimit;
122 u64 stat_pkts_too_long;
123 u64 stat_allocation_errors;
124 struct qdisc_watchdog watchdog;
127 /* special value to mark a detached flow (not on old/new list) */
128 static struct fq_flow detached, throttled;
130 static void fq_flow_set_detached(struct fq_flow *f)
136 static bool fq_flow_is_detached(const struct fq_flow *f)
138 return f->next == &detached;
141 static bool fq_flow_is_throttled(const struct fq_flow *f)
143 return f->next == &throttled;
146 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
149 head->last->next = flow;
156 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
158 rb_erase(&f->rate_node, &q->delayed);
159 q->throttled_flows--;
160 fq_flow_add_tail(&q->old_flows, f);
163 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
165 struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
171 aux = rb_entry(parent, struct fq_flow, rate_node);
172 if (f->time_next_packet >= aux->time_next_packet)
173 p = &parent->rb_right;
175 p = &parent->rb_left;
177 rb_link_node(&f->rate_node, parent, p);
178 rb_insert_color(&f->rate_node, &q->delayed);
179 q->throttled_flows++;
182 f->next = &throttled;
183 if (q->time_next_delayed_flow > f->time_next_packet)
184 q->time_next_delayed_flow = f->time_next_packet;
188 static struct kmem_cache *fq_flow_cachep __read_mostly;
191 /* limit number of collected flows per round */
193 #define FQ_GC_AGE (3*HZ)
195 static bool fq_gc_candidate(const struct fq_flow *f)
197 return fq_flow_is_detached(f) &&
198 time_after(jiffies, f->age + FQ_GC_AGE);
201 static void fq_gc(struct fq_sched_data *q,
202 struct rb_root *root,
205 struct fq_flow *f, *tofree[FQ_GC_MAX];
206 struct rb_node **p, *parent;
214 f = rb_entry(parent, struct fq_flow, fq_node);
218 if (fq_gc_candidate(f)) {
220 if (fcnt == FQ_GC_MAX)
225 p = &parent->rb_right;
227 p = &parent->rb_left;
231 q->inactive_flows -= fcnt;
232 q->stat_gc_flows += fcnt;
234 struct fq_flow *f = tofree[--fcnt];
236 rb_erase(&f->fq_node, root);
237 kmem_cache_free(fq_flow_cachep, f);
241 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
243 struct rb_node **p, *parent;
244 struct sock *sk = skb->sk;
245 struct rb_root *root;
248 /* warning: no starvation prevention... */
249 if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
252 /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
253 * or a listener (SYNCOOKIE mode)
254 * 1) request sockets are not full blown,
255 * they do not contain sk_pacing_rate
256 * 2) They are not part of a 'flow' yet
257 * 3) We do not want to rate limit them (eg SYNFLOOD attack),
258 * especially if the listener set SO_MAX_PACING_RATE
259 * 4) We pretend they are orphaned
261 if (!sk || sk_listener(sk)) {
262 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
264 /* By forcing low order bit to 1, we make sure to not
265 * collide with a local flow (socket pointers are word aligned)
267 sk = (struct sock *)((hash << 1) | 1UL);
269 } else if (sk->sk_state == TCP_CLOSE) {
270 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
272 * Sockets in TCP_CLOSE are non connected.
273 * Typical use case is UDP sockets, they can send packets
274 * with sendto() to many different destinations.
275 * We probably could use a generic bit advertising
276 * non connected sockets, instead of sk_state == TCP_CLOSE,
279 sk = (struct sock *)((hash << 1) | 1UL);
282 root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
284 if (q->flows >= (2U << q->fq_trees_log) &&
285 q->inactive_flows > q->flows/2)
293 f = rb_entry(parent, struct fq_flow, fq_node);
295 /* socket might have been reallocated, so check
296 * if its sk_hash is the same.
297 * It not, we need to refill credit with
300 if (unlikely(skb->sk == sk &&
301 f->socket_hash != sk->sk_hash)) {
302 f->credit = q->initial_quantum;
303 f->socket_hash = sk->sk_hash;
304 if (fq_flow_is_throttled(f))
305 fq_flow_unset_throttled(q, f);
306 f->time_next_packet = 0ULL;
311 p = &parent->rb_right;
313 p = &parent->rb_left;
316 f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
318 q->stat_allocation_errors++;
321 /* f->t_root is already zeroed after kmem_cache_zalloc() */
323 fq_flow_set_detached(f);
326 f->socket_hash = sk->sk_hash;
327 f->credit = q->initial_quantum;
329 rb_link_node(&f->fq_node, parent, p);
330 rb_insert_color(&f->fq_node, root);
337 static struct sk_buff *fq_peek(struct fq_flow *flow)
339 struct sk_buff *skb = skb_rb_first(&flow->t_root);
340 struct sk_buff *head = flow->head;
348 if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
353 static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
356 if (skb == flow->head) {
357 flow->head = skb->next;
359 rb_erase(&skb->rbnode, &flow->t_root);
360 skb->dev = qdisc_dev(sch);
364 /* remove one skb from head of flow queue */
365 static struct sk_buff *fq_dequeue_head(struct Qdisc *sch, struct fq_flow *flow)
367 struct sk_buff *skb = fq_peek(flow);
370 fq_erase_head(sch, flow, skb);
371 skb_mark_not_on_list(skb);
373 qdisc_qstats_backlog_dec(sch, skb);
379 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
381 struct rb_node **p, *parent;
382 struct sk_buff *head, *aux;
384 fq_skb_cb(skb)->time_to_send = skb->tstamp ?: ktime_get_ns();
388 fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
392 flow->tail->next = skb;
398 p = &flow->t_root.rb_node;
403 aux = rb_to_skb(parent);
404 if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
405 p = &parent->rb_right;
407 p = &parent->rb_left;
409 rb_link_node(&skb->rbnode, parent, p);
410 rb_insert_color(&skb->rbnode, &flow->t_root);
413 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
414 struct sk_buff **to_free)
416 struct fq_sched_data *q = qdisc_priv(sch);
419 if (unlikely(sch->q.qlen >= sch->limit))
420 return qdisc_drop(skb, sch, to_free);
422 f = fq_classify(skb, q);
423 if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
424 q->stat_flows_plimit++;
425 return qdisc_drop(skb, sch, to_free);
429 qdisc_qstats_backlog_inc(sch, skb);
430 if (fq_flow_is_detached(f)) {
431 struct sock *sk = skb->sk;
433 fq_flow_add_tail(&q->new_flows, f);
434 if (time_after(jiffies, f->age + q->flow_refill_delay))
435 f->credit = max_t(u32, f->credit, q->quantum);
436 if (sk && q->rate_enable) {
437 if (unlikely(smp_load_acquire(&sk->sk_pacing_status) !=
439 smp_store_release(&sk->sk_pacing_status,
445 /* Note: this overwrites f->age */
446 flow_queue_add(f, skb);
448 if (unlikely(f == &q->internal)) {
449 q->stat_internal_packets++;
453 return NET_XMIT_SUCCESS;
456 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
458 unsigned long sample;
461 if (q->time_next_delayed_flow > now)
464 /* Update unthrottle latency EWMA.
465 * This is cheap and can help diagnosing timer/latency problems.
467 sample = (unsigned long)(now - q->time_next_delayed_flow);
468 q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
469 q->unthrottle_latency_ns += sample >> 3;
471 q->time_next_delayed_flow = ~0ULL;
472 while ((p = rb_first(&q->delayed)) != NULL) {
473 struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
475 if (f->time_next_packet > now) {
476 q->time_next_delayed_flow = f->time_next_packet;
479 fq_flow_unset_throttled(q, f);
483 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
485 struct fq_sched_data *q = qdisc_priv(sch);
486 struct fq_flow_head *head;
496 skb = fq_dequeue_head(sch, &q->internal);
500 now = ktime_get_ns();
501 fq_check_throttled(q, now);
503 head = &q->new_flows;
505 head = &q->old_flows;
507 if (q->time_next_delayed_flow != ~0ULL)
508 qdisc_watchdog_schedule_ns(&q->watchdog,
509 q->time_next_delayed_flow);
515 if (f->credit <= 0) {
516 f->credit += q->quantum;
517 head->first = f->next;
518 fq_flow_add_tail(&q->old_flows, f);
524 u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
525 f->time_next_packet);
527 if (now < time_next_packet) {
528 head->first = f->next;
529 f->time_next_packet = time_next_packet;
530 fq_flow_set_throttled(q, f);
533 if (time_next_packet &&
534 (s64)(now - time_next_packet - q->ce_threshold) > 0) {
535 INET_ECN_set_ce(skb);
540 skb = fq_dequeue_head(sch, f);
542 head->first = f->next;
543 /* force a pass through old_flows to prevent starvation */
544 if ((head == &q->new_flows) && q->old_flows.first) {
545 fq_flow_add_tail(&q->old_flows, f);
547 fq_flow_set_detached(f);
553 plen = qdisc_pkt_len(skb);
559 rate = q->flow_max_rate;
561 /* If EDT time was provided for this skb, we need to
562 * update f->time_next_packet only if this qdisc enforces
567 rate = min(skb->sk->sk_pacing_rate, rate);
569 if (rate <= q->low_rate_threshold) {
572 plen = max(plen, q->quantum);
578 u64 len = (u64)plen * NSEC_PER_SEC;
581 len = div64_ul(len, rate);
582 /* Since socket rate can change later,
583 * clamp the delay to 1 second.
584 * Really, providers of too big packets should be fixed !
586 if (unlikely(len > NSEC_PER_SEC)) {
588 q->stat_pkts_too_long++;
590 /* Account for schedule/timers drifts.
591 * f->time_next_packet was set when prior packet was sent,
592 * and current time (@now) can be too late by tens of us.
594 if (f->time_next_packet)
595 len -= min(len/2, now - f->time_next_packet);
596 f->time_next_packet = now + len;
599 qdisc_bstats_update(sch, skb);
603 static void fq_flow_purge(struct fq_flow *flow)
605 struct rb_node *p = rb_first(&flow->t_root);
608 struct sk_buff *skb = rb_to_skb(p);
611 rb_erase(&skb->rbnode, &flow->t_root);
612 rtnl_kfree_skbs(skb, skb);
614 rtnl_kfree_skbs(flow->head, flow->tail);
619 static void fq_reset(struct Qdisc *sch)
621 struct fq_sched_data *q = qdisc_priv(sch);
622 struct rb_root *root;
628 sch->qstats.backlog = 0;
630 fq_flow_purge(&q->internal);
635 for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
636 root = &q->fq_root[idx];
637 while ((p = rb_first(root)) != NULL) {
638 f = rb_entry(p, struct fq_flow, fq_node);
643 kmem_cache_free(fq_flow_cachep, f);
646 q->new_flows.first = NULL;
647 q->old_flows.first = NULL;
648 q->delayed = RB_ROOT;
650 q->inactive_flows = 0;
651 q->throttled_flows = 0;
654 static void fq_rehash(struct fq_sched_data *q,
655 struct rb_root *old_array, u32 old_log,
656 struct rb_root *new_array, u32 new_log)
658 struct rb_node *op, **np, *parent;
659 struct rb_root *oroot, *nroot;
660 struct fq_flow *of, *nf;
664 for (idx = 0; idx < (1U << old_log); idx++) {
665 oroot = &old_array[idx];
666 while ((op = rb_first(oroot)) != NULL) {
668 of = rb_entry(op, struct fq_flow, fq_node);
669 if (fq_gc_candidate(of)) {
671 kmem_cache_free(fq_flow_cachep, of);
674 nroot = &new_array[hash_ptr(of->sk, new_log)];
676 np = &nroot->rb_node;
681 nf = rb_entry(parent, struct fq_flow, fq_node);
682 BUG_ON(nf->sk == of->sk);
685 np = &parent->rb_right;
687 np = &parent->rb_left;
690 rb_link_node(&of->fq_node, parent, np);
691 rb_insert_color(&of->fq_node, nroot);
695 q->inactive_flows -= fcnt;
696 q->stat_gc_flows += fcnt;
699 static void fq_free(void *addr)
704 static int fq_resize(struct Qdisc *sch, u32 log)
706 struct fq_sched_data *q = qdisc_priv(sch);
707 struct rb_root *array;
711 if (q->fq_root && log == q->fq_trees_log)
714 /* If XPS was setup, we can allocate memory on right NUMA node */
715 array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
716 netdev_queue_numa_node_read(sch->dev_queue));
720 for (idx = 0; idx < (1U << log); idx++)
721 array[idx] = RB_ROOT;
725 old_fq_root = q->fq_root;
727 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
730 q->fq_trees_log = log;
732 sch_tree_unlock(sch);
734 fq_free(old_fq_root);
739 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
740 [TCA_FQ_PLIMIT] = { .type = NLA_U32 },
741 [TCA_FQ_FLOW_PLIMIT] = { .type = NLA_U32 },
742 [TCA_FQ_QUANTUM] = { .type = NLA_U32 },
743 [TCA_FQ_INITIAL_QUANTUM] = { .type = NLA_U32 },
744 [TCA_FQ_RATE_ENABLE] = { .type = NLA_U32 },
745 [TCA_FQ_FLOW_DEFAULT_RATE] = { .type = NLA_U32 },
746 [TCA_FQ_FLOW_MAX_RATE] = { .type = NLA_U32 },
747 [TCA_FQ_BUCKETS_LOG] = { .type = NLA_U32 },
748 [TCA_FQ_FLOW_REFILL_DELAY] = { .type = NLA_U32 },
749 [TCA_FQ_LOW_RATE_THRESHOLD] = { .type = NLA_U32 },
750 [TCA_FQ_CE_THRESHOLD] = { .type = NLA_U32 },
753 static int fq_change(struct Qdisc *sch, struct nlattr *opt,
754 struct netlink_ext_ack *extack)
756 struct fq_sched_data *q = qdisc_priv(sch);
757 struct nlattr *tb[TCA_FQ_MAX + 1];
758 int err, drop_count = 0;
759 unsigned drop_len = 0;
765 err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
772 fq_log = q->fq_trees_log;
774 if (tb[TCA_FQ_BUCKETS_LOG]) {
775 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
777 if (nval >= 1 && nval <= ilog2(256*1024))
782 if (tb[TCA_FQ_PLIMIT])
783 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
785 if (tb[TCA_FQ_FLOW_PLIMIT])
786 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
788 if (tb[TCA_FQ_QUANTUM]) {
789 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
792 q->quantum = quantum;
797 if (tb[TCA_FQ_INITIAL_QUANTUM])
798 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
800 if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
801 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
802 nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
804 if (tb[TCA_FQ_FLOW_MAX_RATE]) {
805 u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
807 q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
809 if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
810 q->low_rate_threshold =
811 nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
813 if (tb[TCA_FQ_RATE_ENABLE]) {
814 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
817 q->rate_enable = enable;
822 if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
823 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
825 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
828 if (tb[TCA_FQ_ORPHAN_MASK])
829 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
831 if (tb[TCA_FQ_CE_THRESHOLD])
832 q->ce_threshold = (u64)NSEC_PER_USEC *
833 nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
836 sch_tree_unlock(sch);
837 err = fq_resize(sch, fq_log);
840 while (sch->q.qlen > sch->limit) {
841 struct sk_buff *skb = fq_dequeue(sch);
845 drop_len += qdisc_pkt_len(skb);
846 rtnl_kfree_skbs(skb, skb);
849 qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
851 sch_tree_unlock(sch);
855 static void fq_destroy(struct Qdisc *sch)
857 struct fq_sched_data *q = qdisc_priv(sch);
861 qdisc_watchdog_cancel(&q->watchdog);
864 static int fq_init(struct Qdisc *sch, struct nlattr *opt,
865 struct netlink_ext_ack *extack)
867 struct fq_sched_data *q = qdisc_priv(sch);
871 q->flow_plimit = 100;
872 q->quantum = 2 * psched_mtu(qdisc_dev(sch));
873 q->initial_quantum = 10 * psched_mtu(qdisc_dev(sch));
874 q->flow_refill_delay = msecs_to_jiffies(40);
875 q->flow_max_rate = ~0UL;
876 q->time_next_delayed_flow = ~0ULL;
878 q->new_flows.first = NULL;
879 q->old_flows.first = NULL;
880 q->delayed = RB_ROOT;
882 q->fq_trees_log = ilog2(1024);
883 q->orphan_mask = 1024 - 1;
884 q->low_rate_threshold = 550000 / 8;
886 /* Default ce_threshold of 4294 seconds */
887 q->ce_threshold = (u64)NSEC_PER_USEC * ~0U;
889 qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
892 err = fq_change(sch, opt, extack);
894 err = fq_resize(sch, q->fq_trees_log);
899 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
901 struct fq_sched_data *q = qdisc_priv(sch);
902 u64 ce_threshold = q->ce_threshold;
905 opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
907 goto nla_put_failure;
909 /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
911 do_div(ce_threshold, NSEC_PER_USEC);
913 if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
914 nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
915 nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
916 nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
917 nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
918 nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
919 min_t(unsigned long, q->flow_max_rate, ~0U)) ||
920 nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
921 jiffies_to_usecs(q->flow_refill_delay)) ||
922 nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
923 nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
924 q->low_rate_threshold) ||
925 nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
926 nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log))
927 goto nla_put_failure;
929 return nla_nest_end(skb, opts);
935 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
937 struct fq_sched_data *q = qdisc_priv(sch);
938 struct tc_fq_qd_stats st;
942 st.gc_flows = q->stat_gc_flows;
943 st.highprio_packets = q->stat_internal_packets;
945 st.throttled = q->stat_throttled;
946 st.flows_plimit = q->stat_flows_plimit;
947 st.pkts_too_long = q->stat_pkts_too_long;
948 st.allocation_errors = q->stat_allocation_errors;
949 st.time_next_delayed_flow = q->time_next_delayed_flow - ktime_get_ns();
951 st.inactive_flows = q->inactive_flows;
952 st.throttled_flows = q->throttled_flows;
953 st.unthrottle_latency_ns = min_t(unsigned long,
954 q->unthrottle_latency_ns, ~0U);
955 st.ce_mark = q->stat_ce_mark;
956 sch_tree_unlock(sch);
958 return gnet_stats_copy_app(d, &st, sizeof(st));
961 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
963 .priv_size = sizeof(struct fq_sched_data),
965 .enqueue = fq_enqueue,
966 .dequeue = fq_dequeue,
967 .peek = qdisc_peek_dequeued,
970 .destroy = fq_destroy,
973 .dump_stats = fq_dump_stats,
974 .owner = THIS_MODULE,
977 static int __init fq_module_init(void)
981 fq_flow_cachep = kmem_cache_create("fq_flow_cache",
982 sizeof(struct fq_flow),
987 ret = register_qdisc(&fq_qdisc_ops);
989 kmem_cache_destroy(fq_flow_cachep);
993 static void __exit fq_module_exit(void)
995 unregister_qdisc(&fq_qdisc_ops);
996 kmem_cache_destroy(fq_flow_cachep);
999 module_init(fq_module_init)
1000 module_exit(fq_module_exit)
1001 MODULE_AUTHOR("Eric Dumazet");
1002 MODULE_LICENSE("GPL");