ALSA: hda: Make proper use of timecounter
[platform/kernel/linux-rpi.git] / net / sched / sch_fq.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net/sched/sch_fq.c Fair Queue Packet Scheduler (per flow pacing)
4  *
5  *  Copyright (C) 2013-2015 Eric Dumazet <edumazet@google.com>
6  *
7  *  Meant to be mostly used for locally generated traffic :
8  *  Fast classification depends on skb->sk being set before reaching us.
9  *  If not, (router workload), we use rxhash as fallback, with 32 bits wide hash.
10  *  All packets belonging to a socket are considered as a 'flow'.
11  *
12  *  Flows are dynamically allocated and stored in a hash table of RB trees
13  *  They are also part of one Round Robin 'queues' (new or old flows)
14  *
15  *  Burst avoidance (aka pacing) capability :
16  *
17  *  Transport (eg TCP) can set in sk->sk_pacing_rate a rate, enqueue a
18  *  bunch of packets, and this packet scheduler adds delay between
19  *  packets to respect rate limitation.
20  *
21  *  enqueue() :
22  *   - lookup one RB tree (out of 1024 or more) to find the flow.
23  *     If non existent flow, create it, add it to the tree.
24  *     Add skb to the per flow list of skb (fifo).
25  *   - Use a special fifo for high prio packets
26  *
27  *  dequeue() : serves flows in Round Robin
28  *  Note : When a flow becomes empty, we do not immediately remove it from
29  *  rb trees, for performance reasons (its expected to send additional packets,
30  *  or SLAB cache will reuse socket for another flow)
31  */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/kernel.h>
36 #include <linux/jiffies.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/errno.h>
40 #include <linux/init.h>
41 #include <linux/skbuff.h>
42 #include <linux/slab.h>
43 #include <linux/rbtree.h>
44 #include <linux/hash.h>
45 #include <linux/prefetch.h>
46 #include <linux/vmalloc.h>
47 #include <net/netlink.h>
48 #include <net/pkt_sched.h>
49 #include <net/sock.h>
50 #include <net/tcp_states.h>
51 #include <net/tcp.h>
52
53 struct fq_skb_cb {
54         u64             time_to_send;
55 };
56
57 static inline struct fq_skb_cb *fq_skb_cb(struct sk_buff *skb)
58 {
59         qdisc_cb_private_validate(skb, sizeof(struct fq_skb_cb));
60         return (struct fq_skb_cb *)qdisc_skb_cb(skb)->data;
61 }
62
63 /*
64  * Per flow structure, dynamically allocated.
65  * If packets have monotically increasing time_to_send, they are placed in O(1)
66  * in linear list (head,tail), otherwise are placed in a rbtree (t_root).
67  */
68 struct fq_flow {
69 /* First cache line : used in fq_gc(), fq_enqueue(), fq_dequeue() */
70         struct rb_root  t_root;
71         struct sk_buff  *head;          /* list of skbs for this flow : first skb */
72         union {
73                 struct sk_buff *tail;   /* last skb in the list */
74                 unsigned long  age;     /* (jiffies | 1UL) when flow was emptied, for gc */
75         };
76         struct rb_node  fq_node;        /* anchor in fq_root[] trees */
77         struct sock     *sk;
78         u32             socket_hash;    /* sk_hash */
79         int             qlen;           /* number of packets in flow queue */
80
81 /* Second cache line, used in fq_dequeue() */
82         int             credit;
83         /* 32bit hole on 64bit arches */
84
85         struct fq_flow *next;           /* next pointer in RR lists */
86
87         struct rb_node  rate_node;      /* anchor in q->delayed tree */
88         u64             time_next_packet;
89 } ____cacheline_aligned_in_smp;
90
91 struct fq_flow_head {
92         struct fq_flow *first;
93         struct fq_flow *last;
94 };
95
96 struct fq_sched_data {
97         struct fq_flow_head new_flows;
98
99         struct fq_flow_head old_flows;
100
101         struct rb_root  delayed;        /* for rate limited flows */
102         u64             time_next_delayed_flow;
103         u64             ktime_cache;    /* copy of last ktime_get_ns() */
104         unsigned long   unthrottle_latency_ns;
105
106         struct fq_flow  internal;       /* for non classified or high prio packets */
107         u32             quantum;
108         u32             initial_quantum;
109         u32             flow_refill_delay;
110         u32             flow_plimit;    /* max packets per flow */
111         unsigned long   flow_max_rate;  /* optional max rate per flow */
112         u64             ce_threshold;
113         u64             horizon;        /* horizon in ns */
114         u32             orphan_mask;    /* mask for orphaned skb */
115         u32             low_rate_threshold;
116         struct rb_root  *fq_root;
117         u8              rate_enable;
118         u8              fq_trees_log;
119         u8              horizon_drop;
120         u32             flows;
121         u32             inactive_flows;
122         u32             throttled_flows;
123
124         u64             stat_gc_flows;
125         u64             stat_internal_packets;
126         u64             stat_throttled;
127         u64             stat_ce_mark;
128         u64             stat_horizon_drops;
129         u64             stat_horizon_caps;
130         u64             stat_flows_plimit;
131         u64             stat_pkts_too_long;
132         u64             stat_allocation_errors;
133
134         u32             timer_slack; /* hrtimer slack in ns */
135         struct qdisc_watchdog watchdog;
136 };
137
138 /*
139  * f->tail and f->age share the same location.
140  * We can use the low order bit to differentiate if this location points
141  * to a sk_buff or contains a jiffies value, if we force this value to be odd.
142  * This assumes f->tail low order bit must be 0 since alignof(struct sk_buff) >= 2
143  */
144 static void fq_flow_set_detached(struct fq_flow *f)
145 {
146         f->age = jiffies | 1UL;
147 }
148
149 static bool fq_flow_is_detached(const struct fq_flow *f)
150 {
151         return !!(f->age & 1UL);
152 }
153
154 /* special value to mark a throttled flow (not on old/new list) */
155 static struct fq_flow throttled;
156
157 static bool fq_flow_is_throttled(const struct fq_flow *f)
158 {
159         return f->next == &throttled;
160 }
161
162 static void fq_flow_add_tail(struct fq_flow_head *head, struct fq_flow *flow)
163 {
164         if (head->first)
165                 head->last->next = flow;
166         else
167                 head->first = flow;
168         head->last = flow;
169         flow->next = NULL;
170 }
171
172 static void fq_flow_unset_throttled(struct fq_sched_data *q, struct fq_flow *f)
173 {
174         rb_erase(&f->rate_node, &q->delayed);
175         q->throttled_flows--;
176         fq_flow_add_tail(&q->old_flows, f);
177 }
178
179 static void fq_flow_set_throttled(struct fq_sched_data *q, struct fq_flow *f)
180 {
181         struct rb_node **p = &q->delayed.rb_node, *parent = NULL;
182
183         while (*p) {
184                 struct fq_flow *aux;
185
186                 parent = *p;
187                 aux = rb_entry(parent, struct fq_flow, rate_node);
188                 if (f->time_next_packet >= aux->time_next_packet)
189                         p = &parent->rb_right;
190                 else
191                         p = &parent->rb_left;
192         }
193         rb_link_node(&f->rate_node, parent, p);
194         rb_insert_color(&f->rate_node, &q->delayed);
195         q->throttled_flows++;
196         q->stat_throttled++;
197
198         f->next = &throttled;
199         if (q->time_next_delayed_flow > f->time_next_packet)
200                 q->time_next_delayed_flow = f->time_next_packet;
201 }
202
203
204 static struct kmem_cache *fq_flow_cachep __read_mostly;
205
206
207 /* limit number of collected flows per round */
208 #define FQ_GC_MAX 8
209 #define FQ_GC_AGE (3*HZ)
210
211 static bool fq_gc_candidate(const struct fq_flow *f)
212 {
213         return fq_flow_is_detached(f) &&
214                time_after(jiffies, f->age + FQ_GC_AGE);
215 }
216
217 static void fq_gc(struct fq_sched_data *q,
218                   struct rb_root *root,
219                   struct sock *sk)
220 {
221         struct rb_node **p, *parent;
222         void *tofree[FQ_GC_MAX];
223         struct fq_flow *f;
224         int i, fcnt = 0;
225
226         p = &root->rb_node;
227         parent = NULL;
228         while (*p) {
229                 parent = *p;
230
231                 f = rb_entry(parent, struct fq_flow, fq_node);
232                 if (f->sk == sk)
233                         break;
234
235                 if (fq_gc_candidate(f)) {
236                         tofree[fcnt++] = f;
237                         if (fcnt == FQ_GC_MAX)
238                                 break;
239                 }
240
241                 if (f->sk > sk)
242                         p = &parent->rb_right;
243                 else
244                         p = &parent->rb_left;
245         }
246
247         if (!fcnt)
248                 return;
249
250         for (i = fcnt; i > 0; ) {
251                 f = tofree[--i];
252                 rb_erase(&f->fq_node, root);
253         }
254         q->flows -= fcnt;
255         q->inactive_flows -= fcnt;
256         q->stat_gc_flows += fcnt;
257
258         kmem_cache_free_bulk(fq_flow_cachep, fcnt, tofree);
259 }
260
261 static struct fq_flow *fq_classify(struct sk_buff *skb, struct fq_sched_data *q)
262 {
263         struct rb_node **p, *parent;
264         struct sock *sk = skb->sk;
265         struct rb_root *root;
266         struct fq_flow *f;
267
268         /* warning: no starvation prevention... */
269         if (unlikely((skb->priority & TC_PRIO_MAX) == TC_PRIO_CONTROL))
270                 return &q->internal;
271
272         /* SYNACK messages are attached to a TCP_NEW_SYN_RECV request socket
273          * or a listener (SYNCOOKIE mode)
274          * 1) request sockets are not full blown,
275          *    they do not contain sk_pacing_rate
276          * 2) They are not part of a 'flow' yet
277          * 3) We do not want to rate limit them (eg SYNFLOOD attack),
278          *    especially if the listener set SO_MAX_PACING_RATE
279          * 4) We pretend they are orphaned
280          */
281         if (!sk || sk_listener(sk)) {
282                 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
283
284                 /* By forcing low order bit to 1, we make sure to not
285                  * collide with a local flow (socket pointers are word aligned)
286                  */
287                 sk = (struct sock *)((hash << 1) | 1UL);
288                 skb_orphan(skb);
289         } else if (sk->sk_state == TCP_CLOSE) {
290                 unsigned long hash = skb_get_hash(skb) & q->orphan_mask;
291                 /*
292                  * Sockets in TCP_CLOSE are non connected.
293                  * Typical use case is UDP sockets, they can send packets
294                  * with sendto() to many different destinations.
295                  * We probably could use a generic bit advertising
296                  * non connected sockets, instead of sk_state == TCP_CLOSE,
297                  * if we care enough.
298                  */
299                 sk = (struct sock *)((hash << 1) | 1UL);
300         }
301
302         root = &q->fq_root[hash_ptr(sk, q->fq_trees_log)];
303
304         if (q->flows >= (2U << q->fq_trees_log) &&
305             q->inactive_flows > q->flows/2)
306                 fq_gc(q, root, sk);
307
308         p = &root->rb_node;
309         parent = NULL;
310         while (*p) {
311                 parent = *p;
312
313                 f = rb_entry(parent, struct fq_flow, fq_node);
314                 if (f->sk == sk) {
315                         /* socket might have been reallocated, so check
316                          * if its sk_hash is the same.
317                          * It not, we need to refill credit with
318                          * initial quantum
319                          */
320                         if (unlikely(skb->sk == sk &&
321                                      f->socket_hash != sk->sk_hash)) {
322                                 f->credit = q->initial_quantum;
323                                 f->socket_hash = sk->sk_hash;
324                                 if (q->rate_enable)
325                                         smp_store_release(&sk->sk_pacing_status,
326                                                           SK_PACING_FQ);
327                                 if (fq_flow_is_throttled(f))
328                                         fq_flow_unset_throttled(q, f);
329                                 f->time_next_packet = 0ULL;
330                         }
331                         return f;
332                 }
333                 if (f->sk > sk)
334                         p = &parent->rb_right;
335                 else
336                         p = &parent->rb_left;
337         }
338
339         f = kmem_cache_zalloc(fq_flow_cachep, GFP_ATOMIC | __GFP_NOWARN);
340         if (unlikely(!f)) {
341                 q->stat_allocation_errors++;
342                 return &q->internal;
343         }
344         /* f->t_root is already zeroed after kmem_cache_zalloc() */
345
346         fq_flow_set_detached(f);
347         f->sk = sk;
348         if (skb->sk == sk) {
349                 f->socket_hash = sk->sk_hash;
350                 if (q->rate_enable)
351                         smp_store_release(&sk->sk_pacing_status,
352                                           SK_PACING_FQ);
353         }
354         f->credit = q->initial_quantum;
355
356         rb_link_node(&f->fq_node, parent, p);
357         rb_insert_color(&f->fq_node, root);
358
359         q->flows++;
360         q->inactive_flows++;
361         return f;
362 }
363
364 static struct sk_buff *fq_peek(struct fq_flow *flow)
365 {
366         struct sk_buff *skb = skb_rb_first(&flow->t_root);
367         struct sk_buff *head = flow->head;
368
369         if (!skb)
370                 return head;
371
372         if (!head)
373                 return skb;
374
375         if (fq_skb_cb(skb)->time_to_send < fq_skb_cb(head)->time_to_send)
376                 return skb;
377         return head;
378 }
379
380 static void fq_erase_head(struct Qdisc *sch, struct fq_flow *flow,
381                           struct sk_buff *skb)
382 {
383         if (skb == flow->head) {
384                 flow->head = skb->next;
385         } else {
386                 rb_erase(&skb->rbnode, &flow->t_root);
387                 skb->dev = qdisc_dev(sch);
388         }
389 }
390
391 /* Remove one skb from flow queue.
392  * This skb must be the return value of prior fq_peek().
393  */
394 static void fq_dequeue_skb(struct Qdisc *sch, struct fq_flow *flow,
395                            struct sk_buff *skb)
396 {
397         fq_erase_head(sch, flow, skb);
398         skb_mark_not_on_list(skb);
399         flow->qlen--;
400         qdisc_qstats_backlog_dec(sch, skb);
401         sch->q.qlen--;
402 }
403
404 static void flow_queue_add(struct fq_flow *flow, struct sk_buff *skb)
405 {
406         struct rb_node **p, *parent;
407         struct sk_buff *head, *aux;
408
409         head = flow->head;
410         if (!head ||
411             fq_skb_cb(skb)->time_to_send >= fq_skb_cb(flow->tail)->time_to_send) {
412                 if (!head)
413                         flow->head = skb;
414                 else
415                         flow->tail->next = skb;
416                 flow->tail = skb;
417                 skb->next = NULL;
418                 return;
419         }
420
421         p = &flow->t_root.rb_node;
422         parent = NULL;
423
424         while (*p) {
425                 parent = *p;
426                 aux = rb_to_skb(parent);
427                 if (fq_skb_cb(skb)->time_to_send >= fq_skb_cb(aux)->time_to_send)
428                         p = &parent->rb_right;
429                 else
430                         p = &parent->rb_left;
431         }
432         rb_link_node(&skb->rbnode, parent, p);
433         rb_insert_color(&skb->rbnode, &flow->t_root);
434 }
435
436 static bool fq_packet_beyond_horizon(const struct sk_buff *skb,
437                                     const struct fq_sched_data *q)
438 {
439         return unlikely((s64)skb->tstamp > (s64)(q->ktime_cache + q->horizon));
440 }
441
442 static int fq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
443                       struct sk_buff **to_free)
444 {
445         struct fq_sched_data *q = qdisc_priv(sch);
446         struct fq_flow *f;
447
448         if (unlikely(sch->q.qlen >= sch->limit))
449                 return qdisc_drop(skb, sch, to_free);
450
451         if (!skb->tstamp) {
452                 fq_skb_cb(skb)->time_to_send = q->ktime_cache = ktime_get_ns();
453         } else {
454                 /* Check if packet timestamp is too far in the future.
455                  * Try first if our cached value, to avoid ktime_get_ns()
456                  * cost in most cases.
457                  */
458                 if (fq_packet_beyond_horizon(skb, q)) {
459                         /* Refresh our cache and check another time */
460                         q->ktime_cache = ktime_get_ns();
461                         if (fq_packet_beyond_horizon(skb, q)) {
462                                 if (q->horizon_drop) {
463                                         q->stat_horizon_drops++;
464                                         return qdisc_drop(skb, sch, to_free);
465                                 }
466                                 q->stat_horizon_caps++;
467                                 skb->tstamp = q->ktime_cache + q->horizon;
468                         }
469                 }
470                 fq_skb_cb(skb)->time_to_send = skb->tstamp;
471         }
472
473         f = fq_classify(skb, q);
474         if (unlikely(f->qlen >= q->flow_plimit && f != &q->internal)) {
475                 q->stat_flows_plimit++;
476                 return qdisc_drop(skb, sch, to_free);
477         }
478
479         f->qlen++;
480         qdisc_qstats_backlog_inc(sch, skb);
481         if (fq_flow_is_detached(f)) {
482                 fq_flow_add_tail(&q->new_flows, f);
483                 if (time_after(jiffies, f->age + q->flow_refill_delay))
484                         f->credit = max_t(u32, f->credit, q->quantum);
485                 q->inactive_flows--;
486         }
487
488         /* Note: this overwrites f->age */
489         flow_queue_add(f, skb);
490
491         if (unlikely(f == &q->internal)) {
492                 q->stat_internal_packets++;
493         }
494         sch->q.qlen++;
495
496         return NET_XMIT_SUCCESS;
497 }
498
499 static void fq_check_throttled(struct fq_sched_data *q, u64 now)
500 {
501         unsigned long sample;
502         struct rb_node *p;
503
504         if (q->time_next_delayed_flow > now)
505                 return;
506
507         /* Update unthrottle latency EWMA.
508          * This is cheap and can help diagnosing timer/latency problems.
509          */
510         sample = (unsigned long)(now - q->time_next_delayed_flow);
511         q->unthrottle_latency_ns -= q->unthrottle_latency_ns >> 3;
512         q->unthrottle_latency_ns += sample >> 3;
513
514         q->time_next_delayed_flow = ~0ULL;
515         while ((p = rb_first(&q->delayed)) != NULL) {
516                 struct fq_flow *f = rb_entry(p, struct fq_flow, rate_node);
517
518                 if (f->time_next_packet > now) {
519                         q->time_next_delayed_flow = f->time_next_packet;
520                         break;
521                 }
522                 fq_flow_unset_throttled(q, f);
523         }
524 }
525
526 static struct sk_buff *fq_dequeue(struct Qdisc *sch)
527 {
528         struct fq_sched_data *q = qdisc_priv(sch);
529         struct fq_flow_head *head;
530         struct sk_buff *skb;
531         struct fq_flow *f;
532         unsigned long rate;
533         u32 plen;
534         u64 now;
535
536         if (!sch->q.qlen)
537                 return NULL;
538
539         skb = fq_peek(&q->internal);
540         if (unlikely(skb)) {
541                 fq_dequeue_skb(sch, &q->internal, skb);
542                 goto out;
543         }
544
545         q->ktime_cache = now = ktime_get_ns();
546         fq_check_throttled(q, now);
547 begin:
548         head = &q->new_flows;
549         if (!head->first) {
550                 head = &q->old_flows;
551                 if (!head->first) {
552                         if (q->time_next_delayed_flow != ~0ULL)
553                                 qdisc_watchdog_schedule_range_ns(&q->watchdog,
554                                                         q->time_next_delayed_flow,
555                                                         q->timer_slack);
556                         return NULL;
557                 }
558         }
559         f = head->first;
560
561         if (f->credit <= 0) {
562                 f->credit += q->quantum;
563                 head->first = f->next;
564                 fq_flow_add_tail(&q->old_flows, f);
565                 goto begin;
566         }
567
568         skb = fq_peek(f);
569         if (skb) {
570                 u64 time_next_packet = max_t(u64, fq_skb_cb(skb)->time_to_send,
571                                              f->time_next_packet);
572
573                 if (now < time_next_packet) {
574                         head->first = f->next;
575                         f->time_next_packet = time_next_packet;
576                         fq_flow_set_throttled(q, f);
577                         goto begin;
578                 }
579                 prefetch(&skb->end);
580                 if ((s64)(now - time_next_packet - q->ce_threshold) > 0) {
581                         INET_ECN_set_ce(skb);
582                         q->stat_ce_mark++;
583                 }
584                 fq_dequeue_skb(sch, f, skb);
585         } else {
586                 head->first = f->next;
587                 /* force a pass through old_flows to prevent starvation */
588                 if ((head == &q->new_flows) && q->old_flows.first) {
589                         fq_flow_add_tail(&q->old_flows, f);
590                 } else {
591                         fq_flow_set_detached(f);
592                         q->inactive_flows++;
593                 }
594                 goto begin;
595         }
596         plen = qdisc_pkt_len(skb);
597         f->credit -= plen;
598
599         if (!q->rate_enable)
600                 goto out;
601
602         rate = q->flow_max_rate;
603
604         /* If EDT time was provided for this skb, we need to
605          * update f->time_next_packet only if this qdisc enforces
606          * a flow max rate.
607          */
608         if (!skb->tstamp) {
609                 if (skb->sk)
610                         rate = min(skb->sk->sk_pacing_rate, rate);
611
612                 if (rate <= q->low_rate_threshold) {
613                         f->credit = 0;
614                 } else {
615                         plen = max(plen, q->quantum);
616                         if (f->credit > 0)
617                                 goto out;
618                 }
619         }
620         if (rate != ~0UL) {
621                 u64 len = (u64)plen * NSEC_PER_SEC;
622
623                 if (likely(rate))
624                         len = div64_ul(len, rate);
625                 /* Since socket rate can change later,
626                  * clamp the delay to 1 second.
627                  * Really, providers of too big packets should be fixed !
628                  */
629                 if (unlikely(len > NSEC_PER_SEC)) {
630                         len = NSEC_PER_SEC;
631                         q->stat_pkts_too_long++;
632                 }
633                 /* Account for schedule/timers drifts.
634                  * f->time_next_packet was set when prior packet was sent,
635                  * and current time (@now) can be too late by tens of us.
636                  */
637                 if (f->time_next_packet)
638                         len -= min(len/2, now - f->time_next_packet);
639                 f->time_next_packet = now + len;
640         }
641 out:
642         qdisc_bstats_update(sch, skb);
643         return skb;
644 }
645
646 static void fq_flow_purge(struct fq_flow *flow)
647 {
648         struct rb_node *p = rb_first(&flow->t_root);
649
650         while (p) {
651                 struct sk_buff *skb = rb_to_skb(p);
652
653                 p = rb_next(p);
654                 rb_erase(&skb->rbnode, &flow->t_root);
655                 rtnl_kfree_skbs(skb, skb);
656         }
657         rtnl_kfree_skbs(flow->head, flow->tail);
658         flow->head = NULL;
659         flow->qlen = 0;
660 }
661
662 static void fq_reset(struct Qdisc *sch)
663 {
664         struct fq_sched_data *q = qdisc_priv(sch);
665         struct rb_root *root;
666         struct rb_node *p;
667         struct fq_flow *f;
668         unsigned int idx;
669
670         sch->q.qlen = 0;
671         sch->qstats.backlog = 0;
672
673         fq_flow_purge(&q->internal);
674
675         if (!q->fq_root)
676                 return;
677
678         for (idx = 0; idx < (1U << q->fq_trees_log); idx++) {
679                 root = &q->fq_root[idx];
680                 while ((p = rb_first(root)) != NULL) {
681                         f = rb_entry(p, struct fq_flow, fq_node);
682                         rb_erase(p, root);
683
684                         fq_flow_purge(f);
685
686                         kmem_cache_free(fq_flow_cachep, f);
687                 }
688         }
689         q->new_flows.first      = NULL;
690         q->old_flows.first      = NULL;
691         q->delayed              = RB_ROOT;
692         q->flows                = 0;
693         q->inactive_flows       = 0;
694         q->throttled_flows      = 0;
695 }
696
697 static void fq_rehash(struct fq_sched_data *q,
698                       struct rb_root *old_array, u32 old_log,
699                       struct rb_root *new_array, u32 new_log)
700 {
701         struct rb_node *op, **np, *parent;
702         struct rb_root *oroot, *nroot;
703         struct fq_flow *of, *nf;
704         int fcnt = 0;
705         u32 idx;
706
707         for (idx = 0; idx < (1U << old_log); idx++) {
708                 oroot = &old_array[idx];
709                 while ((op = rb_first(oroot)) != NULL) {
710                         rb_erase(op, oroot);
711                         of = rb_entry(op, struct fq_flow, fq_node);
712                         if (fq_gc_candidate(of)) {
713                                 fcnt++;
714                                 kmem_cache_free(fq_flow_cachep, of);
715                                 continue;
716                         }
717                         nroot = &new_array[hash_ptr(of->sk, new_log)];
718
719                         np = &nroot->rb_node;
720                         parent = NULL;
721                         while (*np) {
722                                 parent = *np;
723
724                                 nf = rb_entry(parent, struct fq_flow, fq_node);
725                                 BUG_ON(nf->sk == of->sk);
726
727                                 if (nf->sk > of->sk)
728                                         np = &parent->rb_right;
729                                 else
730                                         np = &parent->rb_left;
731                         }
732
733                         rb_link_node(&of->fq_node, parent, np);
734                         rb_insert_color(&of->fq_node, nroot);
735                 }
736         }
737         q->flows -= fcnt;
738         q->inactive_flows -= fcnt;
739         q->stat_gc_flows += fcnt;
740 }
741
742 static void fq_free(void *addr)
743 {
744         kvfree(addr);
745 }
746
747 static int fq_resize(struct Qdisc *sch, u32 log)
748 {
749         struct fq_sched_data *q = qdisc_priv(sch);
750         struct rb_root *array;
751         void *old_fq_root;
752         u32 idx;
753
754         if (q->fq_root && log == q->fq_trees_log)
755                 return 0;
756
757         /* If XPS was setup, we can allocate memory on right NUMA node */
758         array = kvmalloc_node(sizeof(struct rb_root) << log, GFP_KERNEL | __GFP_RETRY_MAYFAIL,
759                               netdev_queue_numa_node_read(sch->dev_queue));
760         if (!array)
761                 return -ENOMEM;
762
763         for (idx = 0; idx < (1U << log); idx++)
764                 array[idx] = RB_ROOT;
765
766         sch_tree_lock(sch);
767
768         old_fq_root = q->fq_root;
769         if (old_fq_root)
770                 fq_rehash(q, old_fq_root, q->fq_trees_log, array, log);
771
772         q->fq_root = array;
773         q->fq_trees_log = log;
774
775         sch_tree_unlock(sch);
776
777         fq_free(old_fq_root);
778
779         return 0;
780 }
781
782 static const struct nla_policy fq_policy[TCA_FQ_MAX + 1] = {
783         [TCA_FQ_UNSPEC]                 = { .strict_start_type = TCA_FQ_TIMER_SLACK },
784
785         [TCA_FQ_PLIMIT]                 = { .type = NLA_U32 },
786         [TCA_FQ_FLOW_PLIMIT]            = { .type = NLA_U32 },
787         [TCA_FQ_QUANTUM]                = { .type = NLA_U32 },
788         [TCA_FQ_INITIAL_QUANTUM]        = { .type = NLA_U32 },
789         [TCA_FQ_RATE_ENABLE]            = { .type = NLA_U32 },
790         [TCA_FQ_FLOW_DEFAULT_RATE]      = { .type = NLA_U32 },
791         [TCA_FQ_FLOW_MAX_RATE]          = { .type = NLA_U32 },
792         [TCA_FQ_BUCKETS_LOG]            = { .type = NLA_U32 },
793         [TCA_FQ_FLOW_REFILL_DELAY]      = { .type = NLA_U32 },
794         [TCA_FQ_ORPHAN_MASK]            = { .type = NLA_U32 },
795         [TCA_FQ_LOW_RATE_THRESHOLD]     = { .type = NLA_U32 },
796         [TCA_FQ_CE_THRESHOLD]           = { .type = NLA_U32 },
797         [TCA_FQ_TIMER_SLACK]            = { .type = NLA_U32 },
798         [TCA_FQ_HORIZON]                = { .type = NLA_U32 },
799         [TCA_FQ_HORIZON_DROP]           = { .type = NLA_U8 },
800 };
801
802 static int fq_change(struct Qdisc *sch, struct nlattr *opt,
803                      struct netlink_ext_ack *extack)
804 {
805         struct fq_sched_data *q = qdisc_priv(sch);
806         struct nlattr *tb[TCA_FQ_MAX + 1];
807         int err, drop_count = 0;
808         unsigned drop_len = 0;
809         u32 fq_log;
810
811         if (!opt)
812                 return -EINVAL;
813
814         err = nla_parse_nested_deprecated(tb, TCA_FQ_MAX, opt, fq_policy,
815                                           NULL);
816         if (err < 0)
817                 return err;
818
819         sch_tree_lock(sch);
820
821         fq_log = q->fq_trees_log;
822
823         if (tb[TCA_FQ_BUCKETS_LOG]) {
824                 u32 nval = nla_get_u32(tb[TCA_FQ_BUCKETS_LOG]);
825
826                 if (nval >= 1 && nval <= ilog2(256*1024))
827                         fq_log = nval;
828                 else
829                         err = -EINVAL;
830         }
831         if (tb[TCA_FQ_PLIMIT])
832                 sch->limit = nla_get_u32(tb[TCA_FQ_PLIMIT]);
833
834         if (tb[TCA_FQ_FLOW_PLIMIT])
835                 q->flow_plimit = nla_get_u32(tb[TCA_FQ_FLOW_PLIMIT]);
836
837         if (tb[TCA_FQ_QUANTUM]) {
838                 u32 quantum = nla_get_u32(tb[TCA_FQ_QUANTUM]);
839
840                 if (quantum > 0 && quantum <= (1 << 20)) {
841                         q->quantum = quantum;
842                 } else {
843                         NL_SET_ERR_MSG_MOD(extack, "invalid quantum");
844                         err = -EINVAL;
845                 }
846         }
847
848         if (tb[TCA_FQ_INITIAL_QUANTUM])
849                 q->initial_quantum = nla_get_u32(tb[TCA_FQ_INITIAL_QUANTUM]);
850
851         if (tb[TCA_FQ_FLOW_DEFAULT_RATE])
852                 pr_warn_ratelimited("sch_fq: defrate %u ignored.\n",
853                                     nla_get_u32(tb[TCA_FQ_FLOW_DEFAULT_RATE]));
854
855         if (tb[TCA_FQ_FLOW_MAX_RATE]) {
856                 u32 rate = nla_get_u32(tb[TCA_FQ_FLOW_MAX_RATE]);
857
858                 q->flow_max_rate = (rate == ~0U) ? ~0UL : rate;
859         }
860         if (tb[TCA_FQ_LOW_RATE_THRESHOLD])
861                 q->low_rate_threshold =
862                         nla_get_u32(tb[TCA_FQ_LOW_RATE_THRESHOLD]);
863
864         if (tb[TCA_FQ_RATE_ENABLE]) {
865                 u32 enable = nla_get_u32(tb[TCA_FQ_RATE_ENABLE]);
866
867                 if (enable <= 1)
868                         q->rate_enable = enable;
869                 else
870                         err = -EINVAL;
871         }
872
873         if (tb[TCA_FQ_FLOW_REFILL_DELAY]) {
874                 u32 usecs_delay = nla_get_u32(tb[TCA_FQ_FLOW_REFILL_DELAY]) ;
875
876                 q->flow_refill_delay = usecs_to_jiffies(usecs_delay);
877         }
878
879         if (tb[TCA_FQ_ORPHAN_MASK])
880                 q->orphan_mask = nla_get_u32(tb[TCA_FQ_ORPHAN_MASK]);
881
882         if (tb[TCA_FQ_CE_THRESHOLD])
883                 q->ce_threshold = (u64)NSEC_PER_USEC *
884                                   nla_get_u32(tb[TCA_FQ_CE_THRESHOLD]);
885
886         if (tb[TCA_FQ_TIMER_SLACK])
887                 q->timer_slack = nla_get_u32(tb[TCA_FQ_TIMER_SLACK]);
888
889         if (tb[TCA_FQ_HORIZON])
890                 q->horizon = (u64)NSEC_PER_USEC *
891                                   nla_get_u32(tb[TCA_FQ_HORIZON]);
892
893         if (tb[TCA_FQ_HORIZON_DROP])
894                 q->horizon_drop = nla_get_u8(tb[TCA_FQ_HORIZON_DROP]);
895
896         if (!err) {
897
898                 sch_tree_unlock(sch);
899                 err = fq_resize(sch, fq_log);
900                 sch_tree_lock(sch);
901         }
902         while (sch->q.qlen > sch->limit) {
903                 struct sk_buff *skb = fq_dequeue(sch);
904
905                 if (!skb)
906                         break;
907                 drop_len += qdisc_pkt_len(skb);
908                 rtnl_kfree_skbs(skb, skb);
909                 drop_count++;
910         }
911         qdisc_tree_reduce_backlog(sch, drop_count, drop_len);
912
913         sch_tree_unlock(sch);
914         return err;
915 }
916
917 static void fq_destroy(struct Qdisc *sch)
918 {
919         struct fq_sched_data *q = qdisc_priv(sch);
920
921         fq_reset(sch);
922         fq_free(q->fq_root);
923         qdisc_watchdog_cancel(&q->watchdog);
924 }
925
926 static int fq_init(struct Qdisc *sch, struct nlattr *opt,
927                    struct netlink_ext_ack *extack)
928 {
929         struct fq_sched_data *q = qdisc_priv(sch);
930         int err;
931
932         sch->limit              = 10000;
933         q->flow_plimit          = 100;
934         q->quantum              = 2 * psched_mtu(qdisc_dev(sch));
935         q->initial_quantum      = 10 * psched_mtu(qdisc_dev(sch));
936         q->flow_refill_delay    = msecs_to_jiffies(40);
937         q->flow_max_rate        = ~0UL;
938         q->time_next_delayed_flow = ~0ULL;
939         q->rate_enable          = 1;
940         q->new_flows.first      = NULL;
941         q->old_flows.first      = NULL;
942         q->delayed              = RB_ROOT;
943         q->fq_root              = NULL;
944         q->fq_trees_log         = ilog2(1024);
945         q->orphan_mask          = 1024 - 1;
946         q->low_rate_threshold   = 550000 / 8;
947
948         q->timer_slack = 10 * NSEC_PER_USEC; /* 10 usec of hrtimer slack */
949
950         q->horizon = 10ULL * NSEC_PER_SEC; /* 10 seconds */
951         q->horizon_drop = 1; /* by default, drop packets beyond horizon */
952
953         /* Default ce_threshold of 4294 seconds */
954         q->ce_threshold         = (u64)NSEC_PER_USEC * ~0U;
955
956         qdisc_watchdog_init_clockid(&q->watchdog, sch, CLOCK_MONOTONIC);
957
958         if (opt)
959                 err = fq_change(sch, opt, extack);
960         else
961                 err = fq_resize(sch, q->fq_trees_log);
962
963         return err;
964 }
965
966 static int fq_dump(struct Qdisc *sch, struct sk_buff *skb)
967 {
968         struct fq_sched_data *q = qdisc_priv(sch);
969         u64 ce_threshold = q->ce_threshold;
970         u64 horizon = q->horizon;
971         struct nlattr *opts;
972
973         opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
974         if (opts == NULL)
975                 goto nla_put_failure;
976
977         /* TCA_FQ_FLOW_DEFAULT_RATE is not used anymore */
978
979         do_div(ce_threshold, NSEC_PER_USEC);
980         do_div(horizon, NSEC_PER_USEC);
981
982         if (nla_put_u32(skb, TCA_FQ_PLIMIT, sch->limit) ||
983             nla_put_u32(skb, TCA_FQ_FLOW_PLIMIT, q->flow_plimit) ||
984             nla_put_u32(skb, TCA_FQ_QUANTUM, q->quantum) ||
985             nla_put_u32(skb, TCA_FQ_INITIAL_QUANTUM, q->initial_quantum) ||
986             nla_put_u32(skb, TCA_FQ_RATE_ENABLE, q->rate_enable) ||
987             nla_put_u32(skb, TCA_FQ_FLOW_MAX_RATE,
988                         min_t(unsigned long, q->flow_max_rate, ~0U)) ||
989             nla_put_u32(skb, TCA_FQ_FLOW_REFILL_DELAY,
990                         jiffies_to_usecs(q->flow_refill_delay)) ||
991             nla_put_u32(skb, TCA_FQ_ORPHAN_MASK, q->orphan_mask) ||
992             nla_put_u32(skb, TCA_FQ_LOW_RATE_THRESHOLD,
993                         q->low_rate_threshold) ||
994             nla_put_u32(skb, TCA_FQ_CE_THRESHOLD, (u32)ce_threshold) ||
995             nla_put_u32(skb, TCA_FQ_BUCKETS_LOG, q->fq_trees_log) ||
996             nla_put_u32(skb, TCA_FQ_TIMER_SLACK, q->timer_slack) ||
997             nla_put_u32(skb, TCA_FQ_HORIZON, (u32)horizon) ||
998             nla_put_u8(skb, TCA_FQ_HORIZON_DROP, q->horizon_drop))
999                 goto nla_put_failure;
1000
1001         return nla_nest_end(skb, opts);
1002
1003 nla_put_failure:
1004         return -1;
1005 }
1006
1007 static int fq_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
1008 {
1009         struct fq_sched_data *q = qdisc_priv(sch);
1010         struct tc_fq_qd_stats st;
1011
1012         sch_tree_lock(sch);
1013
1014         st.gc_flows               = q->stat_gc_flows;
1015         st.highprio_packets       = q->stat_internal_packets;
1016         st.tcp_retrans            = 0;
1017         st.throttled              = q->stat_throttled;
1018         st.flows_plimit           = q->stat_flows_plimit;
1019         st.pkts_too_long          = q->stat_pkts_too_long;
1020         st.allocation_errors      = q->stat_allocation_errors;
1021         st.time_next_delayed_flow = q->time_next_delayed_flow + q->timer_slack -
1022                                     ktime_get_ns();
1023         st.flows                  = q->flows;
1024         st.inactive_flows         = q->inactive_flows;
1025         st.throttled_flows        = q->throttled_flows;
1026         st.unthrottle_latency_ns  = min_t(unsigned long,
1027                                           q->unthrottle_latency_ns, ~0U);
1028         st.ce_mark                = q->stat_ce_mark;
1029         st.horizon_drops          = q->stat_horizon_drops;
1030         st.horizon_caps           = q->stat_horizon_caps;
1031         sch_tree_unlock(sch);
1032
1033         return gnet_stats_copy_app(d, &st, sizeof(st));
1034 }
1035
1036 static struct Qdisc_ops fq_qdisc_ops __read_mostly = {
1037         .id             =       "fq",
1038         .priv_size      =       sizeof(struct fq_sched_data),
1039
1040         .enqueue        =       fq_enqueue,
1041         .dequeue        =       fq_dequeue,
1042         .peek           =       qdisc_peek_dequeued,
1043         .init           =       fq_init,
1044         .reset          =       fq_reset,
1045         .destroy        =       fq_destroy,
1046         .change         =       fq_change,
1047         .dump           =       fq_dump,
1048         .dump_stats     =       fq_dump_stats,
1049         .owner          =       THIS_MODULE,
1050 };
1051
1052 static int __init fq_module_init(void)
1053 {
1054         int ret;
1055
1056         fq_flow_cachep = kmem_cache_create("fq_flow_cache",
1057                                            sizeof(struct fq_flow),
1058                                            0, 0, NULL);
1059         if (!fq_flow_cachep)
1060                 return -ENOMEM;
1061
1062         ret = register_qdisc(&fq_qdisc_ops);
1063         if (ret)
1064                 kmem_cache_destroy(fq_flow_cachep);
1065         return ret;
1066 }
1067
1068 static void __exit fq_module_exit(void)
1069 {
1070         unregister_qdisc(&fq_qdisc_ops);
1071         kmem_cache_destroy(fq_flow_cachep);
1072 }
1073
1074 module_init(fq_module_init)
1075 module_exit(fq_module_exit)
1076 MODULE_AUTHOR("Eric Dumazet");
1077 MODULE_LICENSE("GPL");
1078 MODULE_DESCRIPTION("Fair Queue Packet Scheduler");