1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Kerberos-based RxRPC security
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <crypto/skcipher.h>
11 #include <linux/module.h>
12 #include <linux/net.h>
13 #include <linux/skbuff.h>
14 #include <linux/udp.h>
15 #include <linux/scatterlist.h>
16 #include <linux/ctype.h>
17 #include <linux/slab.h>
18 #include <linux/key-type.h>
20 #include <net/af_rxrpc.h>
21 #include <keys/rxrpc-type.h>
22 #include "ar-internal.h"
24 #define RXKAD_VERSION 2
25 #define MAXKRB5TICKETLEN 1024
26 #define RXKAD_TKT_TYPE_KERBEROS_V5 256
27 #define ANAME_SZ 40 /* size of authentication name */
28 #define INST_SZ 40 /* size of principal's instance */
29 #define REALM_SZ 40 /* size of principal's auth domain */
30 #define SNAME_SZ 40 /* size of service name */
33 struct rxkad_level1_hdr {
34 __be32 data_size; /* true data size (excluding padding) */
37 struct rxkad_level2_hdr {
38 __be32 data_size; /* true data size (excluding padding) */
39 __be32 checksum; /* decrypted data checksum */
42 static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
43 struct crypto_sync_skcipher *ci);
46 * this holds a pinned cipher so that keventd doesn't get called by the cipher
47 * alloc routine, but since we have it to hand, we use it to decrypt RESPONSE
50 static struct crypto_sync_skcipher *rxkad_ci;
51 static struct skcipher_request *rxkad_ci_req;
52 static DEFINE_MUTEX(rxkad_ci_mutex);
55 * Parse the information from a server key
57 * The data should be the 8-byte secret key.
59 static int rxkad_preparse_server_key(struct key_preparsed_payload *prep)
61 struct crypto_skcipher *ci;
63 if (prep->datalen != 8)
66 memcpy(&prep->payload.data[2], prep->data, 8);
68 ci = crypto_alloc_skcipher("pcbc(des)", 0, CRYPTO_ALG_ASYNC);
70 _leave(" = %ld", PTR_ERR(ci));
74 if (crypto_skcipher_setkey(ci, prep->data, 8) < 0)
77 prep->payload.data[0] = ci;
82 static void rxkad_free_preparse_server_key(struct key_preparsed_payload *prep)
85 if (prep->payload.data[0])
86 crypto_free_skcipher(prep->payload.data[0]);
89 static void rxkad_destroy_server_key(struct key *key)
91 if (key->payload.data[0]) {
92 crypto_free_skcipher(key->payload.data[0]);
93 key->payload.data[0] = NULL;
98 * initialise connection security
100 static int rxkad_init_connection_security(struct rxrpc_connection *conn,
101 struct rxrpc_key_token *token)
103 struct crypto_sync_skcipher *ci;
106 _enter("{%d},{%x}", conn->debug_id, key_serial(conn->key));
108 conn->security_ix = token->security_index;
110 ci = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
117 if (crypto_sync_skcipher_setkey(ci, token->kad->session_key,
118 sizeof(token->kad->session_key)) < 0)
121 switch (conn->security_level) {
122 case RXRPC_SECURITY_PLAIN:
123 case RXRPC_SECURITY_AUTH:
124 case RXRPC_SECURITY_ENCRYPT:
131 ret = rxkad_prime_packet_security(conn, ci);
135 conn->rxkad.cipher = ci;
139 crypto_free_sync_skcipher(ci);
141 _leave(" = %d", ret);
146 * Work out how much data we can put in a packet.
148 static int rxkad_how_much_data(struct rxrpc_call *call, size_t remain,
149 size_t *_buf_size, size_t *_data_size, size_t *_offset)
151 size_t shdr, buf_size, chunk;
153 switch (call->conn->security_level) {
155 buf_size = chunk = min_t(size_t, remain, RXRPC_JUMBO_DATALEN);
158 case RXRPC_SECURITY_AUTH:
159 shdr = sizeof(struct rxkad_level1_hdr);
161 case RXRPC_SECURITY_ENCRYPT:
162 shdr = sizeof(struct rxkad_level2_hdr);
166 buf_size = round_down(RXRPC_JUMBO_DATALEN, RXKAD_ALIGN);
168 chunk = buf_size - shdr;
170 buf_size = round_up(shdr + remain, RXKAD_ALIGN);
173 *_buf_size = buf_size;
180 * prime the encryption state with the invariant parts of a connection's
183 static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
184 struct crypto_sync_skcipher *ci)
186 struct skcipher_request *req;
187 struct rxrpc_key_token *token;
188 struct scatterlist sg;
189 struct rxrpc_crypt iv;
191 size_t tmpsize = 4 * sizeof(__be32);
198 tmpbuf = kmalloc(tmpsize, GFP_KERNEL);
202 req = skcipher_request_alloc(&ci->base, GFP_NOFS);
208 token = conn->key->payload.data[0];
209 memcpy(&iv, token->kad->session_key, sizeof(iv));
211 tmpbuf[0] = htonl(conn->proto.epoch);
212 tmpbuf[1] = htonl(conn->proto.cid);
214 tmpbuf[3] = htonl(conn->security_ix);
216 sg_init_one(&sg, tmpbuf, tmpsize);
217 skcipher_request_set_sync_tfm(req, ci);
218 skcipher_request_set_callback(req, 0, NULL, NULL);
219 skcipher_request_set_crypt(req, &sg, &sg, tmpsize, iv.x);
220 crypto_skcipher_encrypt(req);
221 skcipher_request_free(req);
223 memcpy(&conn->rxkad.csum_iv, tmpbuf + 2, sizeof(conn->rxkad.csum_iv));
230 * Allocate and prepare the crypto request on a call. For any particular call,
231 * this is called serially for the packets, so no lock should be necessary.
233 static struct skcipher_request *rxkad_get_call_crypto(struct rxrpc_call *call)
235 struct crypto_skcipher *tfm = &call->conn->rxkad.cipher->base;
237 return skcipher_request_alloc(tfm, GFP_NOFS);
241 * Clean up the crypto on a call.
243 static void rxkad_free_call_crypto(struct rxrpc_call *call)
248 * partially encrypt a packet (level 1 security)
250 static int rxkad_secure_packet_auth(const struct rxrpc_call *call,
251 struct rxrpc_txbuf *txb,
252 struct skcipher_request *req)
254 struct rxkad_level1_hdr *hdr = (void *)txb->data;
255 struct rxrpc_crypt iv;
256 struct scatterlist sg;
262 check = txb->seq ^ ntohl(txb->wire.callNumber);
263 hdr->data_size = htonl((u32)check << 16 | txb->len);
265 txb->len += sizeof(struct rxkad_level1_hdr);
267 pad = RXKAD_ALIGN - pad;
268 pad &= RXKAD_ALIGN - 1;
270 memset(txb->data + txb->offset, 0, pad);
274 /* start the encryption afresh */
275 memset(&iv, 0, sizeof(iv));
277 sg_init_one(&sg, txb->data, 8);
278 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
279 skcipher_request_set_callback(req, 0, NULL, NULL);
280 skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
281 crypto_skcipher_encrypt(req);
282 skcipher_request_zero(req);
289 * wholly encrypt a packet (level 2 security)
291 static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call,
292 struct rxrpc_txbuf *txb,
293 struct skcipher_request *req)
295 const struct rxrpc_key_token *token;
296 struct rxkad_level2_hdr *rxkhdr = (void *)txb->data;
297 struct rxrpc_crypt iv;
298 struct scatterlist sg;
305 check = txb->seq ^ ntohl(txb->wire.callNumber);
307 rxkhdr->data_size = htonl(txb->len | (u32)check << 16);
308 rxkhdr->checksum = 0;
310 txb->len += sizeof(struct rxkad_level2_hdr);
312 pad = RXKAD_ALIGN - pad;
313 pad &= RXKAD_ALIGN - 1;
315 memset(txb->data + txb->offset, 0, pad);
319 /* encrypt from the session key */
320 token = call->conn->key->payload.data[0];
321 memcpy(&iv, token->kad->session_key, sizeof(iv));
323 sg_init_one(&sg, txb->data, txb->len);
324 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
325 skcipher_request_set_callback(req, 0, NULL, NULL);
326 skcipher_request_set_crypt(req, &sg, &sg, txb->len, iv.x);
327 ret = crypto_skcipher_encrypt(req);
328 skcipher_request_zero(req);
333 * checksum an RxRPC packet header
335 static int rxkad_secure_packet(struct rxrpc_call *call, struct rxrpc_txbuf *txb)
337 struct skcipher_request *req;
338 struct rxrpc_crypt iv;
339 struct scatterlist sg;
342 } crypto __aligned(8);
346 _enter("{%d{%x}},{#%u},%u,",
347 call->debug_id, key_serial(call->conn->key),
350 if (!call->conn->rxkad.cipher)
353 ret = key_validate(call->conn->key);
357 req = rxkad_get_call_crypto(call);
361 /* continue encrypting from where we left off */
362 memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
364 /* calculate the security checksum */
365 x = (ntohl(txb->wire.cid) & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
366 x |= txb->seq & 0x3fffffff;
367 crypto.buf[0] = txb->wire.callNumber;
368 crypto.buf[1] = htonl(x);
370 sg_init_one(&sg, crypto.buf, 8);
371 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
372 skcipher_request_set_callback(req, 0, NULL, NULL);
373 skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
374 crypto_skcipher_encrypt(req);
375 skcipher_request_zero(req);
377 y = ntohl(crypto.buf[1]);
378 y = (y >> 16) & 0xffff;
380 y = 1; /* zero checksums are not permitted */
381 txb->wire.cksum = htons(y);
383 switch (call->conn->security_level) {
384 case RXRPC_SECURITY_PLAIN:
387 case RXRPC_SECURITY_AUTH:
388 ret = rxkad_secure_packet_auth(call, txb, req);
390 case RXRPC_SECURITY_ENCRYPT:
391 ret = rxkad_secure_packet_encrypt(call, txb, req);
398 skcipher_request_free(req);
399 _leave(" = %d [set %x]", ret, y);
404 * decrypt partial encryption on a packet (level 1 security)
406 static int rxkad_verify_packet_1(struct rxrpc_call *call, struct sk_buff *skb,
408 struct skcipher_request *req)
410 struct rxkad_level1_hdr sechdr;
411 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
412 struct rxrpc_crypt iv;
413 struct scatterlist sg[16];
421 return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
422 rxkad_abort_1_short_header);
424 /* Decrypt the skbuff in-place. TODO: We really want to decrypt
425 * directly into the target buffer.
427 sg_init_table(sg, ARRAY_SIZE(sg));
428 ret = skb_to_sgvec(skb, sg, sp->offset, 8);
429 if (unlikely(ret < 0))
432 /* start the decryption afresh */
433 memset(&iv, 0, sizeof(iv));
435 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
436 skcipher_request_set_callback(req, 0, NULL, NULL);
437 skcipher_request_set_crypt(req, sg, sg, 8, iv.x);
438 crypto_skcipher_decrypt(req);
439 skcipher_request_zero(req);
441 /* Extract the decrypted packet length */
442 if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0)
443 return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
444 rxkad_abort_1_short_encdata);
445 sp->offset += sizeof(sechdr);
446 sp->len -= sizeof(sechdr);
448 buf = ntohl(sechdr.data_size);
449 data_size = buf & 0xffff;
452 check ^= seq ^ call->call_id;
455 return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
456 rxkad_abort_1_short_check);
457 if (data_size > sp->len)
458 return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
459 rxkad_abort_1_short_data);
462 _leave(" = 0 [dlen=%x]", data_size);
467 * wholly decrypt a packet (level 2 security)
469 static int rxkad_verify_packet_2(struct rxrpc_call *call, struct sk_buff *skb,
471 struct skcipher_request *req)
473 const struct rxrpc_key_token *token;
474 struct rxkad_level2_hdr sechdr;
475 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
476 struct rxrpc_crypt iv;
477 struct scatterlist _sg[4], *sg;
482 _enter(",{%d}", sp->len);
485 return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
486 rxkad_abort_2_short_header);
488 /* Decrypt the skbuff in-place. TODO: We really want to decrypt
489 * directly into the target buffer.
492 nsg = skb_shinfo(skb)->nr_frags + 1;
496 sg = kmalloc_array(nsg, sizeof(*sg), GFP_NOIO);
501 sg_init_table(sg, nsg);
502 ret = skb_to_sgvec(skb, sg, sp->offset, sp->len);
503 if (unlikely(ret < 0)) {
509 /* decrypt from the session key */
510 token = call->conn->key->payload.data[0];
511 memcpy(&iv, token->kad->session_key, sizeof(iv));
513 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
514 skcipher_request_set_callback(req, 0, NULL, NULL);
515 skcipher_request_set_crypt(req, sg, sg, sp->len, iv.x);
516 crypto_skcipher_decrypt(req);
517 skcipher_request_zero(req);
521 /* Extract the decrypted packet length */
522 if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0)
523 return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
524 rxkad_abort_2_short_len);
525 sp->offset += sizeof(sechdr);
526 sp->len -= sizeof(sechdr);
528 buf = ntohl(sechdr.data_size);
529 data_size = buf & 0xffff;
532 check ^= seq ^ call->call_id;
535 return rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
536 rxkad_abort_2_short_check);
538 if (data_size > sp->len)
539 return rxrpc_abort_eproto(call, skb, RXKADDATALEN,
540 rxkad_abort_2_short_data);
543 _leave(" = 0 [dlen=%x]", data_size);
548 * Verify the security on a received packet and the subpackets therein.
550 static int rxkad_verify_packet(struct rxrpc_call *call, struct sk_buff *skb)
552 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
553 struct skcipher_request *req;
554 struct rxrpc_crypt iv;
555 struct scatterlist sg;
558 } crypto __aligned(8);
559 rxrpc_seq_t seq = sp->hdr.seq;
564 _enter("{%d{%x}},{#%u}",
565 call->debug_id, key_serial(call->conn->key), seq);
567 if (!call->conn->rxkad.cipher)
570 req = rxkad_get_call_crypto(call);
574 /* continue encrypting from where we left off */
575 memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
577 /* validate the security checksum */
578 x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
579 x |= seq & 0x3fffffff;
580 crypto.buf[0] = htonl(call->call_id);
581 crypto.buf[1] = htonl(x);
583 sg_init_one(&sg, crypto.buf, 8);
584 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
585 skcipher_request_set_callback(req, 0, NULL, NULL);
586 skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
587 crypto_skcipher_encrypt(req);
588 skcipher_request_zero(req);
590 y = ntohl(crypto.buf[1]);
591 cksum = (y >> 16) & 0xffff;
593 cksum = 1; /* zero checksums are not permitted */
595 if (cksum != sp->hdr.cksum) {
596 ret = rxrpc_abort_eproto(call, skb, RXKADSEALEDINCON,
597 rxkad_abort_bad_checksum);
601 switch (call->conn->security_level) {
602 case RXRPC_SECURITY_PLAIN:
605 case RXRPC_SECURITY_AUTH:
606 ret = rxkad_verify_packet_1(call, skb, seq, req);
608 case RXRPC_SECURITY_ENCRYPT:
609 ret = rxkad_verify_packet_2(call, skb, seq, req);
617 skcipher_request_free(req);
624 static int rxkad_issue_challenge(struct rxrpc_connection *conn)
626 struct rxkad_challenge challenge;
627 struct rxrpc_wire_header whdr;
634 _enter("{%d}", conn->debug_id);
636 get_random_bytes(&conn->rxkad.nonce, sizeof(conn->rxkad.nonce));
638 challenge.version = htonl(2);
639 challenge.nonce = htonl(conn->rxkad.nonce);
640 challenge.min_level = htonl(0);
641 challenge.__padding = 0;
643 msg.msg_name = &conn->peer->srx.transport;
644 msg.msg_namelen = conn->peer->srx.transport_len;
645 msg.msg_control = NULL;
646 msg.msg_controllen = 0;
649 whdr.epoch = htonl(conn->proto.epoch);
650 whdr.cid = htonl(conn->proto.cid);
653 whdr.type = RXRPC_PACKET_TYPE_CHALLENGE;
654 whdr.flags = conn->out_clientflag;
656 whdr.securityIndex = conn->security_ix;
658 whdr.serviceId = htons(conn->service_id);
660 iov[0].iov_base = &whdr;
661 iov[0].iov_len = sizeof(whdr);
662 iov[1].iov_base = &challenge;
663 iov[1].iov_len = sizeof(challenge);
665 len = iov[0].iov_len + iov[1].iov_len;
667 serial = atomic_inc_return(&conn->serial);
668 whdr.serial = htonl(serial);
670 ret = kernel_sendmsg(conn->local->socket, &msg, iov, 2, len);
672 trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
673 rxrpc_tx_point_rxkad_challenge);
677 conn->peer->last_tx_at = ktime_get_seconds();
678 trace_rxrpc_tx_packet(conn->debug_id, &whdr,
679 rxrpc_tx_point_rxkad_challenge);
685 * send a Kerberos security response
687 static int rxkad_send_response(struct rxrpc_connection *conn,
688 struct rxrpc_host_header *hdr,
689 struct rxkad_response *resp,
690 const struct rxkad_key *s2)
692 struct rxrpc_wire_header whdr;
701 msg.msg_name = &conn->peer->srx.transport;
702 msg.msg_namelen = conn->peer->srx.transport_len;
703 msg.msg_control = NULL;
704 msg.msg_controllen = 0;
707 memset(&whdr, 0, sizeof(whdr));
708 whdr.epoch = htonl(hdr->epoch);
709 whdr.cid = htonl(hdr->cid);
710 whdr.type = RXRPC_PACKET_TYPE_RESPONSE;
711 whdr.flags = conn->out_clientflag;
712 whdr.securityIndex = hdr->securityIndex;
713 whdr.serviceId = htons(hdr->serviceId);
715 iov[0].iov_base = &whdr;
716 iov[0].iov_len = sizeof(whdr);
717 iov[1].iov_base = resp;
718 iov[1].iov_len = sizeof(*resp);
719 iov[2].iov_base = (void *)s2->ticket;
720 iov[2].iov_len = s2->ticket_len;
722 len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;
724 serial = atomic_inc_return(&conn->serial);
725 whdr.serial = htonl(serial);
727 ret = kernel_sendmsg(conn->local->socket, &msg, iov, 3, len);
729 trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
730 rxrpc_tx_point_rxkad_response);
734 conn->peer->last_tx_at = ktime_get_seconds();
740 * calculate the response checksum
742 static void rxkad_calc_response_checksum(struct rxkad_response *response)
746 u8 *p = (u8 *) response;
748 for (loop = sizeof(*response); loop > 0; loop--)
749 csum = csum * 0x10204081 + *p++;
751 response->encrypted.checksum = htonl(csum);
755 * encrypt the response packet
757 static int rxkad_encrypt_response(struct rxrpc_connection *conn,
758 struct rxkad_response *resp,
759 const struct rxkad_key *s2)
761 struct skcipher_request *req;
762 struct rxrpc_crypt iv;
763 struct scatterlist sg[1];
765 req = skcipher_request_alloc(&conn->rxkad.cipher->base, GFP_NOFS);
769 /* continue encrypting from where we left off */
770 memcpy(&iv, s2->session_key, sizeof(iv));
772 sg_init_table(sg, 1);
773 sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
774 skcipher_request_set_sync_tfm(req, conn->rxkad.cipher);
775 skcipher_request_set_callback(req, 0, NULL, NULL);
776 skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
777 crypto_skcipher_encrypt(req);
778 skcipher_request_free(req);
783 * respond to a challenge packet
785 static int rxkad_respond_to_challenge(struct rxrpc_connection *conn,
788 const struct rxrpc_key_token *token;
789 struct rxkad_challenge challenge;
790 struct rxkad_response *resp;
791 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
792 u32 version, nonce, min_level;
795 _enter("{%d,%x}", conn->debug_id, key_serial(conn->key));
798 return rxrpc_abort_conn(conn, skb, RX_PROTOCOL_ERROR, -EPROTO,
799 rxkad_abort_chall_no_key);
801 ret = key_validate(conn->key);
803 return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret,
804 rxkad_abort_chall_key_expired);
806 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
807 &challenge, sizeof(challenge)) < 0)
808 return rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO,
809 rxkad_abort_chall_short);
811 version = ntohl(challenge.version);
812 nonce = ntohl(challenge.nonce);
813 min_level = ntohl(challenge.min_level);
815 trace_rxrpc_rx_challenge(conn, sp->hdr.serial, version, nonce, min_level);
817 if (version != RXKAD_VERSION)
818 return rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO,
819 rxkad_abort_chall_version);
821 if (conn->security_level < min_level)
822 return rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EACCES,
823 rxkad_abort_chall_level);
825 token = conn->key->payload.data[0];
827 /* build the response packet */
828 resp = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
832 resp->version = htonl(RXKAD_VERSION);
833 resp->encrypted.epoch = htonl(conn->proto.epoch);
834 resp->encrypted.cid = htonl(conn->proto.cid);
835 resp->encrypted.securityIndex = htonl(conn->security_ix);
836 resp->encrypted.inc_nonce = htonl(nonce + 1);
837 resp->encrypted.level = htonl(conn->security_level);
838 resp->kvno = htonl(token->kad->kvno);
839 resp->ticket_len = htonl(token->kad->ticket_len);
840 resp->encrypted.call_id[0] = htonl(conn->channels[0].call_counter);
841 resp->encrypted.call_id[1] = htonl(conn->channels[1].call_counter);
842 resp->encrypted.call_id[2] = htonl(conn->channels[2].call_counter);
843 resp->encrypted.call_id[3] = htonl(conn->channels[3].call_counter);
845 /* calculate the response checksum and then do the encryption */
846 rxkad_calc_response_checksum(resp);
847 ret = rxkad_encrypt_response(conn, resp, token->kad);
849 ret = rxkad_send_response(conn, &sp->hdr, resp, token->kad);
855 * decrypt the kerberos IV ticket in the response
857 static int rxkad_decrypt_ticket(struct rxrpc_connection *conn,
858 struct key *server_key,
860 void *ticket, size_t ticket_len,
861 struct rxrpc_crypt *_session_key,
864 struct skcipher_request *req;
865 struct rxrpc_crypt iv, key;
866 struct scatterlist sg[1];
871 u8 *p, *q, *name, *end;
873 _enter("{%d},{%x}", conn->debug_id, key_serial(server_key));
877 ASSERT(server_key->payload.data[0] != NULL);
878 ASSERTCMP((unsigned long) ticket & 7UL, ==, 0);
880 memcpy(&iv, &server_key->payload.data[2], sizeof(iv));
882 req = skcipher_request_alloc(server_key->payload.data[0], GFP_NOFS);
886 sg_init_one(&sg[0], ticket, ticket_len);
887 skcipher_request_set_callback(req, 0, NULL, NULL);
888 skcipher_request_set_crypt(req, sg, sg, ticket_len, iv.x);
889 crypto_skcipher_decrypt(req);
890 skcipher_request_free(req);
893 end = p + ticket_len;
895 #define Z(field, fieldl) \
898 q = memchr(p, 0, end - p); \
899 if (!q || q - p > field##_SZ) \
900 return rxrpc_abort_conn( \
901 conn, skb, RXKADBADTICKET, -EPROTO, \
902 rxkad_abort_resp_tkt_##fieldl); \
905 return rxrpc_abort_conn( \
906 conn, skb, RXKADBADTICKET, -EPROTO, \
907 rxkad_abort_resp_tkt_##fieldl); \
912 /* extract the ticket flags */
913 _debug("KIV FLAGS: %x", *p);
914 little_endian = *p & 1;
917 /* extract the authentication name */
918 name = Z(ANAME, aname);
919 _debug("KIV ANAME: %s", name);
921 /* extract the principal's instance */
922 name = Z(INST, inst);
923 _debug("KIV INST : %s", name);
925 /* extract the principal's authentication domain */
926 name = Z(REALM, realm);
927 _debug("KIV REALM: %s", name);
929 if (end - p < 4 + 8 + 4 + 2)
930 return rxrpc_abort_conn(conn, skb, RXKADBADTICKET, -EPROTO,
931 rxkad_abort_resp_tkt_short);
933 /* get the IPv4 address of the entity that requested the ticket */
934 memcpy(&addr, p, sizeof(addr));
936 _debug("KIV ADDR : %pI4", &addr);
938 /* get the session key from the ticket */
939 memcpy(&key, p, sizeof(key));
941 _debug("KIV KEY : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1]));
942 memcpy(_session_key, &key, sizeof(key));
944 /* get the ticket's lifetime */
945 life = *p++ * 5 * 60;
946 _debug("KIV LIFE : %u", life);
948 /* get the issue time of the ticket */
951 memcpy(&stamp, p, 4);
952 issue = rxrpc_u32_to_time64(le32_to_cpu(stamp));
955 memcpy(&stamp, p, 4);
956 issue = rxrpc_u32_to_time64(be32_to_cpu(stamp));
959 now = ktime_get_real_seconds();
960 _debug("KIV ISSUE: %llx [%llx]", issue, now);
962 /* check the ticket is in date */
964 return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, -EKEYREJECTED,
965 rxkad_abort_resp_tkt_future);
966 if (issue < now - life)
967 return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, -EKEYEXPIRED,
968 rxkad_abort_resp_tkt_expired);
970 *_expiry = issue + life;
972 /* get the service name */
973 name = Z(SNAME, sname);
974 _debug("KIV SNAME: %s", name);
976 /* get the service instance name */
977 name = Z(INST, sinst);
978 _debug("KIV SINST: %s", name);
983 * decrypt the response packet
985 static void rxkad_decrypt_response(struct rxrpc_connection *conn,
986 struct rxkad_response *resp,
987 const struct rxrpc_crypt *session_key)
989 struct skcipher_request *req = rxkad_ci_req;
990 struct scatterlist sg[1];
991 struct rxrpc_crypt iv;
994 ntohl(session_key->n[0]), ntohl(session_key->n[1]));
996 mutex_lock(&rxkad_ci_mutex);
997 if (crypto_sync_skcipher_setkey(rxkad_ci, session_key->x,
998 sizeof(*session_key)) < 0)
1001 memcpy(&iv, session_key, sizeof(iv));
1003 sg_init_table(sg, 1);
1004 sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
1005 skcipher_request_set_sync_tfm(req, rxkad_ci);
1006 skcipher_request_set_callback(req, 0, NULL, NULL);
1007 skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
1008 crypto_skcipher_decrypt(req);
1009 skcipher_request_zero(req);
1011 mutex_unlock(&rxkad_ci_mutex);
1019 static int rxkad_verify_response(struct rxrpc_connection *conn,
1020 struct sk_buff *skb)
1022 struct rxkad_response *response;
1023 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
1024 struct rxrpc_crypt session_key;
1025 struct key *server_key;
1028 u32 version, kvno, ticket_len, level;
1032 _enter("{%d}", conn->debug_id);
1034 server_key = rxrpc_look_up_server_security(conn, skb, 0, 0);
1035 if (IS_ERR(server_key)) {
1036 ret = PTR_ERR(server_key);
1039 return rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, ret,
1040 rxkad_abort_resp_nokey);
1042 return rxrpc_abort_conn(conn, skb, RXKADEXPIRED, ret,
1043 rxkad_abort_resp_key_expired);
1045 return rxrpc_abort_conn(conn, skb, RXKADNOAUTH, ret,
1046 rxkad_abort_resp_key_rejected);
1051 response = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
1053 goto temporary_error;
1055 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
1056 response, sizeof(*response)) < 0) {
1057 rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO,
1058 rxkad_abort_resp_short);
1059 goto protocol_error;
1062 version = ntohl(response->version);
1063 ticket_len = ntohl(response->ticket_len);
1064 kvno = ntohl(response->kvno);
1066 trace_rxrpc_rx_response(conn, sp->hdr.serial, version, kvno, ticket_len);
1068 if (version != RXKAD_VERSION) {
1069 rxrpc_abort_conn(conn, skb, RXKADINCONSISTENCY, -EPROTO,
1070 rxkad_abort_resp_version);
1071 goto protocol_error;
1074 if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN) {
1075 rxrpc_abort_conn(conn, skb, RXKADTICKETLEN, -EPROTO,
1076 rxkad_abort_resp_tkt_len);
1077 goto protocol_error;
1080 if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5) {
1081 rxrpc_abort_conn(conn, skb, RXKADUNKNOWNKEY, -EPROTO,
1082 rxkad_abort_resp_unknown_tkt);
1083 goto protocol_error;
1086 /* extract the kerberos ticket and decrypt and decode it */
1088 ticket = kmalloc(ticket_len, GFP_NOFS);
1090 goto temporary_error_free_resp;
1092 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header) + sizeof(*response),
1093 ticket, ticket_len) < 0) {
1094 rxrpc_abort_conn(conn, skb, RXKADPACKETSHORT, -EPROTO,
1095 rxkad_abort_resp_short_tkt);
1096 goto protocol_error;
1099 ret = rxkad_decrypt_ticket(conn, server_key, skb, ticket, ticket_len,
1100 &session_key, &expiry);
1102 goto temporary_error_free_ticket;
1104 /* use the session key from inside the ticket to decrypt the
1106 rxkad_decrypt_response(conn, response, &session_key);
1108 if (ntohl(response->encrypted.epoch) != conn->proto.epoch ||
1109 ntohl(response->encrypted.cid) != conn->proto.cid ||
1110 ntohl(response->encrypted.securityIndex) != conn->security_ix) {
1111 rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1112 rxkad_abort_resp_bad_param);
1113 goto protocol_error_free;
1116 csum = response->encrypted.checksum;
1117 response->encrypted.checksum = 0;
1118 rxkad_calc_response_checksum(response);
1119 if (response->encrypted.checksum != csum) {
1120 rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1121 rxkad_abort_resp_bad_checksum);
1122 goto protocol_error_free;
1125 spin_lock(&conn->bundle->channel_lock);
1126 for (i = 0; i < RXRPC_MAXCALLS; i++) {
1127 struct rxrpc_call *call;
1128 u32 call_id = ntohl(response->encrypted.call_id[i]);
1130 if (call_id > INT_MAX) {
1131 rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1132 rxkad_abort_resp_bad_callid);
1133 goto protocol_error_unlock;
1136 if (call_id < conn->channels[i].call_counter) {
1137 rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1138 rxkad_abort_resp_call_ctr);
1139 goto protocol_error_unlock;
1142 if (call_id > conn->channels[i].call_counter) {
1143 call = rcu_dereference_protected(
1144 conn->channels[i].call,
1145 lockdep_is_held(&conn->bundle->channel_lock));
1146 if (call && !__rxrpc_call_is_complete(call)) {
1147 rxrpc_abort_conn(conn, skb, RXKADSEALEDINCON, -EPROTO,
1148 rxkad_abort_resp_call_state);
1149 goto protocol_error_unlock;
1151 conn->channels[i].call_counter = call_id;
1154 spin_unlock(&conn->bundle->channel_lock);
1156 if (ntohl(response->encrypted.inc_nonce) != conn->rxkad.nonce + 1) {
1157 rxrpc_abort_conn(conn, skb, RXKADOUTOFSEQUENCE, -EPROTO,
1158 rxkad_abort_resp_ooseq);
1159 goto protocol_error_free;
1162 level = ntohl(response->encrypted.level);
1163 if (level > RXRPC_SECURITY_ENCRYPT) {
1164 rxrpc_abort_conn(conn, skb, RXKADLEVELFAIL, -EPROTO,
1165 rxkad_abort_resp_level);
1166 goto protocol_error_free;
1168 conn->security_level = level;
1170 /* create a key to hold the security data and expiration time - after
1171 * this the connection security can be handled in exactly the same way
1172 * as for a client connection */
1173 ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno);
1175 goto temporary_error_free_ticket;
1182 protocol_error_unlock:
1183 spin_unlock(&conn->bundle->channel_lock);
1184 protocol_error_free:
1188 key_put(server_key);
1191 temporary_error_free_ticket:
1193 temporary_error_free_resp:
1196 /* Ignore the response packet if we got a temporary error such as
1197 * ENOMEM. We just want to send the challenge again. Note that we
1198 * also come out this way if the ticket decryption fails.
1200 key_put(server_key);
1205 * clear the connection security
1207 static void rxkad_clear(struct rxrpc_connection *conn)
1211 if (conn->rxkad.cipher)
1212 crypto_free_sync_skcipher(conn->rxkad.cipher);
1216 * Initialise the rxkad security service.
1218 static int rxkad_init(void)
1220 struct crypto_sync_skcipher *tfm;
1221 struct skcipher_request *req;
1223 /* pin the cipher we need so that the crypto layer doesn't invoke
1224 * keventd to go get it */
1225 tfm = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
1227 return PTR_ERR(tfm);
1229 req = skcipher_request_alloc(&tfm->base, GFP_KERNEL);
1238 crypto_free_sync_skcipher(tfm);
1243 * Clean up the rxkad security service.
1245 static void rxkad_exit(void)
1247 crypto_free_sync_skcipher(rxkad_ci);
1248 skcipher_request_free(rxkad_ci_req);
1252 * RxRPC Kerberos-based security
1254 const struct rxrpc_security rxkad = {
1256 .security_index = RXRPC_SECURITY_RXKAD,
1257 .no_key_abort = RXKADUNKNOWNKEY,
1260 .preparse_server_key = rxkad_preparse_server_key,
1261 .free_preparse_server_key = rxkad_free_preparse_server_key,
1262 .destroy_server_key = rxkad_destroy_server_key,
1263 .init_connection_security = rxkad_init_connection_security,
1264 .how_much_data = rxkad_how_much_data,
1265 .secure_packet = rxkad_secure_packet,
1266 .verify_packet = rxkad_verify_packet,
1267 .free_call_crypto = rxkad_free_call_crypto,
1268 .issue_challenge = rxkad_issue_challenge,
1269 .respond_to_challenge = rxkad_respond_to_challenge,
1270 .verify_response = rxkad_verify_response,
1271 .clear = rxkad_clear,