1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Kerberos-based RxRPC security
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <crypto/skcipher.h>
11 #include <linux/module.h>
12 #include <linux/net.h>
13 #include <linux/skbuff.h>
14 #include <linux/udp.h>
15 #include <linux/scatterlist.h>
16 #include <linux/ctype.h>
17 #include <linux/slab.h>
18 #include <linux/key-type.h>
20 #include <net/af_rxrpc.h>
21 #include <keys/rxrpc-type.h>
22 #include "ar-internal.h"
24 #define RXKAD_VERSION 2
25 #define MAXKRB5TICKETLEN 1024
26 #define RXKAD_TKT_TYPE_KERBEROS_V5 256
27 #define ANAME_SZ 40 /* size of authentication name */
28 #define INST_SZ 40 /* size of principal's instance */
29 #define REALM_SZ 40 /* size of principal's auth domain */
30 #define SNAME_SZ 40 /* size of service name */
33 struct rxkad_level1_hdr {
34 __be32 data_size; /* true data size (excluding padding) */
37 struct rxkad_level2_hdr {
38 __be32 data_size; /* true data size (excluding padding) */
39 __be32 checksum; /* decrypted data checksum */
42 static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
43 struct crypto_sync_skcipher *ci);
46 * this holds a pinned cipher so that keventd doesn't get called by the cipher
47 * alloc routine, but since we have it to hand, we use it to decrypt RESPONSE
50 static struct crypto_sync_skcipher *rxkad_ci;
51 static struct skcipher_request *rxkad_ci_req;
52 static DEFINE_MUTEX(rxkad_ci_mutex);
55 * Parse the information from a server key
57 * The data should be the 8-byte secret key.
59 static int rxkad_preparse_server_key(struct key_preparsed_payload *prep)
61 struct crypto_skcipher *ci;
63 if (prep->datalen != 8)
66 memcpy(&prep->payload.data[2], prep->data, 8);
68 ci = crypto_alloc_skcipher("pcbc(des)", 0, CRYPTO_ALG_ASYNC);
70 _leave(" = %ld", PTR_ERR(ci));
74 if (crypto_skcipher_setkey(ci, prep->data, 8) < 0)
77 prep->payload.data[0] = ci;
82 static void rxkad_free_preparse_server_key(struct key_preparsed_payload *prep)
85 if (prep->payload.data[0])
86 crypto_free_skcipher(prep->payload.data[0]);
89 static void rxkad_destroy_server_key(struct key *key)
91 if (key->payload.data[0]) {
92 crypto_free_skcipher(key->payload.data[0]);
93 key->payload.data[0] = NULL;
98 * initialise connection security
100 static int rxkad_init_connection_security(struct rxrpc_connection *conn,
101 struct rxrpc_key_token *token)
103 struct crypto_sync_skcipher *ci;
106 _enter("{%d},{%x}", conn->debug_id, key_serial(conn->params.key));
108 conn->security_ix = token->security_index;
110 ci = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
117 if (crypto_sync_skcipher_setkey(ci, token->kad->session_key,
118 sizeof(token->kad->session_key)) < 0)
121 switch (conn->params.security_level) {
122 case RXRPC_SECURITY_PLAIN:
123 case RXRPC_SECURITY_AUTH:
124 case RXRPC_SECURITY_ENCRYPT:
131 ret = rxkad_prime_packet_security(conn, ci);
135 conn->rxkad.cipher = ci;
139 crypto_free_sync_skcipher(ci);
141 _leave(" = %d", ret);
146 * Work out how much data we can put in a packet.
148 static int rxkad_how_much_data(struct rxrpc_call *call, size_t remain,
149 size_t *_buf_size, size_t *_data_size, size_t *_offset)
151 size_t shdr, buf_size, chunk;
153 switch (call->conn->params.security_level) {
155 buf_size = chunk = min_t(size_t, remain, RXRPC_JUMBO_DATALEN);
158 case RXRPC_SECURITY_AUTH:
159 shdr = sizeof(struct rxkad_level1_hdr);
161 case RXRPC_SECURITY_ENCRYPT:
162 shdr = sizeof(struct rxkad_level2_hdr);
166 buf_size = round_down(RXRPC_JUMBO_DATALEN, RXKAD_ALIGN);
168 chunk = buf_size - shdr;
170 buf_size = round_up(shdr + remain, RXKAD_ALIGN);
173 *_buf_size = buf_size;
180 * prime the encryption state with the invariant parts of a connection's
183 static int rxkad_prime_packet_security(struct rxrpc_connection *conn,
184 struct crypto_sync_skcipher *ci)
186 struct skcipher_request *req;
187 struct rxrpc_key_token *token;
188 struct scatterlist sg;
189 struct rxrpc_crypt iv;
191 size_t tmpsize = 4 * sizeof(__be32);
195 if (!conn->params.key)
198 tmpbuf = kmalloc(tmpsize, GFP_KERNEL);
202 req = skcipher_request_alloc(&ci->base, GFP_NOFS);
208 token = conn->params.key->payload.data[0];
209 memcpy(&iv, token->kad->session_key, sizeof(iv));
211 tmpbuf[0] = htonl(conn->proto.epoch);
212 tmpbuf[1] = htonl(conn->proto.cid);
214 tmpbuf[3] = htonl(conn->security_ix);
216 sg_init_one(&sg, tmpbuf, tmpsize);
217 skcipher_request_set_sync_tfm(req, ci);
218 skcipher_request_set_callback(req, 0, NULL, NULL);
219 skcipher_request_set_crypt(req, &sg, &sg, tmpsize, iv.x);
220 crypto_skcipher_encrypt(req);
221 skcipher_request_free(req);
223 memcpy(&conn->rxkad.csum_iv, tmpbuf + 2, sizeof(conn->rxkad.csum_iv));
230 * Allocate and prepare the crypto request on a call. For any particular call,
231 * this is called serially for the packets, so no lock should be necessary.
233 static struct skcipher_request *rxkad_get_call_crypto(struct rxrpc_call *call)
235 struct crypto_skcipher *tfm = &call->conn->rxkad.cipher->base;
236 struct skcipher_request *cipher_req = call->cipher_req;
239 cipher_req = skcipher_request_alloc(tfm, GFP_NOFS);
242 call->cipher_req = cipher_req;
249 * Clean up the crypto on a call.
251 static void rxkad_free_call_crypto(struct rxrpc_call *call)
253 if (call->cipher_req)
254 skcipher_request_free(call->cipher_req);
255 call->cipher_req = NULL;
259 * partially encrypt a packet (level 1 security)
261 static int rxkad_secure_packet_auth(const struct rxrpc_call *call,
262 struct sk_buff *skb, u32 data_size,
263 struct skcipher_request *req)
265 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
266 struct rxkad_level1_hdr hdr;
267 struct rxrpc_crypt iv;
268 struct scatterlist sg;
274 check = sp->hdr.seq ^ call->call_id;
275 data_size |= (u32)check << 16;
277 hdr.data_size = htonl(data_size);
278 memcpy(skb->head, &hdr, sizeof(hdr));
280 pad = sizeof(struct rxkad_level1_hdr) + data_size;
281 pad = RXKAD_ALIGN - pad;
282 pad &= RXKAD_ALIGN - 1;
284 skb_put_zero(skb, pad);
286 /* start the encryption afresh */
287 memset(&iv, 0, sizeof(iv));
289 sg_init_one(&sg, skb->head, 8);
290 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
291 skcipher_request_set_callback(req, 0, NULL, NULL);
292 skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
293 crypto_skcipher_encrypt(req);
294 skcipher_request_zero(req);
301 * wholly encrypt a packet (level 2 security)
303 static int rxkad_secure_packet_encrypt(const struct rxrpc_call *call,
306 struct skcipher_request *req)
308 const struct rxrpc_key_token *token;
309 struct rxkad_level2_hdr rxkhdr;
310 struct rxrpc_skb_priv *sp;
311 struct rxrpc_crypt iv;
312 struct scatterlist sg[16];
322 check = sp->hdr.seq ^ call->call_id;
324 rxkhdr.data_size = htonl(data_size | (u32)check << 16);
326 memcpy(skb->head, &rxkhdr, sizeof(rxkhdr));
328 pad = sizeof(struct rxkad_level2_hdr) + data_size;
329 pad = RXKAD_ALIGN - pad;
330 pad &= RXKAD_ALIGN - 1;
332 skb_put_zero(skb, pad);
334 /* encrypt from the session key */
335 token = call->conn->params.key->payload.data[0];
336 memcpy(&iv, token->kad->session_key, sizeof(iv));
338 sg_init_one(&sg[0], skb->head, sizeof(rxkhdr));
339 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
340 skcipher_request_set_callback(req, 0, NULL, NULL);
341 skcipher_request_set_crypt(req, &sg[0], &sg[0], sizeof(rxkhdr), iv.x);
342 crypto_skcipher_encrypt(req);
344 /* we want to encrypt the skbuff in-place */
346 if (skb_shinfo(skb)->nr_frags > 16)
349 len = round_up(data_size, RXKAD_ALIGN);
351 sg_init_table(sg, ARRAY_SIZE(sg));
352 err = skb_to_sgvec(skb, sg, 8, len);
353 if (unlikely(err < 0))
355 skcipher_request_set_crypt(req, sg, sg, len, iv.x);
356 crypto_skcipher_encrypt(req);
362 skcipher_request_zero(req);
367 * checksum an RxRPC packet header
369 static int rxkad_secure_packet(struct rxrpc_call *call,
373 struct rxrpc_skb_priv *sp;
374 struct skcipher_request *req;
375 struct rxrpc_crypt iv;
376 struct scatterlist sg;
382 _enter("{%d{%x}},{#%u},%zu,",
383 call->debug_id, key_serial(call->conn->params.key),
384 sp->hdr.seq, data_size);
386 if (!call->conn->rxkad.cipher)
389 ret = key_validate(call->conn->params.key);
393 req = rxkad_get_call_crypto(call);
397 /* continue encrypting from where we left off */
398 memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
400 /* calculate the security checksum */
401 x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
402 x |= sp->hdr.seq & 0x3fffffff;
403 call->crypto_buf[0] = htonl(call->call_id);
404 call->crypto_buf[1] = htonl(x);
406 sg_init_one(&sg, call->crypto_buf, 8);
407 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
408 skcipher_request_set_callback(req, 0, NULL, NULL);
409 skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
410 crypto_skcipher_encrypt(req);
411 skcipher_request_zero(req);
413 y = ntohl(call->crypto_buf[1]);
414 y = (y >> 16) & 0xffff;
416 y = 1; /* zero checksums are not permitted */
419 switch (call->conn->params.security_level) {
420 case RXRPC_SECURITY_PLAIN:
423 case RXRPC_SECURITY_AUTH:
424 ret = rxkad_secure_packet_auth(call, skb, data_size, req);
426 case RXRPC_SECURITY_ENCRYPT:
427 ret = rxkad_secure_packet_encrypt(call, skb, data_size, req);
434 _leave(" = %d [set %x]", ret, y);
439 * decrypt partial encryption on a packet (level 1 security)
441 static int rxkad_verify_packet_1(struct rxrpc_call *call, struct sk_buff *skb,
443 struct skcipher_request *req)
445 struct rxkad_level1_hdr sechdr;
446 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
447 struct rxrpc_crypt iv;
448 struct scatterlist sg[16];
457 aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_hdr", "V1H",
462 /* Decrypt the skbuff in-place. TODO: We really want to decrypt
463 * directly into the target buffer.
465 sg_init_table(sg, ARRAY_SIZE(sg));
466 ret = skb_to_sgvec(skb, sg, sp->offset, 8);
467 if (unlikely(ret < 0))
470 /* start the decryption afresh */
471 memset(&iv, 0, sizeof(iv));
473 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
474 skcipher_request_set_callback(req, 0, NULL, NULL);
475 skcipher_request_set_crypt(req, sg, sg, 8, iv.x);
476 crypto_skcipher_decrypt(req);
477 skcipher_request_zero(req);
479 /* Extract the decrypted packet length */
480 if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0) {
481 aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_len", "XV1",
485 sp->offset += sizeof(sechdr);
486 sp->len -= sizeof(sechdr);
488 buf = ntohl(sechdr.data_size);
489 data_size = buf & 0xffff;
492 check ^= seq ^ call->call_id;
495 aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_check", "V1C",
500 if (data_size > sp->len) {
501 aborted = rxrpc_abort_eproto(call, skb, "rxkad_1_datalen", "V1L",
507 _leave(" = 0 [dlen=%x]", data_size);
512 rxrpc_send_abort_packet(call);
517 * wholly decrypt a packet (level 2 security)
519 static int rxkad_verify_packet_2(struct rxrpc_call *call, struct sk_buff *skb,
521 struct skcipher_request *req)
523 const struct rxrpc_key_token *token;
524 struct rxkad_level2_hdr sechdr;
525 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
526 struct rxrpc_crypt iv;
527 struct scatterlist _sg[4], *sg;
533 _enter(",{%d}", sp->len);
536 aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_hdr", "V2H",
541 /* Decrypt the skbuff in-place. TODO: We really want to decrypt
542 * directly into the target buffer.
545 nsg = skb_shinfo(skb)->nr_frags + 1;
549 sg = kmalloc_array(nsg, sizeof(*sg), GFP_NOIO);
554 sg_init_table(sg, nsg);
555 ret = skb_to_sgvec(skb, sg, sp->offset, sp->len);
556 if (unlikely(ret < 0)) {
562 /* decrypt from the session key */
563 token = call->conn->params.key->payload.data[0];
564 memcpy(&iv, token->kad->session_key, sizeof(iv));
566 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
567 skcipher_request_set_callback(req, 0, NULL, NULL);
568 skcipher_request_set_crypt(req, sg, sg, sp->len, iv.x);
569 crypto_skcipher_decrypt(req);
570 skcipher_request_zero(req);
574 /* Extract the decrypted packet length */
575 if (skb_copy_bits(skb, sp->offset, &sechdr, sizeof(sechdr)) < 0) {
576 aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_len", "XV2",
580 sp->offset += sizeof(sechdr);
581 sp->len -= sizeof(sechdr);
583 buf = ntohl(sechdr.data_size);
584 data_size = buf & 0xffff;
587 check ^= seq ^ call->call_id;
590 aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_check", "V2C",
595 if (data_size > sp->len) {
596 aborted = rxrpc_abort_eproto(call, skb, "rxkad_2_datalen", "V2L",
602 _leave(" = 0 [dlen=%x]", data_size);
607 rxrpc_send_abort_packet(call);
611 _leave(" = -ENOMEM");
616 * Verify the security on a received packet and the subpackets therein.
618 static int rxkad_verify_packet(struct rxrpc_call *call, struct sk_buff *skb)
620 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
621 struct skcipher_request *req;
622 struct rxrpc_crypt iv;
623 struct scatterlist sg;
624 rxrpc_seq_t seq = sp->hdr.seq;
629 _enter("{%d{%x}},{#%u}",
630 call->debug_id, key_serial(call->conn->params.key), seq);
632 if (!call->conn->rxkad.cipher)
635 req = rxkad_get_call_crypto(call);
639 /* continue encrypting from where we left off */
640 memcpy(&iv, call->conn->rxkad.csum_iv.x, sizeof(iv));
642 /* validate the security checksum */
643 x = (call->cid & RXRPC_CHANNELMASK) << (32 - RXRPC_CIDSHIFT);
644 x |= seq & 0x3fffffff;
645 call->crypto_buf[0] = htonl(call->call_id);
646 call->crypto_buf[1] = htonl(x);
648 sg_init_one(&sg, call->crypto_buf, 8);
649 skcipher_request_set_sync_tfm(req, call->conn->rxkad.cipher);
650 skcipher_request_set_callback(req, 0, NULL, NULL);
651 skcipher_request_set_crypt(req, &sg, &sg, 8, iv.x);
652 crypto_skcipher_encrypt(req);
653 skcipher_request_zero(req);
655 y = ntohl(call->crypto_buf[1]);
656 cksum = (y >> 16) & 0xffff;
658 cksum = 1; /* zero checksums are not permitted */
660 if (cksum != sp->hdr.cksum) {
661 aborted = rxrpc_abort_eproto(call, skb, "rxkad_csum", "VCK",
666 switch (call->conn->params.security_level) {
667 case RXRPC_SECURITY_PLAIN:
669 case RXRPC_SECURITY_AUTH:
670 return rxkad_verify_packet_1(call, skb, seq, req);
671 case RXRPC_SECURITY_ENCRYPT:
672 return rxkad_verify_packet_2(call, skb, seq, req);
679 rxrpc_send_abort_packet(call);
686 static int rxkad_issue_challenge(struct rxrpc_connection *conn)
688 struct rxkad_challenge challenge;
689 struct rxrpc_wire_header whdr;
696 _enter("{%d}", conn->debug_id);
698 get_random_bytes(&conn->rxkad.nonce, sizeof(conn->rxkad.nonce));
700 challenge.version = htonl(2);
701 challenge.nonce = htonl(conn->rxkad.nonce);
702 challenge.min_level = htonl(0);
703 challenge.__padding = 0;
705 msg.msg_name = &conn->params.peer->srx.transport;
706 msg.msg_namelen = conn->params.peer->srx.transport_len;
707 msg.msg_control = NULL;
708 msg.msg_controllen = 0;
711 whdr.epoch = htonl(conn->proto.epoch);
712 whdr.cid = htonl(conn->proto.cid);
715 whdr.type = RXRPC_PACKET_TYPE_CHALLENGE;
716 whdr.flags = conn->out_clientflag;
718 whdr.securityIndex = conn->security_ix;
720 whdr.serviceId = htons(conn->service_id);
722 iov[0].iov_base = &whdr;
723 iov[0].iov_len = sizeof(whdr);
724 iov[1].iov_base = &challenge;
725 iov[1].iov_len = sizeof(challenge);
727 len = iov[0].iov_len + iov[1].iov_len;
729 serial = atomic_inc_return(&conn->serial);
730 whdr.serial = htonl(serial);
731 _proto("Tx CHALLENGE %%%u", serial);
733 ret = kernel_sendmsg(conn->params.local->socket, &msg, iov, 2, len);
735 trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
736 rxrpc_tx_point_rxkad_challenge);
740 conn->params.peer->last_tx_at = ktime_get_seconds();
741 trace_rxrpc_tx_packet(conn->debug_id, &whdr,
742 rxrpc_tx_point_rxkad_challenge);
748 * send a Kerberos security response
750 static int rxkad_send_response(struct rxrpc_connection *conn,
751 struct rxrpc_host_header *hdr,
752 struct rxkad_response *resp,
753 const struct rxkad_key *s2)
755 struct rxrpc_wire_header whdr;
764 msg.msg_name = &conn->params.peer->srx.transport;
765 msg.msg_namelen = conn->params.peer->srx.transport_len;
766 msg.msg_control = NULL;
767 msg.msg_controllen = 0;
770 memset(&whdr, 0, sizeof(whdr));
771 whdr.epoch = htonl(hdr->epoch);
772 whdr.cid = htonl(hdr->cid);
773 whdr.type = RXRPC_PACKET_TYPE_RESPONSE;
774 whdr.flags = conn->out_clientflag;
775 whdr.securityIndex = hdr->securityIndex;
776 whdr.serviceId = htons(hdr->serviceId);
778 iov[0].iov_base = &whdr;
779 iov[0].iov_len = sizeof(whdr);
780 iov[1].iov_base = resp;
781 iov[1].iov_len = sizeof(*resp);
782 iov[2].iov_base = (void *)s2->ticket;
783 iov[2].iov_len = s2->ticket_len;
785 len = iov[0].iov_len + iov[1].iov_len + iov[2].iov_len;
787 serial = atomic_inc_return(&conn->serial);
788 whdr.serial = htonl(serial);
789 _proto("Tx RESPONSE %%%u", serial);
791 ret = kernel_sendmsg(conn->params.local->socket, &msg, iov, 3, len);
793 trace_rxrpc_tx_fail(conn->debug_id, serial, ret,
794 rxrpc_tx_point_rxkad_response);
798 conn->params.peer->last_tx_at = ktime_get_seconds();
804 * calculate the response checksum
806 static void rxkad_calc_response_checksum(struct rxkad_response *response)
810 u8 *p = (u8 *) response;
812 for (loop = sizeof(*response); loop > 0; loop--)
813 csum = csum * 0x10204081 + *p++;
815 response->encrypted.checksum = htonl(csum);
819 * encrypt the response packet
821 static int rxkad_encrypt_response(struct rxrpc_connection *conn,
822 struct rxkad_response *resp,
823 const struct rxkad_key *s2)
825 struct skcipher_request *req;
826 struct rxrpc_crypt iv;
827 struct scatterlist sg[1];
829 req = skcipher_request_alloc(&conn->rxkad.cipher->base, GFP_NOFS);
833 /* continue encrypting from where we left off */
834 memcpy(&iv, s2->session_key, sizeof(iv));
836 sg_init_table(sg, 1);
837 sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
838 skcipher_request_set_sync_tfm(req, conn->rxkad.cipher);
839 skcipher_request_set_callback(req, 0, NULL, NULL);
840 skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
841 crypto_skcipher_encrypt(req);
842 skcipher_request_free(req);
847 * respond to a challenge packet
849 static int rxkad_respond_to_challenge(struct rxrpc_connection *conn,
853 const struct rxrpc_key_token *token;
854 struct rxkad_challenge challenge;
855 struct rxkad_response *resp;
856 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
858 u32 version, nonce, min_level, abort_code;
861 _enter("{%d,%x}", conn->debug_id, key_serial(conn->params.key));
863 eproto = tracepoint_string("chall_no_key");
864 abort_code = RX_PROTOCOL_ERROR;
865 if (!conn->params.key)
868 abort_code = RXKADEXPIRED;
869 ret = key_validate(conn->params.key);
873 eproto = tracepoint_string("chall_short");
874 abort_code = RXKADPACKETSHORT;
875 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
876 &challenge, sizeof(challenge)) < 0)
879 version = ntohl(challenge.version);
880 nonce = ntohl(challenge.nonce);
881 min_level = ntohl(challenge.min_level);
883 _proto("Rx CHALLENGE %%%u { v=%u n=%u ml=%u }",
884 sp->hdr.serial, version, nonce, min_level);
886 eproto = tracepoint_string("chall_ver");
887 abort_code = RXKADINCONSISTENCY;
888 if (version != RXKAD_VERSION)
891 abort_code = RXKADLEVELFAIL;
893 if (conn->params.security_level < min_level)
896 token = conn->params.key->payload.data[0];
898 /* build the response packet */
899 resp = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
903 resp->version = htonl(RXKAD_VERSION);
904 resp->encrypted.epoch = htonl(conn->proto.epoch);
905 resp->encrypted.cid = htonl(conn->proto.cid);
906 resp->encrypted.securityIndex = htonl(conn->security_ix);
907 resp->encrypted.inc_nonce = htonl(nonce + 1);
908 resp->encrypted.level = htonl(conn->params.security_level);
909 resp->kvno = htonl(token->kad->kvno);
910 resp->ticket_len = htonl(token->kad->ticket_len);
911 resp->encrypted.call_id[0] = htonl(conn->channels[0].call_counter);
912 resp->encrypted.call_id[1] = htonl(conn->channels[1].call_counter);
913 resp->encrypted.call_id[2] = htonl(conn->channels[2].call_counter);
914 resp->encrypted.call_id[3] = htonl(conn->channels[3].call_counter);
916 /* calculate the response checksum and then do the encryption */
917 rxkad_calc_response_checksum(resp);
918 ret = rxkad_encrypt_response(conn, resp, token->kad);
920 ret = rxkad_send_response(conn, &sp->hdr, resp, token->kad);
925 trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
928 *_abort_code = abort_code;
933 * decrypt the kerberos IV ticket in the response
935 static int rxkad_decrypt_ticket(struct rxrpc_connection *conn,
936 struct key *server_key,
938 void *ticket, size_t ticket_len,
939 struct rxrpc_crypt *_session_key,
943 struct skcipher_request *req;
944 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
945 struct rxrpc_crypt iv, key;
946 struct scatterlist sg[1];
954 u8 *p, *q, *name, *end;
956 _enter("{%d},{%x}", conn->debug_id, key_serial(server_key));
960 ASSERT(server_key->payload.data[0] != NULL);
961 ASSERTCMP((unsigned long) ticket & 7UL, ==, 0);
963 memcpy(&iv, &server_key->payload.data[2], sizeof(iv));
966 req = skcipher_request_alloc(server_key->payload.data[0], GFP_NOFS);
968 goto temporary_error;
970 sg_init_one(&sg[0], ticket, ticket_len);
971 skcipher_request_set_callback(req, 0, NULL, NULL);
972 skcipher_request_set_crypt(req, sg, sg, ticket_len, iv.x);
973 crypto_skcipher_decrypt(req);
974 skcipher_request_free(req);
977 end = p + ticket_len;
982 eproto = tracepoint_string("rxkad_bad_"#field); \
983 q = memchr(p, 0, end - p); \
984 if (!q || q - p > (field##_SZ)) \
993 /* extract the ticket flags */
994 _debug("KIV FLAGS: %x", *p);
995 little_endian = *p & 1;
998 /* extract the authentication name */
1000 _debug("KIV ANAME: %s", name);
1002 /* extract the principal's instance */
1004 _debug("KIV INST : %s", name);
1006 /* extract the principal's authentication domain */
1008 _debug("KIV REALM: %s", name);
1010 eproto = tracepoint_string("rxkad_bad_len");
1011 if (end - p < 4 + 8 + 4 + 2)
1014 /* get the IPv4 address of the entity that requested the ticket */
1015 memcpy(&addr, p, sizeof(addr));
1017 _debug("KIV ADDR : %pI4", &addr);
1019 /* get the session key from the ticket */
1020 memcpy(&key, p, sizeof(key));
1022 _debug("KIV KEY : %08x %08x", ntohl(key.n[0]), ntohl(key.n[1]));
1023 memcpy(_session_key, &key, sizeof(key));
1025 /* get the ticket's lifetime */
1026 life = *p++ * 5 * 60;
1027 _debug("KIV LIFE : %u", life);
1029 /* get the issue time of the ticket */
1030 if (little_endian) {
1032 memcpy(&stamp, p, 4);
1033 issue = rxrpc_u32_to_time64(le32_to_cpu(stamp));
1036 memcpy(&stamp, p, 4);
1037 issue = rxrpc_u32_to_time64(be32_to_cpu(stamp));
1040 now = ktime_get_real_seconds();
1041 _debug("KIV ISSUE: %llx [%llx]", issue, now);
1043 /* check the ticket is in date */
1045 abort_code = RXKADNOAUTH;
1046 ret = -EKEYREJECTED;
1050 if (issue < now - life) {
1051 abort_code = RXKADEXPIRED;
1056 *_expiry = issue + life;
1058 /* get the service name */
1060 _debug("KIV SNAME: %s", name);
1062 /* get the service instance name */
1064 _debug("KIV SINST: %s", name);
1068 trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
1069 abort_code = RXKADBADTICKET;
1072 *_abort_code = abort_code;
1079 * decrypt the response packet
1081 static void rxkad_decrypt_response(struct rxrpc_connection *conn,
1082 struct rxkad_response *resp,
1083 const struct rxrpc_crypt *session_key)
1085 struct skcipher_request *req = rxkad_ci_req;
1086 struct scatterlist sg[1];
1087 struct rxrpc_crypt iv;
1089 _enter(",,%08x%08x",
1090 ntohl(session_key->n[0]), ntohl(session_key->n[1]));
1092 mutex_lock(&rxkad_ci_mutex);
1093 if (crypto_sync_skcipher_setkey(rxkad_ci, session_key->x,
1094 sizeof(*session_key)) < 0)
1097 memcpy(&iv, session_key, sizeof(iv));
1099 sg_init_table(sg, 1);
1100 sg_set_buf(sg, &resp->encrypted, sizeof(resp->encrypted));
1101 skcipher_request_set_sync_tfm(req, rxkad_ci);
1102 skcipher_request_set_callback(req, 0, NULL, NULL);
1103 skcipher_request_set_crypt(req, sg, sg, sizeof(resp->encrypted), iv.x);
1104 crypto_skcipher_decrypt(req);
1105 skcipher_request_zero(req);
1107 mutex_unlock(&rxkad_ci_mutex);
1115 static int rxkad_verify_response(struct rxrpc_connection *conn,
1116 struct sk_buff *skb,
1119 struct rxkad_response *response;
1120 struct rxrpc_skb_priv *sp = rxrpc_skb(skb);
1121 struct rxrpc_crypt session_key;
1122 struct key *server_key;
1126 u32 abort_code, version, kvno, ticket_len, level;
1130 _enter("{%d}", conn->debug_id);
1132 server_key = rxrpc_look_up_server_security(conn, skb, 0, 0);
1133 if (IS_ERR(server_key)) {
1134 switch (PTR_ERR(server_key)) {
1136 abort_code = RXKADUNKNOWNKEY;
1139 abort_code = RXKADEXPIRED;
1142 abort_code = RXKADNOAUTH;
1145 trace_rxrpc_abort(0, "SVK",
1146 sp->hdr.cid, sp->hdr.callNumber, sp->hdr.seq,
1147 abort_code, PTR_ERR(server_key));
1148 *_abort_code = abort_code;
1153 response = kzalloc(sizeof(struct rxkad_response), GFP_NOFS);
1155 goto temporary_error;
1157 eproto = tracepoint_string("rxkad_rsp_short");
1158 abort_code = RXKADPACKETSHORT;
1159 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header),
1160 response, sizeof(*response)) < 0)
1161 goto protocol_error;
1163 version = ntohl(response->version);
1164 ticket_len = ntohl(response->ticket_len);
1165 kvno = ntohl(response->kvno);
1166 _proto("Rx RESPONSE %%%u { v=%u kv=%u tl=%u }",
1167 sp->hdr.serial, version, kvno, ticket_len);
1169 eproto = tracepoint_string("rxkad_rsp_ver");
1170 abort_code = RXKADINCONSISTENCY;
1171 if (version != RXKAD_VERSION)
1172 goto protocol_error;
1174 eproto = tracepoint_string("rxkad_rsp_tktlen");
1175 abort_code = RXKADTICKETLEN;
1176 if (ticket_len < 4 || ticket_len > MAXKRB5TICKETLEN)
1177 goto protocol_error;
1179 eproto = tracepoint_string("rxkad_rsp_unkkey");
1180 abort_code = RXKADUNKNOWNKEY;
1181 if (kvno >= RXKAD_TKT_TYPE_KERBEROS_V5)
1182 goto protocol_error;
1184 /* extract the kerberos ticket and decrypt and decode it */
1186 ticket = kmalloc(ticket_len, GFP_NOFS);
1188 goto temporary_error_free_resp;
1190 eproto = tracepoint_string("rxkad_tkt_short");
1191 abort_code = RXKADPACKETSHORT;
1192 if (skb_copy_bits(skb, sizeof(struct rxrpc_wire_header) + sizeof(*response),
1193 ticket, ticket_len) < 0)
1194 goto protocol_error_free;
1196 ret = rxkad_decrypt_ticket(conn, server_key, skb, ticket, ticket_len,
1197 &session_key, &expiry, _abort_code);
1199 goto temporary_error_free_ticket;
1201 /* use the session key from inside the ticket to decrypt the
1203 rxkad_decrypt_response(conn, response, &session_key);
1205 eproto = tracepoint_string("rxkad_rsp_param");
1206 abort_code = RXKADSEALEDINCON;
1207 if (ntohl(response->encrypted.epoch) != conn->proto.epoch)
1208 goto protocol_error_free;
1209 if (ntohl(response->encrypted.cid) != conn->proto.cid)
1210 goto protocol_error_free;
1211 if (ntohl(response->encrypted.securityIndex) != conn->security_ix)
1212 goto protocol_error_free;
1213 csum = response->encrypted.checksum;
1214 response->encrypted.checksum = 0;
1215 rxkad_calc_response_checksum(response);
1216 eproto = tracepoint_string("rxkad_rsp_csum");
1217 if (response->encrypted.checksum != csum)
1218 goto protocol_error_free;
1220 spin_lock(&conn->bundle->channel_lock);
1221 for (i = 0; i < RXRPC_MAXCALLS; i++) {
1222 struct rxrpc_call *call;
1223 u32 call_id = ntohl(response->encrypted.call_id[i]);
1225 eproto = tracepoint_string("rxkad_rsp_callid");
1226 if (call_id > INT_MAX)
1227 goto protocol_error_unlock;
1229 eproto = tracepoint_string("rxkad_rsp_callctr");
1230 if (call_id < conn->channels[i].call_counter)
1231 goto protocol_error_unlock;
1233 eproto = tracepoint_string("rxkad_rsp_callst");
1234 if (call_id > conn->channels[i].call_counter) {
1235 call = rcu_dereference_protected(
1236 conn->channels[i].call,
1237 lockdep_is_held(&conn->bundle->channel_lock));
1238 if (call && call->state < RXRPC_CALL_COMPLETE)
1239 goto protocol_error_unlock;
1240 conn->channels[i].call_counter = call_id;
1243 spin_unlock(&conn->bundle->channel_lock);
1245 eproto = tracepoint_string("rxkad_rsp_seq");
1246 abort_code = RXKADOUTOFSEQUENCE;
1247 if (ntohl(response->encrypted.inc_nonce) != conn->rxkad.nonce + 1)
1248 goto protocol_error_free;
1250 eproto = tracepoint_string("rxkad_rsp_level");
1251 abort_code = RXKADLEVELFAIL;
1252 level = ntohl(response->encrypted.level);
1253 if (level > RXRPC_SECURITY_ENCRYPT)
1254 goto protocol_error_free;
1255 conn->params.security_level = level;
1257 /* create a key to hold the security data and expiration time - after
1258 * this the connection security can be handled in exactly the same way
1259 * as for a client connection */
1260 ret = rxrpc_get_server_data_key(conn, &session_key, expiry, kvno);
1262 goto temporary_error_free_ticket;
1269 protocol_error_unlock:
1270 spin_unlock(&conn->bundle->channel_lock);
1271 protocol_error_free:
1275 trace_rxrpc_rx_eproto(NULL, sp->hdr.serial, eproto);
1276 key_put(server_key);
1277 *_abort_code = abort_code;
1280 temporary_error_free_ticket:
1282 temporary_error_free_resp:
1285 /* Ignore the response packet if we got a temporary error such as
1286 * ENOMEM. We just want to send the challenge again. Note that we
1287 * also come out this way if the ticket decryption fails.
1289 key_put(server_key);
1294 * clear the connection security
1296 static void rxkad_clear(struct rxrpc_connection *conn)
1300 if (conn->rxkad.cipher)
1301 crypto_free_sync_skcipher(conn->rxkad.cipher);
1305 * Initialise the rxkad security service.
1307 static int rxkad_init(void)
1309 struct crypto_sync_skcipher *tfm;
1310 struct skcipher_request *req;
1312 /* pin the cipher we need so that the crypto layer doesn't invoke
1313 * keventd to go get it */
1314 tfm = crypto_alloc_sync_skcipher("pcbc(fcrypt)", 0, 0);
1316 return PTR_ERR(tfm);
1318 req = skcipher_request_alloc(&tfm->base, GFP_KERNEL);
1327 crypto_free_sync_skcipher(tfm);
1332 * Clean up the rxkad security service.
1334 static void rxkad_exit(void)
1336 crypto_free_sync_skcipher(rxkad_ci);
1337 skcipher_request_free(rxkad_ci_req);
1341 * RxRPC Kerberos-based security
1343 const struct rxrpc_security rxkad = {
1345 .security_index = RXRPC_SECURITY_RXKAD,
1346 .no_key_abort = RXKADUNKNOWNKEY,
1349 .preparse_server_key = rxkad_preparse_server_key,
1350 .free_preparse_server_key = rxkad_free_preparse_server_key,
1351 .destroy_server_key = rxkad_destroy_server_key,
1352 .init_connection_security = rxkad_init_connection_security,
1353 .how_much_data = rxkad_how_much_data,
1354 .secure_packet = rxkad_secure_packet,
1355 .verify_packet = rxkad_verify_packet,
1356 .free_call_crypto = rxkad_free_call_crypto,
1357 .issue_challenge = rxkad_issue_challenge,
1358 .respond_to_challenge = rxkad_respond_to_challenge,
1359 .verify_response = rxkad_verify_response,
1360 .clear = rxkad_clear,