netfilter: ipset: Fix overflow before widen in the bitmap_ip_create() function.
[platform/kernel/linux-rpi.git] / net / rfkill / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2006 - 2007 Ivo van Doorn
4  * Copyright (C) 2007 Dmitry Torokhov
5  * Copyright 2009 Johannes Berg <johannes@sipsolutions.net>
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/workqueue.h>
12 #include <linux/capability.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/rfkill.h>
16 #include <linux/sched.h>
17 #include <linux/spinlock.h>
18 #include <linux/device.h>
19 #include <linux/miscdevice.h>
20 #include <linux/wait.h>
21 #include <linux/poll.h>
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24
25 #include "rfkill.h"
26
27 #define POLL_INTERVAL           (5 * HZ)
28
29 #define RFKILL_BLOCK_HW         BIT(0)
30 #define RFKILL_BLOCK_SW         BIT(1)
31 #define RFKILL_BLOCK_SW_PREV    BIT(2)
32 #define RFKILL_BLOCK_ANY        (RFKILL_BLOCK_HW |\
33                                  RFKILL_BLOCK_SW |\
34                                  RFKILL_BLOCK_SW_PREV)
35 #define RFKILL_BLOCK_SW_SETCALL BIT(31)
36
37 struct rfkill {
38         spinlock_t              lock;
39
40         enum rfkill_type        type;
41
42         unsigned long           state;
43         unsigned long           hard_block_reasons;
44
45         u32                     idx;
46
47         bool                    registered;
48         bool                    persistent;
49         bool                    polling_paused;
50         bool                    suspended;
51
52         const struct rfkill_ops *ops;
53         void                    *data;
54
55 #ifdef CONFIG_RFKILL_LEDS
56         struct led_trigger      led_trigger;
57         const char              *ledtrigname;
58 #endif
59
60         struct device           dev;
61         struct list_head        node;
62
63         struct delayed_work     poll_work;
64         struct work_struct      uevent_work;
65         struct work_struct      sync_work;
66         char                    name[];
67 };
68 #define to_rfkill(d)    container_of(d, struct rfkill, dev)
69
70 struct rfkill_int_event {
71         struct list_head        list;
72         struct rfkill_event_ext ev;
73 };
74
75 struct rfkill_data {
76         struct list_head        list;
77         struct list_head        events;
78         struct mutex            mtx;
79         wait_queue_head_t       read_wait;
80         bool                    input_handler;
81         u8                      max_size;
82 };
83
84
85 MODULE_AUTHOR("Ivo van Doorn <IvDoorn@gmail.com>");
86 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
87 MODULE_DESCRIPTION("RF switch support");
88 MODULE_LICENSE("GPL");
89
90
91 /*
92  * The locking here should be made much smarter, we currently have
93  * a bit of a stupid situation because drivers might want to register
94  * the rfkill struct under their own lock, and take this lock during
95  * rfkill method calls -- which will cause an AB-BA deadlock situation.
96  *
97  * To fix that, we need to rework this code here to be mostly lock-free
98  * and only use the mutex for list manipulations, not to protect the
99  * various other global variables. Then we can avoid holding the mutex
100  * around driver operations, and all is happy.
101  */
102 static LIST_HEAD(rfkill_list);  /* list of registered rf switches */
103 static DEFINE_MUTEX(rfkill_global_mutex);
104 static LIST_HEAD(rfkill_fds);   /* list of open fds of /dev/rfkill */
105
106 static unsigned int rfkill_default_state = 1;
107 module_param_named(default_state, rfkill_default_state, uint, 0444);
108 MODULE_PARM_DESC(default_state,
109                  "Default initial state for all radio types, 0 = radio off");
110
111 static struct {
112         bool cur, sav;
113 } rfkill_global_states[NUM_RFKILL_TYPES];
114
115 static bool rfkill_epo_lock_active;
116
117
118 #ifdef CONFIG_RFKILL_LEDS
119 static void rfkill_led_trigger_event(struct rfkill *rfkill)
120 {
121         struct led_trigger *trigger;
122
123         if (!rfkill->registered)
124                 return;
125
126         trigger = &rfkill->led_trigger;
127
128         if (rfkill->state & RFKILL_BLOCK_ANY)
129                 led_trigger_event(trigger, LED_OFF);
130         else
131                 led_trigger_event(trigger, LED_FULL);
132 }
133
134 static int rfkill_led_trigger_activate(struct led_classdev *led)
135 {
136         struct rfkill *rfkill;
137
138         rfkill = container_of(led->trigger, struct rfkill, led_trigger);
139
140         rfkill_led_trigger_event(rfkill);
141
142         return 0;
143 }
144
145 const char *rfkill_get_led_trigger_name(struct rfkill *rfkill)
146 {
147         return rfkill->led_trigger.name;
148 }
149 EXPORT_SYMBOL(rfkill_get_led_trigger_name);
150
151 void rfkill_set_led_trigger_name(struct rfkill *rfkill, const char *name)
152 {
153         BUG_ON(!rfkill);
154
155         rfkill->ledtrigname = name;
156 }
157 EXPORT_SYMBOL(rfkill_set_led_trigger_name);
158
159 static int rfkill_led_trigger_register(struct rfkill *rfkill)
160 {
161         rfkill->led_trigger.name = rfkill->ledtrigname
162                                         ? : dev_name(&rfkill->dev);
163         rfkill->led_trigger.activate = rfkill_led_trigger_activate;
164         return led_trigger_register(&rfkill->led_trigger);
165 }
166
167 static void rfkill_led_trigger_unregister(struct rfkill *rfkill)
168 {
169         led_trigger_unregister(&rfkill->led_trigger);
170 }
171
172 static struct led_trigger rfkill_any_led_trigger;
173 static struct led_trigger rfkill_none_led_trigger;
174 static struct work_struct rfkill_global_led_trigger_work;
175
176 static void rfkill_global_led_trigger_worker(struct work_struct *work)
177 {
178         enum led_brightness brightness = LED_OFF;
179         struct rfkill *rfkill;
180
181         mutex_lock(&rfkill_global_mutex);
182         list_for_each_entry(rfkill, &rfkill_list, node) {
183                 if (!(rfkill->state & RFKILL_BLOCK_ANY)) {
184                         brightness = LED_FULL;
185                         break;
186                 }
187         }
188         mutex_unlock(&rfkill_global_mutex);
189
190         led_trigger_event(&rfkill_any_led_trigger, brightness);
191         led_trigger_event(&rfkill_none_led_trigger,
192                           brightness == LED_OFF ? LED_FULL : LED_OFF);
193 }
194
195 static void rfkill_global_led_trigger_event(void)
196 {
197         schedule_work(&rfkill_global_led_trigger_work);
198 }
199
200 static int rfkill_global_led_trigger_register(void)
201 {
202         int ret;
203
204         INIT_WORK(&rfkill_global_led_trigger_work,
205                         rfkill_global_led_trigger_worker);
206
207         rfkill_any_led_trigger.name = "rfkill-any";
208         ret = led_trigger_register(&rfkill_any_led_trigger);
209         if (ret)
210                 return ret;
211
212         rfkill_none_led_trigger.name = "rfkill-none";
213         ret = led_trigger_register(&rfkill_none_led_trigger);
214         if (ret)
215                 led_trigger_unregister(&rfkill_any_led_trigger);
216         else
217                 /* Delay activation until all global triggers are registered */
218                 rfkill_global_led_trigger_event();
219
220         return ret;
221 }
222
223 static void rfkill_global_led_trigger_unregister(void)
224 {
225         led_trigger_unregister(&rfkill_none_led_trigger);
226         led_trigger_unregister(&rfkill_any_led_trigger);
227         cancel_work_sync(&rfkill_global_led_trigger_work);
228 }
229 #else
230 static void rfkill_led_trigger_event(struct rfkill *rfkill)
231 {
232 }
233
234 static inline int rfkill_led_trigger_register(struct rfkill *rfkill)
235 {
236         return 0;
237 }
238
239 static inline void rfkill_led_trigger_unregister(struct rfkill *rfkill)
240 {
241 }
242
243 static void rfkill_global_led_trigger_event(void)
244 {
245 }
246
247 static int rfkill_global_led_trigger_register(void)
248 {
249         return 0;
250 }
251
252 static void rfkill_global_led_trigger_unregister(void)
253 {
254 }
255 #endif /* CONFIG_RFKILL_LEDS */
256
257 static void rfkill_fill_event(struct rfkill_event_ext *ev,
258                               struct rfkill *rfkill,
259                               enum rfkill_operation op)
260 {
261         unsigned long flags;
262
263         ev->idx = rfkill->idx;
264         ev->type = rfkill->type;
265         ev->op = op;
266
267         spin_lock_irqsave(&rfkill->lock, flags);
268         ev->hard = !!(rfkill->state & RFKILL_BLOCK_HW);
269         ev->soft = !!(rfkill->state & (RFKILL_BLOCK_SW |
270                                         RFKILL_BLOCK_SW_PREV));
271         ev->hard_block_reasons = rfkill->hard_block_reasons;
272         spin_unlock_irqrestore(&rfkill->lock, flags);
273 }
274
275 static void rfkill_send_events(struct rfkill *rfkill, enum rfkill_operation op)
276 {
277         struct rfkill_data *data;
278         struct rfkill_int_event *ev;
279
280         list_for_each_entry(data, &rfkill_fds, list) {
281                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
282                 if (!ev)
283                         continue;
284                 rfkill_fill_event(&ev->ev, rfkill, op);
285                 mutex_lock(&data->mtx);
286                 list_add_tail(&ev->list, &data->events);
287                 mutex_unlock(&data->mtx);
288                 wake_up_interruptible(&data->read_wait);
289         }
290 }
291
292 static void rfkill_event(struct rfkill *rfkill)
293 {
294         if (!rfkill->registered)
295                 return;
296
297         kobject_uevent(&rfkill->dev.kobj, KOBJ_CHANGE);
298
299         /* also send event to /dev/rfkill */
300         rfkill_send_events(rfkill, RFKILL_OP_CHANGE);
301 }
302
303 /**
304  * rfkill_set_block - wrapper for set_block method
305  *
306  * @rfkill: the rfkill struct to use
307  * @blocked: the new software state
308  *
309  * Calls the set_block method (when applicable) and handles notifications
310  * etc. as well.
311  */
312 static void rfkill_set_block(struct rfkill *rfkill, bool blocked)
313 {
314         unsigned long flags;
315         bool prev, curr;
316         int err;
317
318         if (unlikely(rfkill->dev.power.power_state.event & PM_EVENT_SLEEP))
319                 return;
320
321         /*
322          * Some platforms (...!) generate input events which affect the
323          * _hard_ kill state -- whenever something tries to change the
324          * current software state query the hardware state too.
325          */
326         if (rfkill->ops->query)
327                 rfkill->ops->query(rfkill, rfkill->data);
328
329         spin_lock_irqsave(&rfkill->lock, flags);
330         prev = rfkill->state & RFKILL_BLOCK_SW;
331
332         if (prev)
333                 rfkill->state |= RFKILL_BLOCK_SW_PREV;
334         else
335                 rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
336
337         if (blocked)
338                 rfkill->state |= RFKILL_BLOCK_SW;
339         else
340                 rfkill->state &= ~RFKILL_BLOCK_SW;
341
342         rfkill->state |= RFKILL_BLOCK_SW_SETCALL;
343         spin_unlock_irqrestore(&rfkill->lock, flags);
344
345         err = rfkill->ops->set_block(rfkill->data, blocked);
346
347         spin_lock_irqsave(&rfkill->lock, flags);
348         if (err) {
349                 /*
350                  * Failed -- reset status to _PREV, which may be different
351                  * from what we have set _PREV to earlier in this function
352                  * if rfkill_set_sw_state was invoked.
353                  */
354                 if (rfkill->state & RFKILL_BLOCK_SW_PREV)
355                         rfkill->state |= RFKILL_BLOCK_SW;
356                 else
357                         rfkill->state &= ~RFKILL_BLOCK_SW;
358         }
359         rfkill->state &= ~RFKILL_BLOCK_SW_SETCALL;
360         rfkill->state &= ~RFKILL_BLOCK_SW_PREV;
361         curr = rfkill->state & RFKILL_BLOCK_SW;
362         spin_unlock_irqrestore(&rfkill->lock, flags);
363
364         rfkill_led_trigger_event(rfkill);
365         rfkill_global_led_trigger_event();
366
367         if (prev != curr)
368                 rfkill_event(rfkill);
369 }
370
371 static void rfkill_update_global_state(enum rfkill_type type, bool blocked)
372 {
373         int i;
374
375         if (type != RFKILL_TYPE_ALL) {
376                 rfkill_global_states[type].cur = blocked;
377                 return;
378         }
379
380         for (i = 0; i < NUM_RFKILL_TYPES; i++)
381                 rfkill_global_states[i].cur = blocked;
382 }
383
384 #ifdef CONFIG_RFKILL_INPUT
385 static atomic_t rfkill_input_disabled = ATOMIC_INIT(0);
386
387 /**
388  * __rfkill_switch_all - Toggle state of all switches of given type
389  * @type: type of interfaces to be affected
390  * @blocked: the new state
391  *
392  * This function sets the state of all switches of given type,
393  * unless a specific switch is suspended.
394  *
395  * Caller must have acquired rfkill_global_mutex.
396  */
397 static void __rfkill_switch_all(const enum rfkill_type type, bool blocked)
398 {
399         struct rfkill *rfkill;
400
401         rfkill_update_global_state(type, blocked);
402         list_for_each_entry(rfkill, &rfkill_list, node) {
403                 if (rfkill->type != type && type != RFKILL_TYPE_ALL)
404                         continue;
405
406                 rfkill_set_block(rfkill, blocked);
407         }
408 }
409
410 /**
411  * rfkill_switch_all - Toggle state of all switches of given type
412  * @type: type of interfaces to be affected
413  * @blocked: the new state
414  *
415  * Acquires rfkill_global_mutex and calls __rfkill_switch_all(@type, @state).
416  * Please refer to __rfkill_switch_all() for details.
417  *
418  * Does nothing if the EPO lock is active.
419  */
420 void rfkill_switch_all(enum rfkill_type type, bool blocked)
421 {
422         if (atomic_read(&rfkill_input_disabled))
423                 return;
424
425         mutex_lock(&rfkill_global_mutex);
426
427         if (!rfkill_epo_lock_active)
428                 __rfkill_switch_all(type, blocked);
429
430         mutex_unlock(&rfkill_global_mutex);
431 }
432
433 /**
434  * rfkill_epo - emergency power off all transmitters
435  *
436  * This kicks all non-suspended rfkill devices to RFKILL_STATE_SOFT_BLOCKED,
437  * ignoring everything in its path but rfkill_global_mutex and rfkill->mutex.
438  *
439  * The global state before the EPO is saved and can be restored later
440  * using rfkill_restore_states().
441  */
442 void rfkill_epo(void)
443 {
444         struct rfkill *rfkill;
445         int i;
446
447         if (atomic_read(&rfkill_input_disabled))
448                 return;
449
450         mutex_lock(&rfkill_global_mutex);
451
452         rfkill_epo_lock_active = true;
453         list_for_each_entry(rfkill, &rfkill_list, node)
454                 rfkill_set_block(rfkill, true);
455
456         for (i = 0; i < NUM_RFKILL_TYPES; i++) {
457                 rfkill_global_states[i].sav = rfkill_global_states[i].cur;
458                 rfkill_global_states[i].cur = true;
459         }
460
461         mutex_unlock(&rfkill_global_mutex);
462 }
463
464 /**
465  * rfkill_restore_states - restore global states
466  *
467  * Restore (and sync switches to) the global state from the
468  * states in rfkill_default_states.  This can undo the effects of
469  * a call to rfkill_epo().
470  */
471 void rfkill_restore_states(void)
472 {
473         int i;
474
475         if (atomic_read(&rfkill_input_disabled))
476                 return;
477
478         mutex_lock(&rfkill_global_mutex);
479
480         rfkill_epo_lock_active = false;
481         for (i = 0; i < NUM_RFKILL_TYPES; i++)
482                 __rfkill_switch_all(i, rfkill_global_states[i].sav);
483         mutex_unlock(&rfkill_global_mutex);
484 }
485
486 /**
487  * rfkill_remove_epo_lock - unlock state changes
488  *
489  * Used by rfkill-input manually unlock state changes, when
490  * the EPO switch is deactivated.
491  */
492 void rfkill_remove_epo_lock(void)
493 {
494         if (atomic_read(&rfkill_input_disabled))
495                 return;
496
497         mutex_lock(&rfkill_global_mutex);
498         rfkill_epo_lock_active = false;
499         mutex_unlock(&rfkill_global_mutex);
500 }
501
502 /**
503  * rfkill_is_epo_lock_active - returns true EPO is active
504  *
505  * Returns 0 (false) if there is NOT an active EPO condition,
506  * and 1 (true) if there is an active EPO condition, which
507  * locks all radios in one of the BLOCKED states.
508  *
509  * Can be called in atomic context.
510  */
511 bool rfkill_is_epo_lock_active(void)
512 {
513         return rfkill_epo_lock_active;
514 }
515
516 /**
517  * rfkill_get_global_sw_state - returns global state for a type
518  * @type: the type to get the global state of
519  *
520  * Returns the current global state for a given wireless
521  * device type.
522  */
523 bool rfkill_get_global_sw_state(const enum rfkill_type type)
524 {
525         return rfkill_global_states[type].cur;
526 }
527 #endif
528
529 bool rfkill_set_hw_state_reason(struct rfkill *rfkill,
530                                 bool blocked, unsigned long reason)
531 {
532         unsigned long flags;
533         bool ret, prev;
534
535         BUG_ON(!rfkill);
536
537         if (WARN(reason &
538             ~(RFKILL_HARD_BLOCK_SIGNAL | RFKILL_HARD_BLOCK_NOT_OWNER),
539             "hw_state reason not supported: 0x%lx", reason))
540                 return blocked;
541
542         spin_lock_irqsave(&rfkill->lock, flags);
543         prev = !!(rfkill->hard_block_reasons & reason);
544         if (blocked) {
545                 rfkill->state |= RFKILL_BLOCK_HW;
546                 rfkill->hard_block_reasons |= reason;
547         } else {
548                 rfkill->hard_block_reasons &= ~reason;
549                 if (!rfkill->hard_block_reasons)
550                         rfkill->state &= ~RFKILL_BLOCK_HW;
551         }
552         ret = !!(rfkill->state & RFKILL_BLOCK_ANY);
553         spin_unlock_irqrestore(&rfkill->lock, flags);
554
555         rfkill_led_trigger_event(rfkill);
556         rfkill_global_led_trigger_event();
557
558         if (rfkill->registered && prev != blocked)
559                 schedule_work(&rfkill->uevent_work);
560
561         return ret;
562 }
563 EXPORT_SYMBOL(rfkill_set_hw_state_reason);
564
565 static void __rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
566 {
567         u32 bit = RFKILL_BLOCK_SW;
568
569         /* if in a ops->set_block right now, use other bit */
570         if (rfkill->state & RFKILL_BLOCK_SW_SETCALL)
571                 bit = RFKILL_BLOCK_SW_PREV;
572
573         if (blocked)
574                 rfkill->state |= bit;
575         else
576                 rfkill->state &= ~bit;
577 }
578
579 bool rfkill_set_sw_state(struct rfkill *rfkill, bool blocked)
580 {
581         unsigned long flags;
582         bool prev, hwblock;
583
584         BUG_ON(!rfkill);
585
586         spin_lock_irqsave(&rfkill->lock, flags);
587         prev = !!(rfkill->state & RFKILL_BLOCK_SW);
588         __rfkill_set_sw_state(rfkill, blocked);
589         hwblock = !!(rfkill->state & RFKILL_BLOCK_HW);
590         blocked = blocked || hwblock;
591         spin_unlock_irqrestore(&rfkill->lock, flags);
592
593         if (!rfkill->registered)
594                 return blocked;
595
596         if (prev != blocked && !hwblock)
597                 schedule_work(&rfkill->uevent_work);
598
599         rfkill_led_trigger_event(rfkill);
600         rfkill_global_led_trigger_event();
601
602         return blocked;
603 }
604 EXPORT_SYMBOL(rfkill_set_sw_state);
605
606 void rfkill_init_sw_state(struct rfkill *rfkill, bool blocked)
607 {
608         unsigned long flags;
609
610         BUG_ON(!rfkill);
611         BUG_ON(rfkill->registered);
612
613         spin_lock_irqsave(&rfkill->lock, flags);
614         __rfkill_set_sw_state(rfkill, blocked);
615         rfkill->persistent = true;
616         spin_unlock_irqrestore(&rfkill->lock, flags);
617 }
618 EXPORT_SYMBOL(rfkill_init_sw_state);
619
620 void rfkill_set_states(struct rfkill *rfkill, bool sw, bool hw)
621 {
622         unsigned long flags;
623         bool swprev, hwprev;
624
625         BUG_ON(!rfkill);
626
627         spin_lock_irqsave(&rfkill->lock, flags);
628
629         /*
630          * No need to care about prev/setblock ... this is for uevent only
631          * and that will get triggered by rfkill_set_block anyway.
632          */
633         swprev = !!(rfkill->state & RFKILL_BLOCK_SW);
634         hwprev = !!(rfkill->state & RFKILL_BLOCK_HW);
635         __rfkill_set_sw_state(rfkill, sw);
636         if (hw)
637                 rfkill->state |= RFKILL_BLOCK_HW;
638         else
639                 rfkill->state &= ~RFKILL_BLOCK_HW;
640
641         spin_unlock_irqrestore(&rfkill->lock, flags);
642
643         if (!rfkill->registered) {
644                 rfkill->persistent = true;
645         } else {
646                 if (swprev != sw || hwprev != hw)
647                         schedule_work(&rfkill->uevent_work);
648
649                 rfkill_led_trigger_event(rfkill);
650                 rfkill_global_led_trigger_event();
651         }
652 }
653 EXPORT_SYMBOL(rfkill_set_states);
654
655 static const char * const rfkill_types[] = {
656         NULL, /* RFKILL_TYPE_ALL */
657         "wlan",
658         "bluetooth",
659         "ultrawideband",
660         "wimax",
661         "wwan",
662         "gps",
663         "fm",
664         "nfc",
665 };
666
667 enum rfkill_type rfkill_find_type(const char *name)
668 {
669         int i;
670
671         BUILD_BUG_ON(ARRAY_SIZE(rfkill_types) != NUM_RFKILL_TYPES);
672
673         if (!name)
674                 return RFKILL_TYPE_ALL;
675
676         for (i = 1; i < NUM_RFKILL_TYPES; i++)
677                 if (!strcmp(name, rfkill_types[i]))
678                         return i;
679         return RFKILL_TYPE_ALL;
680 }
681 EXPORT_SYMBOL(rfkill_find_type);
682
683 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
684                          char *buf)
685 {
686         struct rfkill *rfkill = to_rfkill(dev);
687
688         return sprintf(buf, "%s\n", rfkill->name);
689 }
690 static DEVICE_ATTR_RO(name);
691
692 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
693                          char *buf)
694 {
695         struct rfkill *rfkill = to_rfkill(dev);
696
697         return sprintf(buf, "%s\n", rfkill_types[rfkill->type]);
698 }
699 static DEVICE_ATTR_RO(type);
700
701 static ssize_t index_show(struct device *dev, struct device_attribute *attr,
702                           char *buf)
703 {
704         struct rfkill *rfkill = to_rfkill(dev);
705
706         return sprintf(buf, "%d\n", rfkill->idx);
707 }
708 static DEVICE_ATTR_RO(index);
709
710 static ssize_t persistent_show(struct device *dev,
711                                struct device_attribute *attr, char *buf)
712 {
713         struct rfkill *rfkill = to_rfkill(dev);
714
715         return sprintf(buf, "%d\n", rfkill->persistent);
716 }
717 static DEVICE_ATTR_RO(persistent);
718
719 static ssize_t hard_show(struct device *dev, struct device_attribute *attr,
720                          char *buf)
721 {
722         struct rfkill *rfkill = to_rfkill(dev);
723
724         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_HW) ? 1 : 0 );
725 }
726 static DEVICE_ATTR_RO(hard);
727
728 static ssize_t soft_show(struct device *dev, struct device_attribute *attr,
729                          char *buf)
730 {
731         struct rfkill *rfkill = to_rfkill(dev);
732
733         return sprintf(buf, "%d\n", (rfkill->state & RFKILL_BLOCK_SW) ? 1 : 0 );
734 }
735
736 static ssize_t soft_store(struct device *dev, struct device_attribute *attr,
737                           const char *buf, size_t count)
738 {
739         struct rfkill *rfkill = to_rfkill(dev);
740         unsigned long state;
741         int err;
742
743         if (!capable(CAP_NET_ADMIN))
744                 return -EPERM;
745
746         err = kstrtoul(buf, 0, &state);
747         if (err)
748                 return err;
749
750         if (state > 1 )
751                 return -EINVAL;
752
753         mutex_lock(&rfkill_global_mutex);
754         rfkill_set_block(rfkill, state);
755         mutex_unlock(&rfkill_global_mutex);
756
757         return count;
758 }
759 static DEVICE_ATTR_RW(soft);
760
761 static ssize_t hard_block_reasons_show(struct device *dev,
762                                        struct device_attribute *attr,
763                                        char *buf)
764 {
765         struct rfkill *rfkill = to_rfkill(dev);
766
767         return sprintf(buf, "0x%lx\n", rfkill->hard_block_reasons);
768 }
769 static DEVICE_ATTR_RO(hard_block_reasons);
770
771 static u8 user_state_from_blocked(unsigned long state)
772 {
773         if (state & RFKILL_BLOCK_HW)
774                 return RFKILL_USER_STATE_HARD_BLOCKED;
775         if (state & RFKILL_BLOCK_SW)
776                 return RFKILL_USER_STATE_SOFT_BLOCKED;
777
778         return RFKILL_USER_STATE_UNBLOCKED;
779 }
780
781 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
782                           char *buf)
783 {
784         struct rfkill *rfkill = to_rfkill(dev);
785
786         return sprintf(buf, "%d\n", user_state_from_blocked(rfkill->state));
787 }
788
789 static ssize_t state_store(struct device *dev, struct device_attribute *attr,
790                            const char *buf, size_t count)
791 {
792         struct rfkill *rfkill = to_rfkill(dev);
793         unsigned long state;
794         int err;
795
796         if (!capable(CAP_NET_ADMIN))
797                 return -EPERM;
798
799         err = kstrtoul(buf, 0, &state);
800         if (err)
801                 return err;
802
803         if (state != RFKILL_USER_STATE_SOFT_BLOCKED &&
804             state != RFKILL_USER_STATE_UNBLOCKED)
805                 return -EINVAL;
806
807         mutex_lock(&rfkill_global_mutex);
808         rfkill_set_block(rfkill, state == RFKILL_USER_STATE_SOFT_BLOCKED);
809         mutex_unlock(&rfkill_global_mutex);
810
811         return count;
812 }
813 static DEVICE_ATTR_RW(state);
814
815 static struct attribute *rfkill_dev_attrs[] = {
816         &dev_attr_name.attr,
817         &dev_attr_type.attr,
818         &dev_attr_index.attr,
819         &dev_attr_persistent.attr,
820         &dev_attr_state.attr,
821         &dev_attr_soft.attr,
822         &dev_attr_hard.attr,
823         &dev_attr_hard_block_reasons.attr,
824         NULL,
825 };
826 ATTRIBUTE_GROUPS(rfkill_dev);
827
828 static void rfkill_release(struct device *dev)
829 {
830         struct rfkill *rfkill = to_rfkill(dev);
831
832         kfree(rfkill);
833 }
834
835 static int rfkill_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
836 {
837         struct rfkill *rfkill = to_rfkill(dev);
838         unsigned long flags;
839         unsigned long reasons;
840         u32 state;
841         int error;
842
843         error = add_uevent_var(env, "RFKILL_NAME=%s", rfkill->name);
844         if (error)
845                 return error;
846         error = add_uevent_var(env, "RFKILL_TYPE=%s",
847                                rfkill_types[rfkill->type]);
848         if (error)
849                 return error;
850         spin_lock_irqsave(&rfkill->lock, flags);
851         state = rfkill->state;
852         reasons = rfkill->hard_block_reasons;
853         spin_unlock_irqrestore(&rfkill->lock, flags);
854         error = add_uevent_var(env, "RFKILL_STATE=%d",
855                                user_state_from_blocked(state));
856         if (error)
857                 return error;
858         return add_uevent_var(env, "RFKILL_HW_BLOCK_REASON=0x%lx", reasons);
859 }
860
861 void rfkill_pause_polling(struct rfkill *rfkill)
862 {
863         BUG_ON(!rfkill);
864
865         if (!rfkill->ops->poll)
866                 return;
867
868         rfkill->polling_paused = true;
869         cancel_delayed_work_sync(&rfkill->poll_work);
870 }
871 EXPORT_SYMBOL(rfkill_pause_polling);
872
873 void rfkill_resume_polling(struct rfkill *rfkill)
874 {
875         BUG_ON(!rfkill);
876
877         if (!rfkill->ops->poll)
878                 return;
879
880         rfkill->polling_paused = false;
881
882         if (rfkill->suspended)
883                 return;
884
885         queue_delayed_work(system_power_efficient_wq,
886                            &rfkill->poll_work, 0);
887 }
888 EXPORT_SYMBOL(rfkill_resume_polling);
889
890 #ifdef CONFIG_PM_SLEEP
891 static int rfkill_suspend(struct device *dev)
892 {
893         struct rfkill *rfkill = to_rfkill(dev);
894
895         rfkill->suspended = true;
896         cancel_delayed_work_sync(&rfkill->poll_work);
897
898         return 0;
899 }
900
901 static int rfkill_resume(struct device *dev)
902 {
903         struct rfkill *rfkill = to_rfkill(dev);
904         bool cur;
905
906         rfkill->suspended = false;
907
908         if (!rfkill->registered)
909                 return 0;
910
911         if (!rfkill->persistent) {
912                 cur = !!(rfkill->state & RFKILL_BLOCK_SW);
913                 rfkill_set_block(rfkill, cur);
914         }
915
916         if (rfkill->ops->poll && !rfkill->polling_paused)
917                 queue_delayed_work(system_power_efficient_wq,
918                                    &rfkill->poll_work, 0);
919
920         return 0;
921 }
922
923 static SIMPLE_DEV_PM_OPS(rfkill_pm_ops, rfkill_suspend, rfkill_resume);
924 #define RFKILL_PM_OPS (&rfkill_pm_ops)
925 #else
926 #define RFKILL_PM_OPS NULL
927 #endif
928
929 static struct class rfkill_class = {
930         .name           = "rfkill",
931         .dev_release    = rfkill_release,
932         .dev_groups     = rfkill_dev_groups,
933         .dev_uevent     = rfkill_dev_uevent,
934         .pm             = RFKILL_PM_OPS,
935 };
936
937 bool rfkill_blocked(struct rfkill *rfkill)
938 {
939         unsigned long flags;
940         u32 state;
941
942         spin_lock_irqsave(&rfkill->lock, flags);
943         state = rfkill->state;
944         spin_unlock_irqrestore(&rfkill->lock, flags);
945
946         return !!(state & RFKILL_BLOCK_ANY);
947 }
948 EXPORT_SYMBOL(rfkill_blocked);
949
950
951 struct rfkill * __must_check rfkill_alloc(const char *name,
952                                           struct device *parent,
953                                           const enum rfkill_type type,
954                                           const struct rfkill_ops *ops,
955                                           void *ops_data)
956 {
957         struct rfkill *rfkill;
958         struct device *dev;
959
960         if (WARN_ON(!ops))
961                 return NULL;
962
963         if (WARN_ON(!ops->set_block))
964                 return NULL;
965
966         if (WARN_ON(!name))
967                 return NULL;
968
969         if (WARN_ON(type == RFKILL_TYPE_ALL || type >= NUM_RFKILL_TYPES))
970                 return NULL;
971
972         rfkill = kzalloc(sizeof(*rfkill) + strlen(name) + 1, GFP_KERNEL);
973         if (!rfkill)
974                 return NULL;
975
976         spin_lock_init(&rfkill->lock);
977         INIT_LIST_HEAD(&rfkill->node);
978         rfkill->type = type;
979         strcpy(rfkill->name, name);
980         rfkill->ops = ops;
981         rfkill->data = ops_data;
982
983         dev = &rfkill->dev;
984         dev->class = &rfkill_class;
985         dev->parent = parent;
986         device_initialize(dev);
987
988         return rfkill;
989 }
990 EXPORT_SYMBOL(rfkill_alloc);
991
992 static void rfkill_poll(struct work_struct *work)
993 {
994         struct rfkill *rfkill;
995
996         rfkill = container_of(work, struct rfkill, poll_work.work);
997
998         /*
999          * Poll hardware state -- driver will use one of the
1000          * rfkill_set{,_hw,_sw}_state functions and use its
1001          * return value to update the current status.
1002          */
1003         rfkill->ops->poll(rfkill, rfkill->data);
1004
1005         queue_delayed_work(system_power_efficient_wq,
1006                 &rfkill->poll_work,
1007                 round_jiffies_relative(POLL_INTERVAL));
1008 }
1009
1010 static void rfkill_uevent_work(struct work_struct *work)
1011 {
1012         struct rfkill *rfkill;
1013
1014         rfkill = container_of(work, struct rfkill, uevent_work);
1015
1016         mutex_lock(&rfkill_global_mutex);
1017         rfkill_event(rfkill);
1018         mutex_unlock(&rfkill_global_mutex);
1019 }
1020
1021 static void rfkill_sync_work(struct work_struct *work)
1022 {
1023         struct rfkill *rfkill;
1024         bool cur;
1025
1026         rfkill = container_of(work, struct rfkill, sync_work);
1027
1028         mutex_lock(&rfkill_global_mutex);
1029         cur = rfkill_global_states[rfkill->type].cur;
1030         rfkill_set_block(rfkill, cur);
1031         mutex_unlock(&rfkill_global_mutex);
1032 }
1033
1034 int __must_check rfkill_register(struct rfkill *rfkill)
1035 {
1036         static unsigned long rfkill_no;
1037         struct device *dev;
1038         int error;
1039
1040         if (!rfkill)
1041                 return -EINVAL;
1042
1043         dev = &rfkill->dev;
1044
1045         mutex_lock(&rfkill_global_mutex);
1046
1047         if (rfkill->registered) {
1048                 error = -EALREADY;
1049                 goto unlock;
1050         }
1051
1052         rfkill->idx = rfkill_no;
1053         dev_set_name(dev, "rfkill%lu", rfkill_no);
1054         rfkill_no++;
1055
1056         list_add_tail(&rfkill->node, &rfkill_list);
1057
1058         error = device_add(dev);
1059         if (error)
1060                 goto remove;
1061
1062         error = rfkill_led_trigger_register(rfkill);
1063         if (error)
1064                 goto devdel;
1065
1066         rfkill->registered = true;
1067
1068         INIT_DELAYED_WORK(&rfkill->poll_work, rfkill_poll);
1069         INIT_WORK(&rfkill->uevent_work, rfkill_uevent_work);
1070         INIT_WORK(&rfkill->sync_work, rfkill_sync_work);
1071
1072         if (rfkill->ops->poll)
1073                 queue_delayed_work(system_power_efficient_wq,
1074                         &rfkill->poll_work,
1075                         round_jiffies_relative(POLL_INTERVAL));
1076
1077         if (!rfkill->persistent || rfkill_epo_lock_active) {
1078                 schedule_work(&rfkill->sync_work);
1079         } else {
1080 #ifdef CONFIG_RFKILL_INPUT
1081                 bool soft_blocked = !!(rfkill->state & RFKILL_BLOCK_SW);
1082
1083                 if (!atomic_read(&rfkill_input_disabled))
1084                         __rfkill_switch_all(rfkill->type, soft_blocked);
1085 #endif
1086         }
1087
1088         rfkill_global_led_trigger_event();
1089         rfkill_send_events(rfkill, RFKILL_OP_ADD);
1090
1091         mutex_unlock(&rfkill_global_mutex);
1092         return 0;
1093
1094  devdel:
1095         device_del(&rfkill->dev);
1096  remove:
1097         list_del_init(&rfkill->node);
1098  unlock:
1099         mutex_unlock(&rfkill_global_mutex);
1100         return error;
1101 }
1102 EXPORT_SYMBOL(rfkill_register);
1103
1104 void rfkill_unregister(struct rfkill *rfkill)
1105 {
1106         BUG_ON(!rfkill);
1107
1108         if (rfkill->ops->poll)
1109                 cancel_delayed_work_sync(&rfkill->poll_work);
1110
1111         cancel_work_sync(&rfkill->uevent_work);
1112         cancel_work_sync(&rfkill->sync_work);
1113
1114         rfkill->registered = false;
1115
1116         device_del(&rfkill->dev);
1117
1118         mutex_lock(&rfkill_global_mutex);
1119         rfkill_send_events(rfkill, RFKILL_OP_DEL);
1120         list_del_init(&rfkill->node);
1121         rfkill_global_led_trigger_event();
1122         mutex_unlock(&rfkill_global_mutex);
1123
1124         rfkill_led_trigger_unregister(rfkill);
1125 }
1126 EXPORT_SYMBOL(rfkill_unregister);
1127
1128 void rfkill_destroy(struct rfkill *rfkill)
1129 {
1130         if (rfkill)
1131                 put_device(&rfkill->dev);
1132 }
1133 EXPORT_SYMBOL(rfkill_destroy);
1134
1135 static int rfkill_fop_open(struct inode *inode, struct file *file)
1136 {
1137         struct rfkill_data *data;
1138         struct rfkill *rfkill;
1139         struct rfkill_int_event *ev, *tmp;
1140
1141         data = kzalloc(sizeof(*data), GFP_KERNEL);
1142         if (!data)
1143                 return -ENOMEM;
1144
1145         data->max_size = RFKILL_EVENT_SIZE_V1;
1146
1147         INIT_LIST_HEAD(&data->events);
1148         mutex_init(&data->mtx);
1149         init_waitqueue_head(&data->read_wait);
1150
1151         mutex_lock(&rfkill_global_mutex);
1152         mutex_lock(&data->mtx);
1153         /*
1154          * start getting events from elsewhere but hold mtx to get
1155          * startup events added first
1156          */
1157
1158         list_for_each_entry(rfkill, &rfkill_list, node) {
1159                 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1160                 if (!ev)
1161                         goto free;
1162                 rfkill_fill_event(&ev->ev, rfkill, RFKILL_OP_ADD);
1163                 list_add_tail(&ev->list, &data->events);
1164         }
1165         list_add(&data->list, &rfkill_fds);
1166         mutex_unlock(&data->mtx);
1167         mutex_unlock(&rfkill_global_mutex);
1168
1169         file->private_data = data;
1170
1171         return stream_open(inode, file);
1172
1173  free:
1174         mutex_unlock(&data->mtx);
1175         mutex_unlock(&rfkill_global_mutex);
1176         mutex_destroy(&data->mtx);
1177         list_for_each_entry_safe(ev, tmp, &data->events, list)
1178                 kfree(ev);
1179         kfree(data);
1180         return -ENOMEM;
1181 }
1182
1183 static __poll_t rfkill_fop_poll(struct file *file, poll_table *wait)
1184 {
1185         struct rfkill_data *data = file->private_data;
1186         __poll_t res = EPOLLOUT | EPOLLWRNORM;
1187
1188         poll_wait(file, &data->read_wait, wait);
1189
1190         mutex_lock(&data->mtx);
1191         if (!list_empty(&data->events))
1192                 res = EPOLLIN | EPOLLRDNORM;
1193         mutex_unlock(&data->mtx);
1194
1195         return res;
1196 }
1197
1198 static ssize_t rfkill_fop_read(struct file *file, char __user *buf,
1199                                size_t count, loff_t *pos)
1200 {
1201         struct rfkill_data *data = file->private_data;
1202         struct rfkill_int_event *ev;
1203         unsigned long sz;
1204         int ret;
1205
1206         mutex_lock(&data->mtx);
1207
1208         while (list_empty(&data->events)) {
1209                 if (file->f_flags & O_NONBLOCK) {
1210                         ret = -EAGAIN;
1211                         goto out;
1212                 }
1213                 mutex_unlock(&data->mtx);
1214                 /* since we re-check and it just compares pointers,
1215                  * using !list_empty() without locking isn't a problem
1216                  */
1217                 ret = wait_event_interruptible(data->read_wait,
1218                                                !list_empty(&data->events));
1219                 mutex_lock(&data->mtx);
1220
1221                 if (ret)
1222                         goto out;
1223         }
1224
1225         ev = list_first_entry(&data->events, struct rfkill_int_event,
1226                                 list);
1227
1228         sz = min_t(unsigned long, sizeof(ev->ev), count);
1229         sz = min_t(unsigned long, sz, data->max_size);
1230         ret = sz;
1231         if (copy_to_user(buf, &ev->ev, sz))
1232                 ret = -EFAULT;
1233
1234         list_del(&ev->list);
1235         kfree(ev);
1236  out:
1237         mutex_unlock(&data->mtx);
1238         return ret;
1239 }
1240
1241 static ssize_t rfkill_fop_write(struct file *file, const char __user *buf,
1242                                 size_t count, loff_t *pos)
1243 {
1244         struct rfkill_data *data = file->private_data;
1245         struct rfkill *rfkill;
1246         struct rfkill_event_ext ev;
1247         int ret;
1248
1249         /* we don't need the 'hard' variable but accept it */
1250         if (count < RFKILL_EVENT_SIZE_V1 - 1)
1251                 return -EINVAL;
1252
1253         /*
1254          * Copy as much data as we can accept into our 'ev' buffer,
1255          * but tell userspace how much we've copied so it can determine
1256          * our API version even in a write() call, if it cares.
1257          */
1258         count = min(count, sizeof(ev));
1259         count = min_t(size_t, count, data->max_size);
1260         if (copy_from_user(&ev, buf, count))
1261                 return -EFAULT;
1262
1263         if (ev.type >= NUM_RFKILL_TYPES)
1264                 return -EINVAL;
1265
1266         mutex_lock(&rfkill_global_mutex);
1267
1268         switch (ev.op) {
1269         case RFKILL_OP_CHANGE_ALL:
1270                 rfkill_update_global_state(ev.type, ev.soft);
1271                 list_for_each_entry(rfkill, &rfkill_list, node)
1272                         if (rfkill->type == ev.type ||
1273                             ev.type == RFKILL_TYPE_ALL)
1274                                 rfkill_set_block(rfkill, ev.soft);
1275                 ret = 0;
1276                 break;
1277         case RFKILL_OP_CHANGE:
1278                 list_for_each_entry(rfkill, &rfkill_list, node)
1279                         if (rfkill->idx == ev.idx &&
1280                             (rfkill->type == ev.type ||
1281                              ev.type == RFKILL_TYPE_ALL))
1282                                 rfkill_set_block(rfkill, ev.soft);
1283                 ret = 0;
1284                 break;
1285         default:
1286                 ret = -EINVAL;
1287                 break;
1288         }
1289
1290         mutex_unlock(&rfkill_global_mutex);
1291
1292         return ret ?: count;
1293 }
1294
1295 static int rfkill_fop_release(struct inode *inode, struct file *file)
1296 {
1297         struct rfkill_data *data = file->private_data;
1298         struct rfkill_int_event *ev, *tmp;
1299
1300         mutex_lock(&rfkill_global_mutex);
1301         list_del(&data->list);
1302         mutex_unlock(&rfkill_global_mutex);
1303
1304         mutex_destroy(&data->mtx);
1305         list_for_each_entry_safe(ev, tmp, &data->events, list)
1306                 kfree(ev);
1307
1308 #ifdef CONFIG_RFKILL_INPUT
1309         if (data->input_handler)
1310                 if (atomic_dec_return(&rfkill_input_disabled) == 0)
1311                         printk(KERN_DEBUG "rfkill: input handler enabled\n");
1312 #endif
1313
1314         kfree(data);
1315
1316         return 0;
1317 }
1318
1319 static long rfkill_fop_ioctl(struct file *file, unsigned int cmd,
1320                              unsigned long arg)
1321 {
1322         struct rfkill_data *data = file->private_data;
1323         int ret = -ENOSYS;
1324         u32 size;
1325
1326         if (_IOC_TYPE(cmd) != RFKILL_IOC_MAGIC)
1327                 return -ENOSYS;
1328
1329         mutex_lock(&data->mtx);
1330         switch (_IOC_NR(cmd)) {
1331 #ifdef CONFIG_RFKILL_INPUT
1332         case RFKILL_IOC_NOINPUT:
1333                 if (!data->input_handler) {
1334                         if (atomic_inc_return(&rfkill_input_disabled) == 1)
1335                                 printk(KERN_DEBUG "rfkill: input handler disabled\n");
1336                         data->input_handler = true;
1337                 }
1338                 ret = 0;
1339                 break;
1340 #endif
1341         case RFKILL_IOC_MAX_SIZE:
1342                 if (get_user(size, (__u32 __user *)arg)) {
1343                         ret = -EFAULT;
1344                         break;
1345                 }
1346                 if (size < RFKILL_EVENT_SIZE_V1 || size > U8_MAX) {
1347                         ret = -EINVAL;
1348                         break;
1349                 }
1350                 data->max_size = size;
1351                 ret = 0;
1352                 break;
1353         default:
1354                 break;
1355         }
1356         mutex_unlock(&data->mtx);
1357
1358         return ret;
1359 }
1360
1361 static const struct file_operations rfkill_fops = {
1362         .owner          = THIS_MODULE,
1363         .open           = rfkill_fop_open,
1364         .read           = rfkill_fop_read,
1365         .write          = rfkill_fop_write,
1366         .poll           = rfkill_fop_poll,
1367         .release        = rfkill_fop_release,
1368         .unlocked_ioctl = rfkill_fop_ioctl,
1369         .compat_ioctl   = compat_ptr_ioctl,
1370         .llseek         = no_llseek,
1371 };
1372
1373 #define RFKILL_NAME "rfkill"
1374
1375 static struct miscdevice rfkill_miscdev = {
1376         .fops   = &rfkill_fops,
1377         .name   = RFKILL_NAME,
1378         .minor  = RFKILL_MINOR,
1379 };
1380
1381 static int __init rfkill_init(void)
1382 {
1383         int error;
1384
1385         rfkill_update_global_state(RFKILL_TYPE_ALL, !rfkill_default_state);
1386
1387         error = class_register(&rfkill_class);
1388         if (error)
1389                 goto error_class;
1390
1391         error = misc_register(&rfkill_miscdev);
1392         if (error)
1393                 goto error_misc;
1394
1395         error = rfkill_global_led_trigger_register();
1396         if (error)
1397                 goto error_led_trigger;
1398
1399 #ifdef CONFIG_RFKILL_INPUT
1400         error = rfkill_handler_init();
1401         if (error)
1402                 goto error_input;
1403 #endif
1404
1405         return 0;
1406
1407 #ifdef CONFIG_RFKILL_INPUT
1408 error_input:
1409         rfkill_global_led_trigger_unregister();
1410 #endif
1411 error_led_trigger:
1412         misc_deregister(&rfkill_miscdev);
1413 error_misc:
1414         class_unregister(&rfkill_class);
1415 error_class:
1416         return error;
1417 }
1418 subsys_initcall(rfkill_init);
1419
1420 static void __exit rfkill_exit(void)
1421 {
1422 #ifdef CONFIG_RFKILL_INPUT
1423         rfkill_handler_exit();
1424 #endif
1425         rfkill_global_led_trigger_unregister();
1426         misc_deregister(&rfkill_miscdev);
1427         class_unregister(&rfkill_class);
1428 }
1429 module_exit(rfkill_exit);
1430
1431 MODULE_ALIAS_MISCDEV(RFKILL_MINOR);
1432 MODULE_ALIAS("devname:" RFKILL_NAME);