2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/moduleparam.h>
35 #include <linux/gfp.h>
38 #include <linux/list.h>
39 #include <linux/ratelimit.h>
40 #include <linux/export.h>
41 #include <linux/sizes.h>
45 /* When transmitting messages in rds_send_xmit, we need to emerge from
46 * time to time and briefly release the CPU. Otherwise the softlock watchdog
48 * Also, it seems fairer to not let one busy connection stall all the
51 * send_batch_count is the number of times we'll loop in send_xmit. Setting
52 * it to 0 will restore the old behavior (where we looped until we had
55 static int send_batch_count = SZ_1K;
56 module_param(send_batch_count, int, 0444);
57 MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
59 static void rds_send_remove_from_sock(struct list_head *messages, int status);
62 * Reset the send state. Callers must ensure that this doesn't race with
65 void rds_send_path_reset(struct rds_conn_path *cp)
67 struct rds_message *rm, *tmp;
72 cp->cp_xmit_rm = NULL;
73 /* Tell the user the RDMA op is no longer mapped by the
74 * transport. This isn't entirely true (it's flushed out
75 * independently) but as the connection is down, there's
76 * no ongoing RDMA to/from that memory */
77 rds_message_unmapped(rm);
82 cp->cp_xmit_hdr_off = 0;
83 cp->cp_xmit_data_off = 0;
84 cp->cp_xmit_atomic_sent = 0;
85 cp->cp_xmit_rdma_sent = 0;
86 cp->cp_xmit_data_sent = 0;
88 cp->cp_conn->c_map_queued = 0;
90 cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
91 cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
93 /* Mark messages as retransmissions, and move them to the send q */
94 spin_lock_irqsave(&cp->cp_lock, flags);
95 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
96 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
97 set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
99 list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
100 spin_unlock_irqrestore(&cp->cp_lock, flags);
102 EXPORT_SYMBOL_GPL(rds_send_path_reset);
104 static int acquire_in_xmit(struct rds_conn_path *cp)
106 return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
109 static void release_in_xmit(struct rds_conn_path *cp)
111 clear_bit(RDS_IN_XMIT, &cp->cp_flags);
112 smp_mb__after_atomic();
114 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
115 * hot path and finding waiters is very rare. We don't want to walk
116 * the system-wide hashed waitqueue buckets in the fast path only to
117 * almost never find waiters.
119 if (waitqueue_active(&cp->cp_waitq))
120 wake_up_all(&cp->cp_waitq);
124 * We're making the conscious trade-off here to only send one message
125 * down the connection at a time.
127 * - tx queueing is a simple fifo list
128 * - reassembly is optional and easily done by transports per conn
129 * - no per flow rx lookup at all, straight to the socket
130 * - less per-frag memory and wire overhead
132 * - queued acks can be delayed behind large messages
134 * - small message latency is higher behind queued large messages
135 * - large message latency isn't starved by intervening small sends
137 int rds_send_xmit(struct rds_conn_path *cp)
139 struct rds_connection *conn = cp->cp_conn;
140 struct rds_message *rm;
143 struct scatterlist *sg;
145 LIST_HEAD(to_be_dropped);
147 unsigned long send_gen = 0;
154 * sendmsg calls here after having queued its message on the send
155 * queue. We only have one task feeding the connection at a time. If
156 * another thread is already feeding the queue then we back off. This
157 * avoids blocking the caller and trading per-connection data between
158 * caches per message.
160 if (!acquire_in_xmit(cp)) {
161 rds_stats_inc(s_send_lock_contention);
166 if (rds_destroy_pending(cp->cp_conn)) {
168 ret = -ENETUNREACH; /* dont requeue send work */
173 * we record the send generation after doing the xmit acquire.
174 * if someone else manages to jump in and do some work, we'll use
175 * this to avoid a goto restart farther down.
177 * The acquire_in_xmit() check above ensures that only one
178 * caller can increment c_send_gen at any time.
180 send_gen = READ_ONCE(cp->cp_send_gen) + 1;
181 WRITE_ONCE(cp->cp_send_gen, send_gen);
184 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
185 * we do the opposite to avoid races.
187 if (!rds_conn_path_up(cp)) {
193 if (conn->c_trans->xmit_path_prepare)
194 conn->c_trans->xmit_path_prepare(cp);
197 * spin trying to push headers and data down the connection until
198 * the connection doesn't make forward progress.
208 if (same_rm >= 4096) {
209 rds_stats_inc(s_send_stuck_rm);
216 * If between sending messages, we can send a pending congestion
219 if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
220 rm = rds_cong_update_alloc(conn);
225 rm->data.op_active = 1;
226 rm->m_inc.i_conn_path = cp;
227 rm->m_inc.i_conn = cp->cp_conn;
233 * If not already working on one, grab the next message.
235 * cp_xmit_rm holds a ref while we're sending this message down
236 * the connction. We can use this ref while holding the
237 * send_sem.. rds_send_reset() is serialized with it.
244 /* we want to process as big a batch as we can, but
245 * we also want to avoid softlockups. If we've been
246 * through a lot of messages, lets back off and see
247 * if anyone else jumps in
249 if (batch_count >= send_batch_count)
252 spin_lock_irqsave(&cp->cp_lock, flags);
254 if (!list_empty(&cp->cp_send_queue)) {
255 rm = list_entry(cp->cp_send_queue.next,
258 rds_message_addref(rm);
261 * Move the message from the send queue to the retransmit
264 list_move_tail(&rm->m_conn_item,
268 spin_unlock_irqrestore(&cp->cp_lock, flags);
273 /* Unfortunately, the way Infiniband deals with
274 * RDMA to a bad MR key is by moving the entire
275 * queue pair to error state. We could possibly
276 * recover from that, but right now we drop the
278 * Therefore, we never retransmit messages with RDMA ops.
280 if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
281 (rm->rdma.op_active &&
282 test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
283 spin_lock_irqsave(&cp->cp_lock, flags);
284 if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
285 list_move(&rm->m_conn_item, &to_be_dropped);
286 spin_unlock_irqrestore(&cp->cp_lock, flags);
290 /* Require an ACK every once in a while */
291 len = ntohl(rm->m_inc.i_hdr.h_len);
292 if (cp->cp_unacked_packets == 0 ||
293 cp->cp_unacked_bytes < len) {
294 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
296 cp->cp_unacked_packets =
297 rds_sysctl_max_unacked_packets;
298 cp->cp_unacked_bytes =
299 rds_sysctl_max_unacked_bytes;
300 rds_stats_inc(s_send_ack_required);
302 cp->cp_unacked_bytes -= len;
303 cp->cp_unacked_packets--;
309 /* The transport either sends the whole rdma or none of it */
310 if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
311 rm->m_final_op = &rm->rdma;
312 /* The transport owns the mapped memory for now.
313 * You can't unmap it while it's on the send queue
315 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
316 ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
318 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
319 wake_up_interruptible(&rm->m_flush_wait);
322 cp->cp_xmit_rdma_sent = 1;
326 if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
327 rm->m_final_op = &rm->atomic;
328 /* The transport owns the mapped memory for now.
329 * You can't unmap it while it's on the send queue
331 set_bit(RDS_MSG_MAPPED, &rm->m_flags);
332 ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
334 clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
335 wake_up_interruptible(&rm->m_flush_wait);
338 cp->cp_xmit_atomic_sent = 1;
343 * A number of cases require an RDS header to be sent
344 * even if there is no data.
345 * We permit 0-byte sends; rds-ping depends on this.
346 * However, if there are exclusively attached silent ops,
347 * we skip the hdr/data send, to enable silent operation.
349 if (rm->data.op_nents == 0) {
351 int all_ops_are_silent = 1;
353 ops_present = (rm->atomic.op_active || rm->rdma.op_active);
354 if (rm->atomic.op_active && !rm->atomic.op_silent)
355 all_ops_are_silent = 0;
356 if (rm->rdma.op_active && !rm->rdma.op_silent)
357 all_ops_are_silent = 0;
359 if (ops_present && all_ops_are_silent
360 && !rm->m_rdma_cookie)
361 rm->data.op_active = 0;
364 if (rm->data.op_active && !cp->cp_xmit_data_sent) {
365 rm->m_final_op = &rm->data;
367 ret = conn->c_trans->xmit(conn, rm,
370 cp->cp_xmit_data_off);
374 if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
375 tmp = min_t(int, ret,
376 sizeof(struct rds_header) -
377 cp->cp_xmit_hdr_off);
378 cp->cp_xmit_hdr_off += tmp;
382 sg = &rm->data.op_sg[cp->cp_xmit_sg];
384 tmp = min_t(int, ret, sg->length -
385 cp->cp_xmit_data_off);
386 cp->cp_xmit_data_off += tmp;
388 if (cp->cp_xmit_data_off == sg->length) {
389 cp->cp_xmit_data_off = 0;
392 BUG_ON(ret != 0 && cp->cp_xmit_sg ==
397 if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
398 (cp->cp_xmit_sg == rm->data.op_nents))
399 cp->cp_xmit_data_sent = 1;
403 * A rm will only take multiple times through this loop
404 * if there is a data op. Thus, if the data is sent (or there was
405 * none), then we're done with the rm.
407 if (!rm->data.op_active || cp->cp_xmit_data_sent) {
408 cp->cp_xmit_rm = NULL;
410 cp->cp_xmit_hdr_off = 0;
411 cp->cp_xmit_data_off = 0;
412 cp->cp_xmit_rdma_sent = 0;
413 cp->cp_xmit_atomic_sent = 0;
414 cp->cp_xmit_data_sent = 0;
421 if (conn->c_trans->xmit_path_complete)
422 conn->c_trans->xmit_path_complete(cp);
425 /* Nuke any messages we decided not to retransmit. */
426 if (!list_empty(&to_be_dropped)) {
427 /* irqs on here, so we can put(), unlike above */
428 list_for_each_entry(rm, &to_be_dropped, m_conn_item)
430 rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
434 * Other senders can queue a message after we last test the send queue
435 * but before we clear RDS_IN_XMIT. In that case they'd back off and
436 * not try and send their newly queued message. We need to check the
437 * send queue after having cleared RDS_IN_XMIT so that their message
438 * doesn't get stuck on the send queue.
440 * If the transport cannot continue (i.e ret != 0), then it must
441 * call us when more room is available, such as from the tx
442 * completion handler.
444 * We have an extra generation check here so that if someone manages
445 * to jump in after our release_in_xmit, we'll see that they have done
446 * some work and we will skip our goto
452 raced = send_gen != READ_ONCE(cp->cp_send_gen);
454 if ((test_bit(0, &conn->c_map_queued) ||
455 !list_empty(&cp->cp_send_queue)) && !raced) {
456 if (batch_count < send_batch_count)
459 if (rds_destroy_pending(cp->cp_conn))
462 queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
465 rds_stats_inc(s_send_lock_queue_raced);
471 EXPORT_SYMBOL_GPL(rds_send_xmit);
473 static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
475 u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
477 assert_spin_locked(&rs->rs_lock);
479 BUG_ON(rs->rs_snd_bytes < len);
480 rs->rs_snd_bytes -= len;
482 if (rs->rs_snd_bytes == 0)
483 rds_stats_inc(s_send_queue_empty);
486 static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
487 is_acked_func is_acked)
490 return is_acked(rm, ack);
491 return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
495 * This is pretty similar to what happens below in the ACK
496 * handling code - except that we call here as soon as we get
497 * the IB send completion on the RDMA op and the accompanying
500 void rds_rdma_send_complete(struct rds_message *rm, int status)
502 struct rds_sock *rs = NULL;
503 struct rm_rdma_op *ro;
504 struct rds_notifier *notifier;
507 spin_lock_irqsave(&rm->m_rs_lock, flags);
510 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
511 ro->op_active && ro->op_notify && ro->op_notifier) {
512 notifier = ro->op_notifier;
514 sock_hold(rds_rs_to_sk(rs));
516 notifier->n_status = status;
517 spin_lock(&rs->rs_lock);
518 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
519 spin_unlock(&rs->rs_lock);
521 ro->op_notifier = NULL;
524 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
527 rds_wake_sk_sleep(rs);
528 sock_put(rds_rs_to_sk(rs));
531 EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
534 * Just like above, except looks at atomic op
536 void rds_atomic_send_complete(struct rds_message *rm, int status)
538 struct rds_sock *rs = NULL;
539 struct rm_atomic_op *ao;
540 struct rds_notifier *notifier;
543 spin_lock_irqsave(&rm->m_rs_lock, flags);
546 if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
547 && ao->op_active && ao->op_notify && ao->op_notifier) {
548 notifier = ao->op_notifier;
550 sock_hold(rds_rs_to_sk(rs));
552 notifier->n_status = status;
553 spin_lock(&rs->rs_lock);
554 list_add_tail(¬ifier->n_list, &rs->rs_notify_queue);
555 spin_unlock(&rs->rs_lock);
557 ao->op_notifier = NULL;
560 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
563 rds_wake_sk_sleep(rs);
564 sock_put(rds_rs_to_sk(rs));
567 EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
570 * This is the same as rds_rdma_send_complete except we
571 * don't do any locking - we have all the ingredients (message,
572 * socket, socket lock) and can just move the notifier.
575 __rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
577 struct rm_rdma_op *ro;
578 struct rm_atomic_op *ao;
581 if (ro->op_active && ro->op_notify && ro->op_notifier) {
582 ro->op_notifier->n_status = status;
583 list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
584 ro->op_notifier = NULL;
588 if (ao->op_active && ao->op_notify && ao->op_notifier) {
589 ao->op_notifier->n_status = status;
590 list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
591 ao->op_notifier = NULL;
594 /* No need to wake the app - caller does this */
598 * This removes messages from the socket's list if they're on it. The list
599 * argument must be private to the caller, we must be able to modify it
600 * without locks. The messages must have a reference held for their
601 * position on the list. This function will drop that reference after
602 * removing the messages from the 'messages' list regardless of if it found
603 * the messages on the socket list or not.
605 static void rds_send_remove_from_sock(struct list_head *messages, int status)
608 struct rds_sock *rs = NULL;
609 struct rds_message *rm;
611 while (!list_empty(messages)) {
614 rm = list_entry(messages->next, struct rds_message,
616 list_del_init(&rm->m_conn_item);
619 * If we see this flag cleared then we're *sure* that someone
620 * else beat us to removing it from the sock. If we race
621 * with their flag update we'll get the lock and then really
622 * see that the flag has been cleared.
624 * The message spinlock makes sure nobody clears rm->m_rs
625 * while we're messing with it. It does not prevent the
626 * message from being removed from the socket, though.
628 spin_lock_irqsave(&rm->m_rs_lock, flags);
629 if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
630 goto unlock_and_drop;
632 if (rs != rm->m_rs) {
634 rds_wake_sk_sleep(rs);
635 sock_put(rds_rs_to_sk(rs));
639 sock_hold(rds_rs_to_sk(rs));
642 goto unlock_and_drop;
643 spin_lock(&rs->rs_lock);
645 if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
646 struct rm_rdma_op *ro = &rm->rdma;
647 struct rds_notifier *notifier;
649 list_del_init(&rm->m_sock_item);
650 rds_send_sndbuf_remove(rs, rm);
652 if (ro->op_active && ro->op_notifier &&
653 (ro->op_notify || (ro->op_recverr && status))) {
654 notifier = ro->op_notifier;
655 list_add_tail(¬ifier->n_list,
656 &rs->rs_notify_queue);
657 if (!notifier->n_status)
658 notifier->n_status = status;
659 rm->rdma.op_notifier = NULL;
663 spin_unlock(&rs->rs_lock);
666 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
673 rds_wake_sk_sleep(rs);
674 sock_put(rds_rs_to_sk(rs));
679 * Transports call here when they've determined that the receiver queued
680 * messages up to, and including, the given sequence number. Messages are
681 * moved to the retrans queue when rds_send_xmit picks them off the send
682 * queue. This means that in the TCP case, the message may not have been
683 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
684 * checks the RDS_MSG_HAS_ACK_SEQ bit.
686 void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
687 is_acked_func is_acked)
689 struct rds_message *rm, *tmp;
693 spin_lock_irqsave(&cp->cp_lock, flags);
695 list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
696 if (!rds_send_is_acked(rm, ack, is_acked))
699 list_move(&rm->m_conn_item, &list);
700 clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
703 /* order flag updates with spin locks */
704 if (!list_empty(&list))
705 smp_mb__after_atomic();
707 spin_unlock_irqrestore(&cp->cp_lock, flags);
709 /* now remove the messages from the sock list as needed */
710 rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
712 EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
714 void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
715 is_acked_func is_acked)
717 WARN_ON(conn->c_trans->t_mp_capable);
718 rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
720 EXPORT_SYMBOL_GPL(rds_send_drop_acked);
722 void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in6 *dest)
724 struct rds_message *rm, *tmp;
725 struct rds_connection *conn;
726 struct rds_conn_path *cp;
730 /* get all the messages we're dropping under the rs lock */
731 spin_lock_irqsave(&rs->rs_lock, flags);
733 list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
735 (!ipv6_addr_equal(&dest->sin6_addr, &rm->m_daddr) ||
736 dest->sin6_port != rm->m_inc.i_hdr.h_dport))
739 list_move(&rm->m_sock_item, &list);
740 rds_send_sndbuf_remove(rs, rm);
741 clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
744 /* order flag updates with the rs lock */
745 smp_mb__after_atomic();
747 spin_unlock_irqrestore(&rs->rs_lock, flags);
749 if (list_empty(&list))
752 /* Remove the messages from the conn */
753 list_for_each_entry(rm, &list, m_sock_item) {
755 conn = rm->m_inc.i_conn;
756 if (conn->c_trans->t_mp_capable)
757 cp = rm->m_inc.i_conn_path;
759 cp = &conn->c_path[0];
761 spin_lock_irqsave(&cp->cp_lock, flags);
763 * Maybe someone else beat us to removing rm from the conn.
764 * If we race with their flag update we'll get the lock and
765 * then really see that the flag has been cleared.
767 if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
768 spin_unlock_irqrestore(&cp->cp_lock, flags);
771 list_del_init(&rm->m_conn_item);
772 spin_unlock_irqrestore(&cp->cp_lock, flags);
775 * Couldn't grab m_rs_lock in top loop (lock ordering),
778 spin_lock_irqsave(&rm->m_rs_lock, flags);
780 spin_lock(&rs->rs_lock);
781 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
782 spin_unlock(&rs->rs_lock);
784 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
789 rds_wake_sk_sleep(rs);
791 while (!list_empty(&list)) {
792 rm = list_entry(list.next, struct rds_message, m_sock_item);
793 list_del_init(&rm->m_sock_item);
794 rds_message_wait(rm);
796 /* just in case the code above skipped this message
797 * because RDS_MSG_ON_CONN wasn't set, run it again here
798 * taking m_rs_lock is the only thing that keeps us
799 * from racing with ack processing.
801 spin_lock_irqsave(&rm->m_rs_lock, flags);
803 spin_lock(&rs->rs_lock);
804 __rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
805 spin_unlock(&rs->rs_lock);
807 spin_unlock_irqrestore(&rm->m_rs_lock, flags);
814 * we only want this to fire once so we use the callers 'queued'. It's
815 * possible that another thread can race with us and remove the
816 * message from the flow with RDS_CANCEL_SENT_TO.
818 static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
819 struct rds_conn_path *cp,
820 struct rds_message *rm, __be16 sport,
821 __be16 dport, int *queued)
829 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
831 /* this is the only place which holds both the socket's rs_lock
832 * and the connection's c_lock */
833 spin_lock_irqsave(&rs->rs_lock, flags);
836 * If there is a little space in sndbuf, we don't queue anything,
837 * and userspace gets -EAGAIN. But poll() indicates there's send
838 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
839 * freed up by incoming acks. So we check the *old* value of
840 * rs_snd_bytes here to allow the last msg to exceed the buffer,
841 * and poll() now knows no more data can be sent.
843 if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
844 rs->rs_snd_bytes += len;
846 /* let recv side know we are close to send space exhaustion.
847 * This is probably not the optimal way to do it, as this
848 * means we set the flag on *all* messages as soon as our
849 * throughput hits a certain threshold.
851 if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
852 set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
854 list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
855 set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
856 rds_message_addref(rm);
857 sock_hold(rds_rs_to_sk(rs));
860 /* The code ordering is a little weird, but we're
861 trying to minimize the time we hold c_lock */
862 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
863 rm->m_inc.i_conn = conn;
864 rm->m_inc.i_conn_path = cp;
865 rds_message_addref(rm);
867 spin_lock(&cp->cp_lock);
868 rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
869 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
870 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
871 spin_unlock(&cp->cp_lock);
873 rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
874 rm, len, rs, rs->rs_snd_bytes,
875 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
880 spin_unlock_irqrestore(&rs->rs_lock, flags);
886 * rds_message is getting to be quite complicated, and we'd like to allocate
887 * it all in one go. This figures out how big it needs to be up front.
889 static int rds_rm_size(struct msghdr *msg, int num_sgs,
890 struct rds_iov_vector_arr *vct)
892 struct cmsghdr *cmsg;
896 bool zcopy_cookie = false;
897 struct rds_iov_vector *iov, *tmp_iov;
902 for_each_cmsghdr(cmsg, msg) {
903 if (!CMSG_OK(msg, cmsg))
906 if (cmsg->cmsg_level != SOL_RDS)
909 switch (cmsg->cmsg_type) {
910 case RDS_CMSG_RDMA_ARGS:
911 if (vct->indx >= vct->len) {
912 vct->len += vct->incr;
916 sizeof(struct rds_iov_vector),
919 vct->len -= vct->incr;
924 iov = &vct->vec[vct->indx];
925 memset(iov, 0, sizeof(struct rds_iov_vector));
928 retval = rds_rdma_extra_size(CMSG_DATA(cmsg), iov);
935 case RDS_CMSG_ZCOPY_COOKIE:
939 case RDS_CMSG_RDMA_DEST:
940 case RDS_CMSG_RDMA_MAP:
942 /* these are valid but do no add any size */
945 case RDS_CMSG_ATOMIC_CSWP:
946 case RDS_CMSG_ATOMIC_FADD:
947 case RDS_CMSG_MASKED_ATOMIC_CSWP:
948 case RDS_CMSG_MASKED_ATOMIC_FADD:
950 size += sizeof(struct scatterlist);
959 if ((msg->msg_flags & MSG_ZEROCOPY) && !zcopy_cookie)
962 size += num_sgs * sizeof(struct scatterlist);
964 /* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
965 if (cmsg_groups == 3)
971 static int rds_cmsg_zcopy(struct rds_sock *rs, struct rds_message *rm,
972 struct cmsghdr *cmsg)
976 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*cookie)) ||
977 !rm->data.op_mmp_znotifier)
979 cookie = CMSG_DATA(cmsg);
980 rm->data.op_mmp_znotifier->z_cookie = *cookie;
984 static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
985 struct msghdr *msg, int *allocated_mr,
986 struct rds_iov_vector_arr *vct)
988 struct cmsghdr *cmsg;
989 int ret = 0, ind = 0;
991 for_each_cmsghdr(cmsg, msg) {
992 if (!CMSG_OK(msg, cmsg))
995 if (cmsg->cmsg_level != SOL_RDS)
998 /* As a side effect, RDMA_DEST and RDMA_MAP will set
999 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
1001 switch (cmsg->cmsg_type) {
1002 case RDS_CMSG_RDMA_ARGS:
1003 if (ind >= vct->indx)
1005 ret = rds_cmsg_rdma_args(rs, rm, cmsg, &vct->vec[ind]);
1009 case RDS_CMSG_RDMA_DEST:
1010 ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
1013 case RDS_CMSG_RDMA_MAP:
1014 ret = rds_cmsg_rdma_map(rs, rm, cmsg);
1017 else if (ret == -ENODEV)
1018 /* Accommodate the get_mr() case which can fail
1019 * if connection isn't established yet.
1023 case RDS_CMSG_ATOMIC_CSWP:
1024 case RDS_CMSG_ATOMIC_FADD:
1025 case RDS_CMSG_MASKED_ATOMIC_CSWP:
1026 case RDS_CMSG_MASKED_ATOMIC_FADD:
1027 ret = rds_cmsg_atomic(rs, rm, cmsg);
1030 case RDS_CMSG_ZCOPY_COOKIE:
1031 ret = rds_cmsg_zcopy(rs, rm, cmsg);
1045 static int rds_send_mprds_hash(struct rds_sock *rs,
1046 struct rds_connection *conn, int nonblock)
1050 if (conn->c_npaths == 0)
1051 hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
1053 hash = RDS_MPATH_HASH(rs, conn->c_npaths);
1054 if (conn->c_npaths == 0 && hash != 0) {
1055 rds_send_ping(conn, 0);
1057 /* The underlying connection is not up yet. Need to wait
1058 * until it is up to be sure that the non-zero c_path can be
1059 * used. But if we are interrupted, we have to use the zero
1060 * c_path in case the connection ends up being non-MP capable.
1062 if (conn->c_npaths == 0) {
1063 /* Cannot wait for the connection be made, so just use
1068 if (wait_event_interruptible(conn->c_hs_waitq,
1069 conn->c_npaths != 0))
1072 if (conn->c_npaths == 1)
1078 static int rds_rdma_bytes(struct msghdr *msg, size_t *rdma_bytes)
1080 struct rds_rdma_args *args;
1081 struct cmsghdr *cmsg;
1083 for_each_cmsghdr(cmsg, msg) {
1084 if (!CMSG_OK(msg, cmsg))
1087 if (cmsg->cmsg_level != SOL_RDS)
1090 if (cmsg->cmsg_type == RDS_CMSG_RDMA_ARGS) {
1091 if (cmsg->cmsg_len <
1092 CMSG_LEN(sizeof(struct rds_rdma_args)))
1094 args = CMSG_DATA(cmsg);
1095 *rdma_bytes += args->remote_vec.bytes;
1101 int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
1103 struct sock *sk = sock->sk;
1104 struct rds_sock *rs = rds_sk_to_rs(sk);
1105 DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
1106 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1108 struct rds_message *rm = NULL;
1109 struct rds_connection *conn;
1111 int queued = 0, allocated_mr = 0;
1112 int nonblock = msg->msg_flags & MSG_DONTWAIT;
1113 long timeo = sock_sndtimeo(sk, nonblock);
1114 struct rds_conn_path *cpath;
1115 struct in6_addr daddr;
1117 size_t total_payload_len = payload_len, rdma_payload_len = 0;
1118 bool zcopy = ((msg->msg_flags & MSG_ZEROCOPY) &&
1119 sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY));
1120 int num_sgs = DIV_ROUND_UP(payload_len, PAGE_SIZE);
1122 struct rds_iov_vector_arr vct;
1125 memset(&vct, 0, sizeof(vct));
1127 /* expect 1 RDMA CMSG per rds_sendmsg. can still grow if more needed. */
1130 /* Mirror Linux UDP mirror of BSD error message compatibility */
1131 /* XXX: Perhaps MSG_MORE someday */
1132 if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT | MSG_ZEROCOPY)) {
1137 namelen = msg->msg_namelen;
1139 if (namelen < sizeof(*usin)) {
1143 switch (usin->sin_family) {
1145 if (usin->sin_addr.s_addr == htonl(INADDR_ANY) ||
1146 usin->sin_addr.s_addr == htonl(INADDR_BROADCAST) ||
1147 ipv4_is_multicast(usin->sin_addr.s_addr)) {
1151 ipv6_addr_set_v4mapped(usin->sin_addr.s_addr, &daddr);
1152 dport = usin->sin_port;
1155 #if IS_ENABLED(CONFIG_IPV6)
1159 if (namelen < sizeof(*sin6)) {
1163 addr_type = ipv6_addr_type(&sin6->sin6_addr);
1164 if (!(addr_type & IPV6_ADDR_UNICAST)) {
1167 if (!(addr_type & IPV6_ADDR_MAPPED)) {
1172 /* It is a mapped address. Need to do some
1175 addr4 = sin6->sin6_addr.s6_addr32[3];
1176 if (addr4 == htonl(INADDR_ANY) ||
1177 addr4 == htonl(INADDR_BROADCAST) ||
1178 ipv4_is_multicast(addr4)) {
1183 if (addr_type & IPV6_ADDR_LINKLOCAL) {
1184 if (sin6->sin6_scope_id == 0) {
1188 scope_id = sin6->sin6_scope_id;
1191 daddr = sin6->sin6_addr;
1192 dport = sin6->sin6_port;
1202 /* We only care about consistency with ->connect() */
1204 daddr = rs->rs_conn_addr;
1205 dport = rs->rs_conn_port;
1206 scope_id = rs->rs_bound_scope_id;
1211 if (ipv6_addr_any(&rs->rs_bound_addr) || ipv6_addr_any(&daddr)) {
1215 } else if (namelen != 0) {
1216 /* Cannot send to an IPv4 address using an IPv6 source
1217 * address and cannot send to an IPv6 address using an
1218 * IPv4 source address.
1220 if (ipv6_addr_v4mapped(&daddr) ^
1221 ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
1226 /* If the socket is already bound to a link local address,
1227 * it can only send to peers on the same link. But allow
1228 * communicating between link local and non-link local address.
1230 if (scope_id != rs->rs_bound_scope_id) {
1232 scope_id = rs->rs_bound_scope_id;
1233 } else if (rs->rs_bound_scope_id) {
1242 ret = rds_rdma_bytes(msg, &rdma_payload_len);
1246 total_payload_len += rdma_payload_len;
1247 if (max_t(size_t, payload_len, rdma_payload_len) > RDS_MAX_MSG_SIZE) {
1252 if (payload_len > rds_sk_sndbuf(rs)) {
1258 if (rs->rs_transport->t_type != RDS_TRANS_TCP) {
1262 num_sgs = iov_iter_npages(&msg->msg_iter, INT_MAX);
1264 /* size of rm including all sgs */
1265 ret = rds_rm_size(msg, num_sgs, &vct);
1269 rm = rds_message_alloc(ret, GFP_KERNEL);
1275 /* Attach data to the rm */
1277 rm->data.op_sg = rds_message_alloc_sgs(rm, num_sgs);
1278 if (IS_ERR(rm->data.op_sg)) {
1279 ret = PTR_ERR(rm->data.op_sg);
1282 ret = rds_message_copy_from_user(rm, &msg->msg_iter, zcopy);
1286 rm->data.op_active = 1;
1288 rm->m_daddr = daddr;
1290 /* rds_conn_create has a spinlock that runs with IRQ off.
1291 * Caching the conn in the socket helps a lot. */
1292 if (rs->rs_conn && ipv6_addr_equal(&rs->rs_conn->c_faddr, &daddr) &&
1293 rs->rs_tos == rs->rs_conn->c_tos) {
1296 conn = rds_conn_create_outgoing(sock_net(sock->sk),
1297 &rs->rs_bound_addr, &daddr,
1298 rs->rs_transport, rs->rs_tos,
1299 sock->sk->sk_allocation,
1302 ret = PTR_ERR(conn);
1308 if (conn->c_trans->t_mp_capable)
1309 cpath = &conn->c_path[rds_send_mprds_hash(rs, conn, nonblock)];
1311 cpath = &conn->c_path[0];
1313 rm->m_conn_path = cpath;
1315 /* Parse any control messages the user may have included. */
1316 ret = rds_cmsg_send(rs, rm, msg, &allocated_mr, &vct);
1318 /* Trigger connection so that its ready for the next retry */
1320 rds_conn_connect_if_down(conn);
1324 if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1325 printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1326 &rm->rdma, conn->c_trans->xmit_rdma);
1331 if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1332 printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1333 &rm->atomic, conn->c_trans->xmit_atomic);
1338 if (rds_destroy_pending(conn)) {
1343 if (rds_conn_path_down(cpath))
1344 rds_check_all_paths(conn);
1346 ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1348 rs->rs_seen_congestion = 1;
1351 while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
1353 rds_stats_inc(s_send_queue_full);
1360 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1361 rds_send_queue_rm(rs, conn, cpath, rm,
1366 rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1367 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1377 * By now we've committed to the send. We reuse rds_send_worker()
1378 * to retry sends in the rds thread if the transport asks us to.
1380 rds_stats_inc(s_send_queued);
1382 ret = rds_send_xmit(cpath);
1383 if (ret == -ENOMEM || ret == -EAGAIN) {
1386 if (rds_destroy_pending(cpath->cp_conn))
1389 queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1394 rds_message_put(rm);
1396 for (ind = 0; ind < vct.indx; ind++)
1397 kfree(vct.vec[ind].iov);
1403 for (ind = 0; ind < vct.indx; ind++)
1404 kfree(vct.vec[ind].iov);
1407 /* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1408 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1409 * or in any other way, we need to destroy the MR again */
1411 rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1414 rds_message_put(rm);
1419 * send out a probe. Can be shared by rds_send_ping,
1420 * rds_send_pong, rds_send_hb.
1421 * rds_send_hb should use h_flags
1422 * RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1424 * RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1427 rds_send_probe(struct rds_conn_path *cp, __be16 sport,
1428 __be16 dport, u8 h_flags)
1430 struct rds_message *rm;
1431 unsigned long flags;
1434 rm = rds_message_alloc(0, GFP_ATOMIC);
1440 rm->m_daddr = cp->cp_conn->c_faddr;
1441 rm->data.op_active = 1;
1443 rds_conn_path_connect_if_down(cp);
1445 ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
1449 spin_lock_irqsave(&cp->cp_lock, flags);
1450 list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
1451 set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1452 rds_message_addref(rm);
1453 rm->m_inc.i_conn = cp->cp_conn;
1454 rm->m_inc.i_conn_path = cp;
1456 rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
1457 cp->cp_next_tx_seq);
1458 rm->m_inc.i_hdr.h_flags |= h_flags;
1459 cp->cp_next_tx_seq++;
1461 if (RDS_HS_PROBE(be16_to_cpu(sport), be16_to_cpu(dport)) &&
1462 cp->cp_conn->c_trans->t_mp_capable) {
1463 u16 npaths = cpu_to_be16(RDS_MPATH_WORKERS);
1464 u32 my_gen_num = cpu_to_be32(cp->cp_conn->c_my_gen_num);
1466 rds_message_add_extension(&rm->m_inc.i_hdr,
1467 RDS_EXTHDR_NPATHS, &npaths,
1469 rds_message_add_extension(&rm->m_inc.i_hdr,
1474 spin_unlock_irqrestore(&cp->cp_lock, flags);
1476 rds_stats_inc(s_send_queued);
1477 rds_stats_inc(s_send_pong);
1479 /* schedule the send work on rds_wq */
1481 if (!rds_destroy_pending(cp->cp_conn))
1482 queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1485 rds_message_put(rm);
1490 rds_message_put(rm);
1495 rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1497 return rds_send_probe(cp, 0, dport, 0);
1501 rds_send_ping(struct rds_connection *conn, int cp_index)
1503 unsigned long flags;
1504 struct rds_conn_path *cp = &conn->c_path[cp_index];
1506 spin_lock_irqsave(&cp->cp_lock, flags);
1507 if (conn->c_ping_triggered) {
1508 spin_unlock_irqrestore(&cp->cp_lock, flags);
1511 conn->c_ping_triggered = 1;
1512 spin_unlock_irqrestore(&cp->cp_lock, flags);
1513 rds_send_probe(cp, cpu_to_be16(RDS_FLAG_PROBE_PORT), 0, 0);
1515 EXPORT_SYMBOL_GPL(rds_send_ping);