2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
37 #include <linux/export.h>
38 #include <linux/time.h>
39 #include <linux/rds.h>
43 void rds_inc_init(struct rds_incoming *inc, struct rds_connection *conn,
44 struct in6_addr *saddr)
46 refcount_set(&inc->i_refcount, 1);
47 INIT_LIST_HEAD(&inc->i_item);
49 inc->i_saddr = *saddr;
50 inc->i_usercopy.rdma_cookie = 0;
51 inc->i_usercopy.rx_tstamp = ktime_set(0, 0);
53 memset(inc->i_rx_lat_trace, 0, sizeof(inc->i_rx_lat_trace));
55 EXPORT_SYMBOL_GPL(rds_inc_init);
57 void rds_inc_path_init(struct rds_incoming *inc, struct rds_conn_path *cp,
58 struct in6_addr *saddr)
60 refcount_set(&inc->i_refcount, 1);
61 INIT_LIST_HEAD(&inc->i_item);
62 inc->i_conn = cp->cp_conn;
63 inc->i_conn_path = cp;
64 inc->i_saddr = *saddr;
65 inc->i_usercopy.rdma_cookie = 0;
66 inc->i_usercopy.rx_tstamp = ktime_set(0, 0);
68 EXPORT_SYMBOL_GPL(rds_inc_path_init);
70 static void rds_inc_addref(struct rds_incoming *inc)
72 rdsdebug("addref inc %p ref %d\n", inc, refcount_read(&inc->i_refcount));
73 refcount_inc(&inc->i_refcount);
76 void rds_inc_put(struct rds_incoming *inc)
78 rdsdebug("put inc %p ref %d\n", inc, refcount_read(&inc->i_refcount));
79 if (refcount_dec_and_test(&inc->i_refcount)) {
80 BUG_ON(!list_empty(&inc->i_item));
82 inc->i_conn->c_trans->inc_free(inc);
85 EXPORT_SYMBOL_GPL(rds_inc_put);
87 static void rds_recv_rcvbuf_delta(struct rds_sock *rs, struct sock *sk,
88 struct rds_cong_map *map,
89 int delta, __be16 port)
96 rs->rs_rcv_bytes += delta;
98 rds_stats_add(s_recv_bytes_added_to_socket, delta);
100 rds_stats_add(s_recv_bytes_removed_from_socket, -delta);
102 /* loop transport doesn't send/recv congestion updates */
103 if (rs->rs_transport->t_type == RDS_TRANS_LOOP)
106 now_congested = rs->rs_rcv_bytes > rds_sk_rcvbuf(rs);
108 rdsdebug("rs %p (%pI6c:%u) recv bytes %d buf %d "
109 "now_cong %d delta %d\n",
110 rs, &rs->rs_bound_addr,
111 ntohs(rs->rs_bound_port), rs->rs_rcv_bytes,
112 rds_sk_rcvbuf(rs), now_congested, delta);
114 /* wasn't -> am congested */
115 if (!rs->rs_congested && now_congested) {
116 rs->rs_congested = 1;
117 rds_cong_set_bit(map, port);
118 rds_cong_queue_updates(map);
120 /* was -> aren't congested */
121 /* Require more free space before reporting uncongested to prevent
122 bouncing cong/uncong state too often */
123 else if (rs->rs_congested && (rs->rs_rcv_bytes < (rds_sk_rcvbuf(rs)/2))) {
124 rs->rs_congested = 0;
125 rds_cong_clear_bit(map, port);
126 rds_cong_queue_updates(map);
129 /* do nothing if no change in cong state */
132 static void rds_conn_peer_gen_update(struct rds_connection *conn,
136 struct rds_message *rm, *tmp;
139 WARN_ON(conn->c_trans->t_type != RDS_TRANS_TCP);
140 if (peer_gen_num != 0) {
141 if (conn->c_peer_gen_num != 0 &&
142 peer_gen_num != conn->c_peer_gen_num) {
143 for (i = 0; i < RDS_MPATH_WORKERS; i++) {
144 struct rds_conn_path *cp;
146 cp = &conn->c_path[i];
147 spin_lock_irqsave(&cp->cp_lock, flags);
148 cp->cp_next_tx_seq = 1;
149 cp->cp_next_rx_seq = 0;
150 list_for_each_entry_safe(rm, tmp,
153 set_bit(RDS_MSG_FLUSH, &rm->m_flags);
155 spin_unlock_irqrestore(&cp->cp_lock, flags);
158 conn->c_peer_gen_num = peer_gen_num;
163 * Process all extension headers that come with this message.
165 static void rds_recv_incoming_exthdrs(struct rds_incoming *inc, struct rds_sock *rs)
167 struct rds_header *hdr = &inc->i_hdr;
168 unsigned int pos = 0, type, len;
170 struct rds_ext_header_version version;
171 struct rds_ext_header_rdma rdma;
172 struct rds_ext_header_rdma_dest rdma_dest;
176 len = sizeof(buffer);
177 type = rds_message_next_extension(hdr, &pos, &buffer, &len);
178 if (type == RDS_EXTHDR_NONE)
180 /* Process extension header here */
182 case RDS_EXTHDR_RDMA:
183 rds_rdma_unuse(rs, be32_to_cpu(buffer.rdma.h_rdma_rkey), 0);
186 case RDS_EXTHDR_RDMA_DEST:
187 /* We ignore the size for now. We could stash it
188 * somewhere and use it for error checking. */
189 inc->i_usercopy.rdma_cookie = rds_rdma_make_cookie(
190 be32_to_cpu(buffer.rdma_dest.h_rdma_rkey),
191 be32_to_cpu(buffer.rdma_dest.h_rdma_offset));
198 static void rds_recv_hs_exthdrs(struct rds_header *hdr,
199 struct rds_connection *conn)
201 unsigned int pos = 0, type, len;
203 struct rds_ext_header_version version;
207 u32 new_peer_gen_num = 0;
210 len = sizeof(buffer);
211 type = rds_message_next_extension(hdr, &pos, &buffer, &len);
212 if (type == RDS_EXTHDR_NONE)
214 /* Process extension header here */
216 case RDS_EXTHDR_NPATHS:
217 conn->c_npaths = min_t(int, RDS_MPATH_WORKERS,
218 be16_to_cpu(buffer.rds_npaths));
220 case RDS_EXTHDR_GEN_NUM:
221 new_peer_gen_num = be32_to_cpu(buffer.rds_gen_num);
224 pr_warn_ratelimited("ignoring unknown exthdr type "
228 /* if RDS_EXTHDR_NPATHS was not found, default to a single-path */
229 conn->c_npaths = max_t(int, conn->c_npaths, 1);
230 conn->c_ping_triggered = 0;
231 rds_conn_peer_gen_update(conn, new_peer_gen_num);
234 /* rds_start_mprds() will synchronously start multiple paths when appropriate.
235 * The scheme is based on the following rules:
237 * 1. rds_sendmsg on first connect attempt sends the probe ping, with the
238 * sender's npaths (s_npaths)
239 * 2. rcvr of probe-ping knows the mprds_paths = min(s_npaths, r_npaths). It
240 * sends back a probe-pong with r_npaths. After that, if rcvr is the
241 * smaller ip addr, it starts rds_conn_path_connect_if_down on all
243 * 3. sender gets woken up, and can move to rds_conn_path_connect_if_down.
244 * If it is the smaller ipaddr, rds_conn_path_connect_if_down can be
245 * called after reception of the probe-pong on all mprds_paths.
246 * Otherwise (sender of probe-ping is not the smaller ip addr): just call
247 * rds_conn_path_connect_if_down on the hashed path. (see rule 4)
248 * 4. rds_connect_worker must only trigger a connection if laddr < faddr.
249 * 5. sender may end up queuing the packet on the cp. will get sent out later.
250 * when connection is completed.
252 static void rds_start_mprds(struct rds_connection *conn)
255 struct rds_conn_path *cp;
257 if (conn->c_npaths > 1 &&
258 rds_addr_cmp(&conn->c_laddr, &conn->c_faddr) < 0) {
259 for (i = 0; i < conn->c_npaths; i++) {
260 cp = &conn->c_path[i];
261 rds_conn_path_connect_if_down(cp);
267 * The transport must make sure that this is serialized against other
268 * rx and conn reset on this specific conn.
270 * We currently assert that only one fragmented message will be sent
271 * down a connection at a time. This lets us reassemble in the conn
272 * instead of per-flow which means that we don't have to go digging through
273 * flows to tear down partial reassembly progress on conn failure and
274 * we save flow lookup and locking for each frag arrival. It does mean
275 * that small messages will wait behind large ones. Fragmenting at all
276 * is only to reduce the memory consumption of pre-posted buffers.
278 * The caller passes in saddr and daddr instead of us getting it from the
279 * conn. This lets loopback, who only has one conn for both directions,
280 * tell us which roles the addrs in the conn are playing for this message.
282 void rds_recv_incoming(struct rds_connection *conn, struct in6_addr *saddr,
283 struct in6_addr *daddr,
284 struct rds_incoming *inc, gfp_t gfp)
286 struct rds_sock *rs = NULL;
289 struct rds_conn_path *cp;
292 inc->i_rx_jiffies = jiffies;
293 if (conn->c_trans->t_mp_capable)
294 cp = inc->i_conn_path;
296 cp = &conn->c_path[0];
298 rdsdebug("conn %p next %llu inc %p seq %llu len %u sport %u dport %u "
299 "flags 0x%x rx_jiffies %lu\n", conn,
300 (unsigned long long)cp->cp_next_rx_seq,
302 (unsigned long long)be64_to_cpu(inc->i_hdr.h_sequence),
303 be32_to_cpu(inc->i_hdr.h_len),
304 be16_to_cpu(inc->i_hdr.h_sport),
305 be16_to_cpu(inc->i_hdr.h_dport),
310 * Sequence numbers should only increase. Messages get their
311 * sequence number as they're queued in a sending conn. They
312 * can be dropped, though, if the sending socket is closed before
313 * they hit the wire. So sequence numbers can skip forward
314 * under normal operation. They can also drop back in the conn
315 * failover case as previously sent messages are resent down the
316 * new instance of a conn. We drop those, otherwise we have
317 * to assume that the next valid seq does not come after a
318 * hole in the fragment stream.
320 * The headers don't give us a way to realize if fragments of
321 * a message have been dropped. We assume that frags that arrive
322 * to a flow are part of the current message on the flow that is
323 * being reassembled. This means that senders can't drop messages
324 * from the sending conn until all their frags are sent.
326 * XXX we could spend more on the wire to get more robust failure
327 * detection, arguably worth it to avoid data corruption.
329 if (be64_to_cpu(inc->i_hdr.h_sequence) < cp->cp_next_rx_seq &&
330 (inc->i_hdr.h_flags & RDS_FLAG_RETRANSMITTED)) {
331 rds_stats_inc(s_recv_drop_old_seq);
334 cp->cp_next_rx_seq = be64_to_cpu(inc->i_hdr.h_sequence) + 1;
336 if (rds_sysctl_ping_enable && inc->i_hdr.h_dport == 0) {
337 if (inc->i_hdr.h_sport == 0) {
338 rdsdebug("ignore ping with 0 sport from %pI6c\n",
342 rds_stats_inc(s_recv_ping);
343 rds_send_pong(cp, inc->i_hdr.h_sport);
344 /* if this is a handshake ping, start multipath if necessary */
345 if (RDS_HS_PROBE(be16_to_cpu(inc->i_hdr.h_sport),
346 be16_to_cpu(inc->i_hdr.h_dport))) {
347 rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn);
348 rds_start_mprds(cp->cp_conn);
353 if (be16_to_cpu(inc->i_hdr.h_dport) == RDS_FLAG_PROBE_PORT &&
354 inc->i_hdr.h_sport == 0) {
355 rds_recv_hs_exthdrs(&inc->i_hdr, cp->cp_conn);
356 /* if this is a handshake pong, start multipath if necessary */
357 rds_start_mprds(cp->cp_conn);
358 wake_up(&cp->cp_conn->c_hs_waitq);
362 rs = rds_find_bound(daddr, inc->i_hdr.h_dport, conn->c_bound_if);
364 rds_stats_inc(s_recv_drop_no_sock);
368 /* Process extension headers */
369 rds_recv_incoming_exthdrs(inc, rs);
371 /* We can be racing with rds_release() which marks the socket dead. */
372 sk = rds_rs_to_sk(rs);
374 /* serialize with rds_release -> sock_orphan */
375 write_lock_irqsave(&rs->rs_recv_lock, flags);
376 if (!sock_flag(sk, SOCK_DEAD)) {
377 rdsdebug("adding inc %p to rs %p's recv queue\n", inc, rs);
378 rds_stats_inc(s_recv_queued);
379 rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
380 be32_to_cpu(inc->i_hdr.h_len),
382 if (sock_flag(sk, SOCK_RCVTSTAMP))
383 inc->i_usercopy.rx_tstamp = ktime_get_real();
385 inc->i_rx_lat_trace[RDS_MSG_RX_END] = local_clock();
386 list_add_tail(&inc->i_item, &rs->rs_recv_queue);
387 __rds_wake_sk_sleep(sk);
389 rds_stats_inc(s_recv_drop_dead_sock);
391 write_unlock_irqrestore(&rs->rs_recv_lock, flags);
397 EXPORT_SYMBOL_GPL(rds_recv_incoming);
400 * be very careful here. This is being called as the condition in
401 * wait_event_*() needs to cope with being called many times.
403 static int rds_next_incoming(struct rds_sock *rs, struct rds_incoming **inc)
408 read_lock_irqsave(&rs->rs_recv_lock, flags);
409 if (!list_empty(&rs->rs_recv_queue)) {
410 *inc = list_entry(rs->rs_recv_queue.next,
413 rds_inc_addref(*inc);
415 read_unlock_irqrestore(&rs->rs_recv_lock, flags);
421 static int rds_still_queued(struct rds_sock *rs, struct rds_incoming *inc,
424 struct sock *sk = rds_rs_to_sk(rs);
428 write_lock_irqsave(&rs->rs_recv_lock, flags);
429 if (!list_empty(&inc->i_item)) {
432 /* XXX make sure this i_conn is reliable */
433 rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
434 -be32_to_cpu(inc->i_hdr.h_len),
436 list_del_init(&inc->i_item);
440 write_unlock_irqrestore(&rs->rs_recv_lock, flags);
442 rdsdebug("inc %p rs %p still %d dropped %d\n", inc, rs, ret, drop);
447 * Pull errors off the error queue.
448 * If msghdr is NULL, we will just purge the error queue.
450 int rds_notify_queue_get(struct rds_sock *rs, struct msghdr *msghdr)
452 struct rds_notifier *notifier;
453 struct rds_rdma_notify cmsg = { 0 }; /* fill holes with zero */
454 unsigned int count = 0, max_messages = ~0U;
460 /* put_cmsg copies to user space and thus may sleep. We can't do this
461 * with rs_lock held, so first grab as many notifications as we can stuff
462 * in the user provided cmsg buffer. We don't try to copy more, to avoid
463 * losing notifications - except when the buffer is so small that it wouldn't
464 * even hold a single notification. Then we give him as much of this single
465 * msg as we can squeeze in, and set MSG_CTRUNC.
468 max_messages = msghdr->msg_controllen / CMSG_SPACE(sizeof(cmsg));
473 spin_lock_irqsave(&rs->rs_lock, flags);
474 while (!list_empty(&rs->rs_notify_queue) && count < max_messages) {
475 notifier = list_entry(rs->rs_notify_queue.next,
476 struct rds_notifier, n_list);
477 list_move(¬ifier->n_list, ©);
480 spin_unlock_irqrestore(&rs->rs_lock, flags);
485 while (!list_empty(©)) {
486 notifier = list_entry(copy.next, struct rds_notifier, n_list);
489 cmsg.user_token = notifier->n_user_token;
490 cmsg.status = notifier->n_status;
492 err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_RDMA_STATUS,
493 sizeof(cmsg), &cmsg);
498 list_del_init(¬ifier->n_list);
502 /* If we bailed out because of an error in put_cmsg,
503 * we may be left with one or more notifications that we
504 * didn't process. Return them to the head of the list. */
505 if (!list_empty(©)) {
506 spin_lock_irqsave(&rs->rs_lock, flags);
507 list_splice(©, &rs->rs_notify_queue);
508 spin_unlock_irqrestore(&rs->rs_lock, flags);
515 * Queue a congestion notification
517 static int rds_notify_cong(struct rds_sock *rs, struct msghdr *msghdr)
519 uint64_t notify = rs->rs_cong_notify;
523 err = put_cmsg(msghdr, SOL_RDS, RDS_CMSG_CONG_UPDATE,
524 sizeof(notify), ¬ify);
528 spin_lock_irqsave(&rs->rs_lock, flags);
529 rs->rs_cong_notify &= ~notify;
530 spin_unlock_irqrestore(&rs->rs_lock, flags);
536 * Receive any control messages.
538 static int rds_cmsg_recv(struct rds_incoming *inc, struct msghdr *msg,
543 if (inc->i_usercopy.rdma_cookie) {
544 ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RDMA_DEST,
545 sizeof(inc->i_usercopy.rdma_cookie),
546 &inc->i_usercopy.rdma_cookie);
551 if ((inc->i_usercopy.rx_tstamp != 0) &&
552 sock_flag(rds_rs_to_sk(rs), SOCK_RCVTSTAMP)) {
553 struct __kernel_old_timeval tv =
554 ns_to_kernel_old_timeval(inc->i_usercopy.rx_tstamp);
556 if (!sock_flag(rds_rs_to_sk(rs), SOCK_TSTAMP_NEW)) {
557 ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
560 struct __kernel_sock_timeval sk_tv;
562 sk_tv.tv_sec = tv.tv_sec;
563 sk_tv.tv_usec = tv.tv_usec;
565 ret = put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
566 sizeof(sk_tv), &sk_tv);
573 if (rs->rs_rx_traces) {
574 struct rds_cmsg_rx_trace t;
577 memset(&t, 0, sizeof(t));
578 inc->i_rx_lat_trace[RDS_MSG_RX_CMSG] = local_clock();
579 t.rx_traces = rs->rs_rx_traces;
580 for (i = 0; i < rs->rs_rx_traces; i++) {
581 j = rs->rs_rx_trace[i];
582 t.rx_trace_pos[i] = j;
583 t.rx_trace[i] = inc->i_rx_lat_trace[j + 1] -
584 inc->i_rx_lat_trace[j];
587 ret = put_cmsg(msg, SOL_RDS, RDS_CMSG_RXPATH_LATENCY,
597 static bool rds_recvmsg_zcookie(struct rds_sock *rs, struct msghdr *msg)
599 struct rds_msg_zcopy_queue *q = &rs->rs_zcookie_queue;
600 struct rds_msg_zcopy_info *info = NULL;
601 struct rds_zcopy_cookies *done;
604 if (!msg->msg_control)
607 if (!sock_flag(rds_rs_to_sk(rs), SOCK_ZEROCOPY) ||
608 msg->msg_controllen < CMSG_SPACE(sizeof(*done)))
611 spin_lock_irqsave(&q->lock, flags);
612 if (!list_empty(&q->zcookie_head)) {
613 info = list_entry(q->zcookie_head.next,
614 struct rds_msg_zcopy_info, rs_zcookie_next);
615 list_del(&info->rs_zcookie_next);
617 spin_unlock_irqrestore(&q->lock, flags);
620 done = &info->zcookies;
621 if (put_cmsg(msg, SOL_RDS, RDS_CMSG_ZCOPY_COMPLETION, sizeof(*done),
623 spin_lock_irqsave(&q->lock, flags);
624 list_add(&info->rs_zcookie_next, &q->zcookie_head);
625 spin_unlock_irqrestore(&q->lock, flags);
632 int rds_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
635 struct sock *sk = sock->sk;
636 struct rds_sock *rs = rds_sk_to_rs(sk);
638 int ret = 0, nonblock = msg_flags & MSG_DONTWAIT;
639 DECLARE_SOCKADDR(struct sockaddr_in6 *, sin6, msg->msg_name);
640 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
641 struct rds_incoming *inc = NULL;
643 /* udp_recvmsg()->sock_recvtimeo() gets away without locking too.. */
644 timeo = sock_rcvtimeo(sk, nonblock);
646 rdsdebug("size %zu flags 0x%x timeo %ld\n", size, msg_flags, timeo);
648 if (msg_flags & MSG_OOB)
650 if (msg_flags & MSG_ERRQUEUE)
651 return sock_recv_errqueue(sk, msg, size, SOL_IP, IP_RECVERR);
654 /* If there are pending notifications, do those - and nothing else */
655 if (!list_empty(&rs->rs_notify_queue)) {
656 ret = rds_notify_queue_get(rs, msg);
660 if (rs->rs_cong_notify) {
661 ret = rds_notify_cong(rs, msg);
665 if (!rds_next_incoming(rs, &inc)) {
667 bool reaped = rds_recvmsg_zcookie(rs, msg);
669 ret = reaped ? 0 : -EAGAIN;
673 timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
674 (!list_empty(&rs->rs_notify_queue) ||
675 rs->rs_cong_notify ||
676 rds_next_incoming(rs, &inc)), timeo);
677 rdsdebug("recvmsg woke inc %p timeo %ld\n", inc,
679 if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
688 rdsdebug("copying inc %p from %pI6c:%u to user\n", inc,
689 &inc->i_conn->c_faddr,
690 ntohs(inc->i_hdr.h_sport));
691 ret = inc->i_conn->c_trans->inc_copy_to_user(inc, &msg->msg_iter);
696 * if the message we just copied isn't at the head of the
697 * recv queue then someone else raced us to return it, try
698 * to get the next message.
700 if (!rds_still_queued(rs, inc, !(msg_flags & MSG_PEEK))) {
703 rds_stats_inc(s_recv_deliver_raced);
704 iov_iter_revert(&msg->msg_iter, ret);
708 if (ret < be32_to_cpu(inc->i_hdr.h_len)) {
709 if (msg_flags & MSG_TRUNC)
710 ret = be32_to_cpu(inc->i_hdr.h_len);
711 msg->msg_flags |= MSG_TRUNC;
714 if (rds_cmsg_recv(inc, msg, rs)) {
718 rds_recvmsg_zcookie(rs, msg);
720 rds_stats_inc(s_recv_delivered);
723 if (ipv6_addr_v4mapped(&inc->i_saddr)) {
724 sin = (struct sockaddr_in *)msg->msg_name;
726 sin->sin_family = AF_INET;
727 sin->sin_port = inc->i_hdr.h_sport;
728 sin->sin_addr.s_addr =
729 inc->i_saddr.s6_addr32[3];
730 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
731 msg->msg_namelen = sizeof(*sin);
733 sin6 = (struct sockaddr_in6 *)msg->msg_name;
735 sin6->sin6_family = AF_INET6;
736 sin6->sin6_port = inc->i_hdr.h_sport;
737 sin6->sin6_addr = inc->i_saddr;
738 sin6->sin6_flowinfo = 0;
739 sin6->sin6_scope_id = rs->rs_bound_scope_id;
740 msg->msg_namelen = sizeof(*sin6);
754 * The socket is being shut down and we're asked to drop messages that were
755 * queued for recvmsg. The caller has unbound the socket so the receive path
756 * won't queue any more incoming fragments or messages on the socket.
758 void rds_clear_recv_queue(struct rds_sock *rs)
760 struct sock *sk = rds_rs_to_sk(rs);
761 struct rds_incoming *inc, *tmp;
764 write_lock_irqsave(&rs->rs_recv_lock, flags);
765 list_for_each_entry_safe(inc, tmp, &rs->rs_recv_queue, i_item) {
766 rds_recv_rcvbuf_delta(rs, sk, inc->i_conn->c_lcong,
767 -be32_to_cpu(inc->i_hdr.h_len),
769 list_del_init(&inc->i_item);
772 write_unlock_irqrestore(&rs->rs_recv_lock, flags);
776 * inc->i_saddr isn't used here because it is only set in the receive
779 void rds_inc_info_copy(struct rds_incoming *inc,
780 struct rds_info_iterator *iter,
781 __be32 saddr, __be32 daddr, int flip)
783 struct rds_info_message minfo;
785 minfo.seq = be64_to_cpu(inc->i_hdr.h_sequence);
786 minfo.len = be32_to_cpu(inc->i_hdr.h_len);
787 minfo.tos = inc->i_conn->c_tos;
792 minfo.lport = inc->i_hdr.h_dport;
793 minfo.fport = inc->i_hdr.h_sport;
797 minfo.lport = inc->i_hdr.h_sport;
798 minfo.fport = inc->i_hdr.h_dport;
803 rds_info_copy(iter, &minfo, sizeof(minfo));
806 #if IS_ENABLED(CONFIG_IPV6)
807 void rds6_inc_info_copy(struct rds_incoming *inc,
808 struct rds_info_iterator *iter,
809 struct in6_addr *saddr, struct in6_addr *daddr,
812 struct rds6_info_message minfo6;
814 minfo6.seq = be64_to_cpu(inc->i_hdr.h_sequence);
815 minfo6.len = be32_to_cpu(inc->i_hdr.h_len);
816 minfo6.tos = inc->i_conn->c_tos;
819 minfo6.laddr = *daddr;
820 minfo6.faddr = *saddr;
821 minfo6.lport = inc->i_hdr.h_dport;
822 minfo6.fport = inc->i_hdr.h_sport;
824 minfo6.laddr = *saddr;
825 minfo6.faddr = *daddr;
826 minfo6.lport = inc->i_hdr.h_sport;
827 minfo6.fport = inc->i_hdr.h_dport;
832 rds_info_copy(iter, &minfo6, sizeof(minfo6));