Merge tag 'for-6.3/dm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/device...
[platform/kernel/linux-rpi.git] / net / rds / ib_recv.c
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/sched/clock.h>
35 #include <linux/slab.h>
36 #include <linux/pci.h>
37 #include <linux/dma-mapping.h>
38 #include <rdma/rdma_cm.h>
39
40 #include "rds_single_path.h"
41 #include "rds.h"
42 #include "ib.h"
43
44 static struct kmem_cache *rds_ib_incoming_slab;
45 static struct kmem_cache *rds_ib_frag_slab;
46 static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
47
48 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
49 {
50         struct rds_ib_recv_work *recv;
51         u32 i;
52
53         for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
54                 struct ib_sge *sge;
55
56                 recv->r_ibinc = NULL;
57                 recv->r_frag = NULL;
58
59                 recv->r_wr.next = NULL;
60                 recv->r_wr.wr_id = i;
61                 recv->r_wr.sg_list = recv->r_sge;
62                 recv->r_wr.num_sge = RDS_IB_RECV_SGE;
63
64                 sge = &recv->r_sge[0];
65                 sge->addr = ic->i_recv_hdrs_dma[i];
66                 sge->length = sizeof(struct rds_header);
67                 sge->lkey = ic->i_pd->local_dma_lkey;
68
69                 sge = &recv->r_sge[1];
70                 sge->addr = 0;
71                 sge->length = RDS_FRAG_SIZE;
72                 sge->lkey = ic->i_pd->local_dma_lkey;
73         }
74 }
75
76 /*
77  * The entire 'from' list, including the from element itself, is put on
78  * to the tail of the 'to' list.
79  */
80 static void list_splice_entire_tail(struct list_head *from,
81                                     struct list_head *to)
82 {
83         struct list_head *from_last = from->prev;
84
85         list_splice_tail(from_last, to);
86         list_add_tail(from_last, to);
87 }
88
89 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
90 {
91         struct list_head *tmp;
92
93         tmp = xchg(&cache->xfer, NULL);
94         if (tmp) {
95                 if (cache->ready)
96                         list_splice_entire_tail(tmp, cache->ready);
97                 else
98                         cache->ready = tmp;
99         }
100 }
101
102 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache, gfp_t gfp)
103 {
104         struct rds_ib_cache_head *head;
105         int cpu;
106
107         cache->percpu = alloc_percpu_gfp(struct rds_ib_cache_head, gfp);
108         if (!cache->percpu)
109                return -ENOMEM;
110
111         for_each_possible_cpu(cpu) {
112                 head = per_cpu_ptr(cache->percpu, cpu);
113                 head->first = NULL;
114                 head->count = 0;
115         }
116         cache->xfer = NULL;
117         cache->ready = NULL;
118
119         return 0;
120 }
121
122 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic, gfp_t gfp)
123 {
124         int ret;
125
126         ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs, gfp);
127         if (!ret) {
128                 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags, gfp);
129                 if (ret)
130                         free_percpu(ic->i_cache_incs.percpu);
131         }
132
133         return ret;
134 }
135
136 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
137                                           struct list_head *caller_list)
138 {
139         struct rds_ib_cache_head *head;
140         int cpu;
141
142         for_each_possible_cpu(cpu) {
143                 head = per_cpu_ptr(cache->percpu, cpu);
144                 if (head->first) {
145                         list_splice_entire_tail(head->first, caller_list);
146                         head->first = NULL;
147                 }
148         }
149
150         if (cache->ready) {
151                 list_splice_entire_tail(cache->ready, caller_list);
152                 cache->ready = NULL;
153         }
154 }
155
156 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
157 {
158         struct rds_ib_incoming *inc;
159         struct rds_ib_incoming *inc_tmp;
160         struct rds_page_frag *frag;
161         struct rds_page_frag *frag_tmp;
162         LIST_HEAD(list);
163
164         rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
165         rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
166         free_percpu(ic->i_cache_incs.percpu);
167
168         list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
169                 list_del(&inc->ii_cache_entry);
170                 WARN_ON(!list_empty(&inc->ii_frags));
171                 kmem_cache_free(rds_ib_incoming_slab, inc);
172                 atomic_dec(&rds_ib_allocation);
173         }
174
175         rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
176         rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
177         free_percpu(ic->i_cache_frags.percpu);
178
179         list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
180                 list_del(&frag->f_cache_entry);
181                 WARN_ON(!list_empty(&frag->f_item));
182                 kmem_cache_free(rds_ib_frag_slab, frag);
183         }
184 }
185
186 /* fwd decl */
187 static void rds_ib_recv_cache_put(struct list_head *new_item,
188                                   struct rds_ib_refill_cache *cache);
189 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
190
191
192 /* Recycle frag and attached recv buffer f_sg */
193 static void rds_ib_frag_free(struct rds_ib_connection *ic,
194                              struct rds_page_frag *frag)
195 {
196         rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
197
198         rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
199         atomic_add(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
200         rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
201 }
202
203 /* Recycle inc after freeing attached frags */
204 void rds_ib_inc_free(struct rds_incoming *inc)
205 {
206         struct rds_ib_incoming *ibinc;
207         struct rds_page_frag *frag;
208         struct rds_page_frag *pos;
209         struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
210
211         ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
212
213         /* Free attached frags */
214         list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
215                 list_del_init(&frag->f_item);
216                 rds_ib_frag_free(ic, frag);
217         }
218         BUG_ON(!list_empty(&ibinc->ii_frags));
219
220         rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
221         rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
222 }
223
224 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
225                                   struct rds_ib_recv_work *recv)
226 {
227         if (recv->r_ibinc) {
228                 rds_inc_put(&recv->r_ibinc->ii_inc);
229                 recv->r_ibinc = NULL;
230         }
231         if (recv->r_frag) {
232                 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
233                 rds_ib_frag_free(ic, recv->r_frag);
234                 recv->r_frag = NULL;
235         }
236 }
237
238 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
239 {
240         u32 i;
241
242         for (i = 0; i < ic->i_recv_ring.w_nr; i++)
243                 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
244 }
245
246 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
247                                                      gfp_t slab_mask)
248 {
249         struct rds_ib_incoming *ibinc;
250         struct list_head *cache_item;
251         int avail_allocs;
252
253         cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
254         if (cache_item) {
255                 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
256         } else {
257                 avail_allocs = atomic_add_unless(&rds_ib_allocation,
258                                                  1, rds_ib_sysctl_max_recv_allocation);
259                 if (!avail_allocs) {
260                         rds_ib_stats_inc(s_ib_rx_alloc_limit);
261                         return NULL;
262                 }
263                 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
264                 if (!ibinc) {
265                         atomic_dec(&rds_ib_allocation);
266                         return NULL;
267                 }
268                 rds_ib_stats_inc(s_ib_rx_total_incs);
269         }
270         INIT_LIST_HEAD(&ibinc->ii_frags);
271         rds_inc_init(&ibinc->ii_inc, ic->conn, &ic->conn->c_faddr);
272
273         return ibinc;
274 }
275
276 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
277                                                     gfp_t slab_mask, gfp_t page_mask)
278 {
279         struct rds_page_frag *frag;
280         struct list_head *cache_item;
281         int ret;
282
283         cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
284         if (cache_item) {
285                 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
286                 atomic_sub(RDS_FRAG_SIZE / SZ_1K, &ic->i_cache_allocs);
287                 rds_ib_stats_add(s_ib_recv_added_to_cache, RDS_FRAG_SIZE);
288         } else {
289                 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
290                 if (!frag)
291                         return NULL;
292
293                 sg_init_table(&frag->f_sg, 1);
294                 ret = rds_page_remainder_alloc(&frag->f_sg,
295                                                RDS_FRAG_SIZE, page_mask);
296                 if (ret) {
297                         kmem_cache_free(rds_ib_frag_slab, frag);
298                         return NULL;
299                 }
300                 rds_ib_stats_inc(s_ib_rx_total_frags);
301         }
302
303         INIT_LIST_HEAD(&frag->f_item);
304
305         return frag;
306 }
307
308 static int rds_ib_recv_refill_one(struct rds_connection *conn,
309                                   struct rds_ib_recv_work *recv, gfp_t gfp)
310 {
311         struct rds_ib_connection *ic = conn->c_transport_data;
312         struct ib_sge *sge;
313         int ret = -ENOMEM;
314         gfp_t slab_mask = gfp;
315         gfp_t page_mask = gfp;
316
317         if (gfp & __GFP_DIRECT_RECLAIM) {
318                 slab_mask = GFP_KERNEL;
319                 page_mask = GFP_HIGHUSER;
320         }
321
322         if (!ic->i_cache_incs.ready)
323                 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
324         if (!ic->i_cache_frags.ready)
325                 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
326
327         /*
328          * ibinc was taken from recv if recv contained the start of a message.
329          * recvs that were continuations will still have this allocated.
330          */
331         if (!recv->r_ibinc) {
332                 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
333                 if (!recv->r_ibinc)
334                         goto out;
335         }
336
337         WARN_ON(recv->r_frag); /* leak! */
338         recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
339         if (!recv->r_frag)
340                 goto out;
341
342         ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
343                             1, DMA_FROM_DEVICE);
344         WARN_ON(ret != 1);
345
346         sge = &recv->r_sge[0];
347         sge->addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
348         sge->length = sizeof(struct rds_header);
349
350         sge = &recv->r_sge[1];
351         sge->addr = sg_dma_address(&recv->r_frag->f_sg);
352         sge->length = sg_dma_len(&recv->r_frag->f_sg);
353
354         ret = 0;
355 out:
356         return ret;
357 }
358
359 static int acquire_refill(struct rds_connection *conn)
360 {
361         return test_and_set_bit(RDS_RECV_REFILL, &conn->c_flags) == 0;
362 }
363
364 static void release_refill(struct rds_connection *conn)
365 {
366         clear_bit(RDS_RECV_REFILL, &conn->c_flags);
367         smp_mb__after_atomic();
368
369         /* We don't use wait_on_bit()/wake_up_bit() because our waking is in a
370          * hot path and finding waiters is very rare.  We don't want to walk
371          * the system-wide hashed waitqueue buckets in the fast path only to
372          * almost never find waiters.
373          */
374         if (waitqueue_active(&conn->c_waitq))
375                 wake_up_all(&conn->c_waitq);
376 }
377
378 /*
379  * This tries to allocate and post unused work requests after making sure that
380  * they have all the allocations they need to queue received fragments into
381  * sockets.
382  */
383 void rds_ib_recv_refill(struct rds_connection *conn, int prefill, gfp_t gfp)
384 {
385         struct rds_ib_connection *ic = conn->c_transport_data;
386         struct rds_ib_recv_work *recv;
387         unsigned int posted = 0;
388         int ret = 0;
389         bool can_wait = !!(gfp & __GFP_DIRECT_RECLAIM);
390         bool must_wake = false;
391         u32 pos;
392
393         /* the goal here is to just make sure that someone, somewhere
394          * is posting buffers.  If we can't get the refill lock,
395          * let them do their thing
396          */
397         if (!acquire_refill(conn))
398                 return;
399
400         while ((prefill || rds_conn_up(conn)) &&
401                rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
402                 if (pos >= ic->i_recv_ring.w_nr) {
403                         printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
404                                         pos);
405                         break;
406                 }
407
408                 recv = &ic->i_recvs[pos];
409                 ret = rds_ib_recv_refill_one(conn, recv, gfp);
410                 if (ret) {
411                         must_wake = true;
412                         break;
413                 }
414
415                 rdsdebug("recv %p ibinc %p page %p addr %lu\n", recv,
416                          recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
417                          (long)sg_dma_address(&recv->r_frag->f_sg));
418
419                 /* XXX when can this fail? */
420                 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, NULL);
421                 if (ret) {
422                         rds_ib_conn_error(conn, "recv post on "
423                                "%pI6c returned %d, disconnecting and "
424                                "reconnecting\n", &conn->c_faddr,
425                                ret);
426                         break;
427                 }
428
429                 posted++;
430
431                 if ((posted > 128 && need_resched()) || posted > 8192) {
432                         must_wake = true;
433                         break;
434                 }
435         }
436
437         /* We're doing flow control - update the window. */
438         if (ic->i_flowctl && posted)
439                 rds_ib_advertise_credits(conn, posted);
440
441         if (ret)
442                 rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
443
444         release_refill(conn);
445
446         /* if we're called from the softirq handler, we'll be GFP_NOWAIT.
447          * in this case the ring being low is going to lead to more interrupts
448          * and we can safely let the softirq code take care of it unless the
449          * ring is completely empty.
450          *
451          * if we're called from krdsd, we'll be GFP_KERNEL.  In this case
452          * we might have raced with the softirq code while we had the refill
453          * lock held.  Use rds_ib_ring_low() instead of ring_empty to decide
454          * if we should requeue.
455          */
456         if (rds_conn_up(conn) &&
457             (must_wake ||
458             (can_wait && rds_ib_ring_low(&ic->i_recv_ring)) ||
459             rds_ib_ring_empty(&ic->i_recv_ring))) {
460                 queue_delayed_work(rds_wq, &conn->c_recv_w, 1);
461         }
462         if (can_wait)
463                 cond_resched();
464 }
465
466 /*
467  * We want to recycle several types of recv allocations, like incs and frags.
468  * To use this, the *_free() function passes in the ptr to a list_head within
469  * the recyclee, as well as the cache to put it on.
470  *
471  * First, we put the memory on a percpu list. When this reaches a certain size,
472  * We move it to an intermediate non-percpu list in a lockless manner, with some
473  * xchg/compxchg wizardry.
474  *
475  * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
476  * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
477  * list_empty() will return true with one element is actually present.
478  */
479 static void rds_ib_recv_cache_put(struct list_head *new_item,
480                                  struct rds_ib_refill_cache *cache)
481 {
482         unsigned long flags;
483         struct list_head *old, *chpfirst;
484
485         local_irq_save(flags);
486
487         chpfirst = __this_cpu_read(cache->percpu->first);
488         if (!chpfirst)
489                 INIT_LIST_HEAD(new_item);
490         else /* put on front */
491                 list_add_tail(new_item, chpfirst);
492
493         __this_cpu_write(cache->percpu->first, new_item);
494         __this_cpu_inc(cache->percpu->count);
495
496         if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
497                 goto end;
498
499         /*
500          * Return our per-cpu first list to the cache's xfer by atomically
501          * grabbing the current xfer list, appending it to our per-cpu list,
502          * and then atomically returning that entire list back to the
503          * cache's xfer list as long as it's still empty.
504          */
505         do {
506                 old = xchg(&cache->xfer, NULL);
507                 if (old)
508                         list_splice_entire_tail(old, chpfirst);
509                 old = cmpxchg(&cache->xfer, NULL, chpfirst);
510         } while (old);
511
512
513         __this_cpu_write(cache->percpu->first, NULL);
514         __this_cpu_write(cache->percpu->count, 0);
515 end:
516         local_irq_restore(flags);
517 }
518
519 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
520 {
521         struct list_head *head = cache->ready;
522
523         if (head) {
524                 if (!list_empty(head)) {
525                         cache->ready = head->next;
526                         list_del_init(head);
527                 } else
528                         cache->ready = NULL;
529         }
530
531         return head;
532 }
533
534 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iov_iter *to)
535 {
536         struct rds_ib_incoming *ibinc;
537         struct rds_page_frag *frag;
538         unsigned long to_copy;
539         unsigned long frag_off = 0;
540         int copied = 0;
541         int ret;
542         u32 len;
543
544         ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
545         frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
546         len = be32_to_cpu(inc->i_hdr.h_len);
547
548         while (iov_iter_count(to) && copied < len) {
549                 if (frag_off == RDS_FRAG_SIZE) {
550                         frag = list_entry(frag->f_item.next,
551                                           struct rds_page_frag, f_item);
552                         frag_off = 0;
553                 }
554                 to_copy = min_t(unsigned long, iov_iter_count(to),
555                                 RDS_FRAG_SIZE - frag_off);
556                 to_copy = min_t(unsigned long, to_copy, len - copied);
557
558                 /* XXX needs + offset for multiple recvs per page */
559                 rds_stats_add(s_copy_to_user, to_copy);
560                 ret = copy_page_to_iter(sg_page(&frag->f_sg),
561                                         frag->f_sg.offset + frag_off,
562                                         to_copy,
563                                         to);
564                 if (ret != to_copy)
565                         return -EFAULT;
566
567                 frag_off += to_copy;
568                 copied += to_copy;
569         }
570
571         return copied;
572 }
573
574 /* ic starts out kzalloc()ed */
575 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
576 {
577         struct ib_send_wr *wr = &ic->i_ack_wr;
578         struct ib_sge *sge = &ic->i_ack_sge;
579
580         sge->addr = ic->i_ack_dma;
581         sge->length = sizeof(struct rds_header);
582         sge->lkey = ic->i_pd->local_dma_lkey;
583
584         wr->sg_list = sge;
585         wr->num_sge = 1;
586         wr->opcode = IB_WR_SEND;
587         wr->wr_id = RDS_IB_ACK_WR_ID;
588         wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
589 }
590
591 /*
592  * You'd think that with reliable IB connections you wouldn't need to ack
593  * messages that have been received.  The problem is that IB hardware generates
594  * an ack message before it has DMAed the message into memory.  This creates a
595  * potential message loss if the HCA is disabled for any reason between when it
596  * sends the ack and before the message is DMAed and processed.  This is only a
597  * potential issue if another HCA is available for fail-over.
598  *
599  * When the remote host receives our ack they'll free the sent message from
600  * their send queue.  To decrease the latency of this we always send an ack
601  * immediately after we've received messages.
602  *
603  * For simplicity, we only have one ack in flight at a time.  This puts
604  * pressure on senders to have deep enough send queues to absorb the latency of
605  * a single ack frame being in flight.  This might not be good enough.
606  *
607  * This is implemented by have a long-lived send_wr and sge which point to a
608  * statically allocated ack frame.  This ack wr does not fall under the ring
609  * accounting that the tx and rx wrs do.  The QP attribute specifically makes
610  * room for it beyond the ring size.  Send completion notices its special
611  * wr_id and avoids working with the ring in that case.
612  */
613 #ifndef KERNEL_HAS_ATOMIC64
614 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
615 {
616         unsigned long flags;
617
618         spin_lock_irqsave(&ic->i_ack_lock, flags);
619         ic->i_ack_next = seq;
620         if (ack_required)
621                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
622         spin_unlock_irqrestore(&ic->i_ack_lock, flags);
623 }
624
625 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
626 {
627         unsigned long flags;
628         u64 seq;
629
630         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
631
632         spin_lock_irqsave(&ic->i_ack_lock, flags);
633         seq = ic->i_ack_next;
634         spin_unlock_irqrestore(&ic->i_ack_lock, flags);
635
636         return seq;
637 }
638 #else
639 void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq, int ack_required)
640 {
641         atomic64_set(&ic->i_ack_next, seq);
642         if (ack_required) {
643                 smp_mb__before_atomic();
644                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
645         }
646 }
647
648 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
649 {
650         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
651         smp_mb__after_atomic();
652
653         return atomic64_read(&ic->i_ack_next);
654 }
655 #endif
656
657
658 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
659 {
660         struct rds_header *hdr = ic->i_ack;
661         u64 seq;
662         int ret;
663
664         seq = rds_ib_get_ack(ic);
665
666         rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
667
668         ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, ic->i_ack_dma,
669                                    sizeof(*hdr), DMA_TO_DEVICE);
670         rds_message_populate_header(hdr, 0, 0, 0);
671         hdr->h_ack = cpu_to_be64(seq);
672         hdr->h_credit = adv_credits;
673         rds_message_make_checksum(hdr);
674         ib_dma_sync_single_for_device(ic->rds_ibdev->dev, ic->i_ack_dma,
675                                       sizeof(*hdr), DMA_TO_DEVICE);
676
677         ic->i_ack_queued = jiffies;
678
679         ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, NULL);
680         if (unlikely(ret)) {
681                 /* Failed to send. Release the WR, and
682                  * force another ACK.
683                  */
684                 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
685                 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
686
687                 rds_ib_stats_inc(s_ib_ack_send_failure);
688
689                 rds_ib_conn_error(ic->conn, "sending ack failed\n");
690         } else
691                 rds_ib_stats_inc(s_ib_ack_sent);
692 }
693
694 /*
695  * There are 3 ways of getting acknowledgements to the peer:
696  *  1.  We call rds_ib_attempt_ack from the recv completion handler
697  *      to send an ACK-only frame.
698  *      However, there can be only one such frame in the send queue
699  *      at any time, so we may have to postpone it.
700  *  2.  When another (data) packet is transmitted while there's
701  *      an ACK in the queue, we piggyback the ACK sequence number
702  *      on the data packet.
703  *  3.  If the ACK WR is done sending, we get called from the
704  *      send queue completion handler, and check whether there's
705  *      another ACK pending (postponed because the WR was on the
706  *      queue). If so, we transmit it.
707  *
708  * We maintain 2 variables:
709  *  -   i_ack_flags, which keeps track of whether the ACK WR
710  *      is currently in the send queue or not (IB_ACK_IN_FLIGHT)
711  *  -   i_ack_next, which is the last sequence number we received
712  *
713  * Potentially, send queue and receive queue handlers can run concurrently.
714  * It would be nice to not have to use a spinlock to synchronize things,
715  * but the one problem that rules this out is that 64bit updates are
716  * not atomic on all platforms. Things would be a lot simpler if
717  * we had atomic64 or maybe cmpxchg64 everywhere.
718  *
719  * Reconnecting complicates this picture just slightly. When we
720  * reconnect, we may be seeing duplicate packets. The peer
721  * is retransmitting them, because it hasn't seen an ACK for
722  * them. It is important that we ACK these.
723  *
724  * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
725  * this flag set *MUST* be acknowledged immediately.
726  */
727
728 /*
729  * When we get here, we're called from the recv queue handler.
730  * Check whether we ought to transmit an ACK.
731  */
732 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
733 {
734         unsigned int adv_credits;
735
736         if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
737                 return;
738
739         if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
740                 rds_ib_stats_inc(s_ib_ack_send_delayed);
741                 return;
742         }
743
744         /* Can we get a send credit? */
745         if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
746                 rds_ib_stats_inc(s_ib_tx_throttle);
747                 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
748                 return;
749         }
750
751         clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
752         rds_ib_send_ack(ic, adv_credits);
753 }
754
755 /*
756  * We get here from the send completion handler, when the
757  * adapter tells us the ACK frame was sent.
758  */
759 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
760 {
761         clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
762         rds_ib_attempt_ack(ic);
763 }
764
765 /*
766  * This is called by the regular xmit code when it wants to piggyback
767  * an ACK on an outgoing frame.
768  */
769 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
770 {
771         if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
772                 rds_ib_stats_inc(s_ib_ack_send_piggybacked);
773         return rds_ib_get_ack(ic);
774 }
775
776 /*
777  * It's kind of lame that we're copying from the posted receive pages into
778  * long-lived bitmaps.  We could have posted the bitmaps and rdma written into
779  * them.  But receiving new congestion bitmaps should be a *rare* event, so
780  * hopefully we won't need to invest that complexity in making it more
781  * efficient.  By copying we can share a simpler core with TCP which has to
782  * copy.
783  */
784 static void rds_ib_cong_recv(struct rds_connection *conn,
785                               struct rds_ib_incoming *ibinc)
786 {
787         struct rds_cong_map *map;
788         unsigned int map_off;
789         unsigned int map_page;
790         struct rds_page_frag *frag;
791         unsigned long frag_off;
792         unsigned long to_copy;
793         unsigned long copied;
794         __le64 uncongested = 0;
795         void *addr;
796
797         /* catch completely corrupt packets */
798         if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
799                 return;
800
801         map = conn->c_fcong;
802         map_page = 0;
803         map_off = 0;
804
805         frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
806         frag_off = 0;
807
808         copied = 0;
809
810         while (copied < RDS_CONG_MAP_BYTES) {
811                 __le64 *src, *dst;
812                 unsigned int k;
813
814                 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
815                 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
816
817                 addr = kmap_atomic(sg_page(&frag->f_sg));
818
819                 src = addr + frag->f_sg.offset + frag_off;
820                 dst = (void *)map->m_page_addrs[map_page] + map_off;
821                 for (k = 0; k < to_copy; k += 8) {
822                         /* Record ports that became uncongested, ie
823                          * bits that changed from 0 to 1. */
824                         uncongested |= ~(*src) & *dst;
825                         *dst++ = *src++;
826                 }
827                 kunmap_atomic(addr);
828
829                 copied += to_copy;
830
831                 map_off += to_copy;
832                 if (map_off == PAGE_SIZE) {
833                         map_off = 0;
834                         map_page++;
835                 }
836
837                 frag_off += to_copy;
838                 if (frag_off == RDS_FRAG_SIZE) {
839                         frag = list_entry(frag->f_item.next,
840                                           struct rds_page_frag, f_item);
841                         frag_off = 0;
842                 }
843         }
844
845         /* the congestion map is in little endian order */
846         rds_cong_map_updated(map, le64_to_cpu(uncongested));
847 }
848
849 static void rds_ib_process_recv(struct rds_connection *conn,
850                                 struct rds_ib_recv_work *recv, u32 data_len,
851                                 struct rds_ib_ack_state *state)
852 {
853         struct rds_ib_connection *ic = conn->c_transport_data;
854         struct rds_ib_incoming *ibinc = ic->i_ibinc;
855         struct rds_header *ihdr, *hdr;
856         dma_addr_t dma_addr = ic->i_recv_hdrs_dma[recv - ic->i_recvs];
857
858         /* XXX shut down the connection if port 0,0 are seen? */
859
860         rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
861                  data_len);
862
863         if (data_len < sizeof(struct rds_header)) {
864                 rds_ib_conn_error(conn, "incoming message "
865                        "from %pI6c didn't include a "
866                        "header, disconnecting and "
867                        "reconnecting\n",
868                        &conn->c_faddr);
869                 return;
870         }
871         data_len -= sizeof(struct rds_header);
872
873         ihdr = ic->i_recv_hdrs[recv - ic->i_recvs];
874
875         ib_dma_sync_single_for_cpu(ic->rds_ibdev->dev, dma_addr,
876                                    sizeof(*ihdr), DMA_FROM_DEVICE);
877         /* Validate the checksum. */
878         if (!rds_message_verify_checksum(ihdr)) {
879                 rds_ib_conn_error(conn, "incoming message "
880                        "from %pI6c has corrupted header - "
881                        "forcing a reconnect\n",
882                        &conn->c_faddr);
883                 rds_stats_inc(s_recv_drop_bad_checksum);
884                 goto done;
885         }
886
887         /* Process the ACK sequence which comes with every packet */
888         state->ack_recv = be64_to_cpu(ihdr->h_ack);
889         state->ack_recv_valid = 1;
890
891         /* Process the credits update if there was one */
892         if (ihdr->h_credit)
893                 rds_ib_send_add_credits(conn, ihdr->h_credit);
894
895         if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
896                 /* This is an ACK-only packet. The fact that it gets
897                  * special treatment here is that historically, ACKs
898                  * were rather special beasts.
899                  */
900                 rds_ib_stats_inc(s_ib_ack_received);
901
902                 /*
903                  * Usually the frags make their way on to incs and are then freed as
904                  * the inc is freed.  We don't go that route, so we have to drop the
905                  * page ref ourselves.  We can't just leave the page on the recv
906                  * because that confuses the dma mapping of pages and each recv's use
907                  * of a partial page.
908                  *
909                  * FIXME: Fold this into the code path below.
910                  */
911                 rds_ib_frag_free(ic, recv->r_frag);
912                 recv->r_frag = NULL;
913                 goto done;
914         }
915
916         /*
917          * If we don't already have an inc on the connection then this
918          * fragment has a header and starts a message.. copy its header
919          * into the inc and save the inc so we can hang upcoming fragments
920          * off its list.
921          */
922         if (!ibinc) {
923                 ibinc = recv->r_ibinc;
924                 recv->r_ibinc = NULL;
925                 ic->i_ibinc = ibinc;
926
927                 hdr = &ibinc->ii_inc.i_hdr;
928                 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_HDR] =
929                                 local_clock();
930                 memcpy(hdr, ihdr, sizeof(*hdr));
931                 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
932                 ibinc->ii_inc.i_rx_lat_trace[RDS_MSG_RX_START] =
933                                 local_clock();
934
935                 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
936                          ic->i_recv_data_rem, hdr->h_flags);
937         } else {
938                 hdr = &ibinc->ii_inc.i_hdr;
939                 /* We can't just use memcmp here; fragments of a
940                  * single message may carry different ACKs */
941                 if (hdr->h_sequence != ihdr->h_sequence ||
942                     hdr->h_len != ihdr->h_len ||
943                     hdr->h_sport != ihdr->h_sport ||
944                     hdr->h_dport != ihdr->h_dport) {
945                         rds_ib_conn_error(conn,
946                                 "fragment header mismatch; forcing reconnect\n");
947                         goto done;
948                 }
949         }
950
951         list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
952         recv->r_frag = NULL;
953
954         if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
955                 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
956         else {
957                 ic->i_recv_data_rem = 0;
958                 ic->i_ibinc = NULL;
959
960                 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP) {
961                         rds_ib_cong_recv(conn, ibinc);
962                 } else {
963                         rds_recv_incoming(conn, &conn->c_faddr, &conn->c_laddr,
964                                           &ibinc->ii_inc, GFP_ATOMIC);
965                         state->ack_next = be64_to_cpu(hdr->h_sequence);
966                         state->ack_next_valid = 1;
967                 }
968
969                 /* Evaluate the ACK_REQUIRED flag *after* we received
970                  * the complete frame, and after bumping the next_rx
971                  * sequence. */
972                 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
973                         rds_stats_inc(s_recv_ack_required);
974                         state->ack_required = 1;
975                 }
976
977                 rds_inc_put(&ibinc->ii_inc);
978         }
979 done:
980         ib_dma_sync_single_for_device(ic->rds_ibdev->dev, dma_addr,
981                                       sizeof(*ihdr), DMA_FROM_DEVICE);
982 }
983
984 void rds_ib_recv_cqe_handler(struct rds_ib_connection *ic,
985                              struct ib_wc *wc,
986                              struct rds_ib_ack_state *state)
987 {
988         struct rds_connection *conn = ic->conn;
989         struct rds_ib_recv_work *recv;
990
991         rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
992                  (unsigned long long)wc->wr_id, wc->status,
993                  ib_wc_status_msg(wc->status), wc->byte_len,
994                  be32_to_cpu(wc->ex.imm_data));
995
996         rds_ib_stats_inc(s_ib_rx_cq_event);
997         recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
998         ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1,
999                         DMA_FROM_DEVICE);
1000
1001         /* Also process recvs in connecting state because it is possible
1002          * to get a recv completion _before_ the rdmacm ESTABLISHED
1003          * event is processed.
1004          */
1005         if (wc->status == IB_WC_SUCCESS) {
1006                 rds_ib_process_recv(conn, recv, wc->byte_len, state);
1007         } else {
1008                 /* We expect errors as the qp is drained during shutdown */
1009                 if (rds_conn_up(conn) || rds_conn_connecting(conn))
1010                         rds_ib_conn_error(conn, "recv completion on <%pI6c,%pI6c, %d> had status %u (%s), vendor err 0x%x, disconnecting and reconnecting\n",
1011                                           &conn->c_laddr, &conn->c_faddr,
1012                                           conn->c_tos, wc->status,
1013                                           ib_wc_status_msg(wc->status),
1014                                           wc->vendor_err);
1015         }
1016
1017         /* rds_ib_process_recv() doesn't always consume the frag, and
1018          * we might not have called it at all if the wc didn't indicate
1019          * success. We already unmapped the frag's pages, though, and
1020          * the following rds_ib_ring_free() call tells the refill path
1021          * that it will not find an allocated frag here. Make sure we
1022          * keep that promise by freeing a frag that's still on the ring.
1023          */
1024         if (recv->r_frag) {
1025                 rds_ib_frag_free(ic, recv->r_frag);
1026                 recv->r_frag = NULL;
1027         }
1028         rds_ib_ring_free(&ic->i_recv_ring, 1);
1029
1030         /* If we ever end up with a really empty receive ring, we're
1031          * in deep trouble, as the sender will definitely see RNR
1032          * timeouts. */
1033         if (rds_ib_ring_empty(&ic->i_recv_ring))
1034                 rds_ib_stats_inc(s_ib_rx_ring_empty);
1035
1036         if (rds_ib_ring_low(&ic->i_recv_ring)) {
1037                 rds_ib_recv_refill(conn, 0, GFP_NOWAIT | __GFP_NOWARN);
1038                 rds_ib_stats_inc(s_ib_rx_refill_from_cq);
1039         }
1040 }
1041
1042 int rds_ib_recv_path(struct rds_conn_path *cp)
1043 {
1044         struct rds_connection *conn = cp->cp_conn;
1045         struct rds_ib_connection *ic = conn->c_transport_data;
1046
1047         rdsdebug("conn %p\n", conn);
1048         if (rds_conn_up(conn)) {
1049                 rds_ib_attempt_ack(ic);
1050                 rds_ib_recv_refill(conn, 0, GFP_KERNEL);
1051                 rds_ib_stats_inc(s_ib_rx_refill_from_thread);
1052         }
1053
1054         return 0;
1055 }
1056
1057 int rds_ib_recv_init(void)
1058 {
1059         struct sysinfo si;
1060         int ret = -ENOMEM;
1061
1062         /* Default to 30% of all available RAM for recv memory */
1063         si_meminfo(&si);
1064         rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1065
1066         rds_ib_incoming_slab =
1067                 kmem_cache_create_usercopy("rds_ib_incoming",
1068                                            sizeof(struct rds_ib_incoming),
1069                                            0, SLAB_HWCACHE_ALIGN,
1070                                            offsetof(struct rds_ib_incoming,
1071                                                     ii_inc.i_usercopy),
1072                                            sizeof(struct rds_inc_usercopy),
1073                                            NULL);
1074         if (!rds_ib_incoming_slab)
1075                 goto out;
1076
1077         rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1078                                         sizeof(struct rds_page_frag),
1079                                         0, SLAB_HWCACHE_ALIGN, NULL);
1080         if (!rds_ib_frag_slab) {
1081                 kmem_cache_destroy(rds_ib_incoming_slab);
1082                 rds_ib_incoming_slab = NULL;
1083         } else
1084                 ret = 0;
1085 out:
1086         return ret;
1087 }
1088
1089 void rds_ib_recv_exit(void)
1090 {
1091         WARN_ON(atomic_read(&rds_ib_allocation));
1092
1093         kmem_cache_destroy(rds_ib_incoming_slab);
1094         kmem_cache_destroy(rds_ib_frag_slab);
1095 }