2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/if_arp.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 #include <net/addrconf.h>
44 #include "rds_single_path.h"
49 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
50 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
51 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
52 static atomic_t rds_ib_unloading;
54 module_param(rds_ib_mr_1m_pool_size, int, 0444);
55 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
56 module_param(rds_ib_mr_8k_pool_size, int, 0444);
57 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
58 module_param(rds_ib_retry_count, int, 0444);
59 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
62 * we have a clumsy combination of RCU and a rwsem protecting this list
63 * because it is used both in the get_mr fast path and while blocking in
64 * the FMR flushing path.
66 DECLARE_RWSEM(rds_ib_devices_lock);
67 struct list_head rds_ib_devices;
69 /* NOTE: if also grabbing ibdev lock, grab this first */
70 DEFINE_SPINLOCK(ib_nodev_conns_lock);
71 LIST_HEAD(ib_nodev_conns);
73 static void rds_ib_nodev_connect(void)
75 struct rds_ib_connection *ic;
77 spin_lock(&ib_nodev_conns_lock);
78 list_for_each_entry(ic, &ib_nodev_conns, ib_node)
79 rds_conn_connect_if_down(ic->conn);
80 spin_unlock(&ib_nodev_conns_lock);
83 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
85 struct rds_ib_connection *ic;
88 spin_lock_irqsave(&rds_ibdev->spinlock, flags);
89 list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
90 rds_conn_path_drop(&ic->conn->c_path[0], true);
91 spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
95 * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
96 * from interrupt context so we push freing off into a work struct in krdsd.
98 static void rds_ib_dev_free(struct work_struct *work)
100 struct rds_ib_ipaddr *i_ipaddr, *i_next;
101 struct rds_ib_device *rds_ibdev = container_of(work,
102 struct rds_ib_device, free_work);
104 if (rds_ibdev->mr_8k_pool)
105 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
106 if (rds_ibdev->mr_1m_pool)
107 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
109 ib_dealloc_pd(rds_ibdev->pd);
111 list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
112 list_del(&i_ipaddr->list);
116 kfree(rds_ibdev->vector_load);
121 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
123 BUG_ON(refcount_read(&rds_ibdev->refcount) == 0);
124 if (refcount_dec_and_test(&rds_ibdev->refcount))
125 queue_work(rds_wq, &rds_ibdev->free_work);
128 static void rds_ib_add_one(struct ib_device *device)
130 struct rds_ib_device *rds_ibdev;
131 bool has_fr, has_fmr;
133 /* Only handle IB (no iWARP) devices */
134 if (device->node_type != RDMA_NODE_IB_CA)
137 rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
138 ibdev_to_node(device));
142 spin_lock_init(&rds_ibdev->spinlock);
143 refcount_set(&rds_ibdev->refcount, 1);
144 INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
146 INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
147 INIT_LIST_HEAD(&rds_ibdev->conn_list);
149 rds_ibdev->max_wrs = device->attrs.max_qp_wr;
150 rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE);
152 has_fr = (device->attrs.device_cap_flags &
153 IB_DEVICE_MEM_MGT_EXTENSIONS);
154 has_fmr = (device->ops.alloc_fmr && device->ops.dealloc_fmr &&
155 device->ops.map_phys_fmr && device->ops.unmap_fmr);
156 rds_ibdev->use_fastreg = (has_fr && !has_fmr);
158 rds_ibdev->fmr_max_remaps = device->attrs.max_map_per_fmr?: 32;
159 rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
160 min_t(unsigned int, (device->attrs.max_mr / 2),
161 rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
163 rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
164 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
165 rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
167 rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
168 rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
170 rds_ibdev->vector_load = kcalloc(device->num_comp_vectors,
173 if (!rds_ibdev->vector_load) {
174 pr_err("RDS/IB: %s failed to allocate vector memory\n",
179 rds_ibdev->dev = device;
180 rds_ibdev->pd = ib_alloc_pd(device, 0);
181 if (IS_ERR(rds_ibdev->pd)) {
182 rds_ibdev->pd = NULL;
186 rds_ibdev->mr_1m_pool =
187 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
188 if (IS_ERR(rds_ibdev->mr_1m_pool)) {
189 rds_ibdev->mr_1m_pool = NULL;
193 rds_ibdev->mr_8k_pool =
194 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
195 if (IS_ERR(rds_ibdev->mr_8k_pool)) {
196 rds_ibdev->mr_8k_pool = NULL;
200 rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
201 device->attrs.max_fmr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
202 rds_ibdev->fmr_max_remaps, rds_ibdev->max_1m_mrs,
203 rds_ibdev->max_8k_mrs);
205 pr_info("RDS/IB: %s: %s supported and preferred\n",
207 rds_ibdev->use_fastreg ? "FRMR" : "FMR");
209 down_write(&rds_ib_devices_lock);
210 list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
211 up_write(&rds_ib_devices_lock);
212 refcount_inc(&rds_ibdev->refcount);
214 ib_set_client_data(device, &rds_ib_client, rds_ibdev);
215 refcount_inc(&rds_ibdev->refcount);
217 rds_ib_nodev_connect();
220 rds_ib_dev_put(rds_ibdev);
224 * New connections use this to find the device to associate with the
225 * connection. It's not in the fast path so we're not concerned about the
226 * performance of the IB call. (As of this writing, it uses an interrupt
227 * blocking spinlock to serialize walking a per-device list of all registered
230 * RCU is used to handle incoming connections racing with device teardown.
231 * Rather than use a lock to serialize removal from the client_data and
232 * getting a new reference, we use an RCU grace period. The destruction
233 * path removes the device from client_data and then waits for all RCU
236 * A new connection can get NULL from this if its arriving on a
237 * device that is in the process of being removed.
239 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
241 struct rds_ib_device *rds_ibdev;
244 rds_ibdev = ib_get_client_data(device, &rds_ib_client);
246 refcount_inc(&rds_ibdev->refcount);
252 * The IB stack is letting us know that a device is going away. This can
253 * happen if the underlying HCA driver is removed or if PCI hotplug is removing
254 * the pci function, for example.
256 * This can be called at any time and can be racing with any other RDS path.
258 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
260 struct rds_ib_device *rds_ibdev = client_data;
265 rds_ib_dev_shutdown(rds_ibdev);
267 /* stop connection attempts from getting a reference to this device. */
268 ib_set_client_data(device, &rds_ib_client, NULL);
270 down_write(&rds_ib_devices_lock);
271 list_del_rcu(&rds_ibdev->list);
272 up_write(&rds_ib_devices_lock);
275 * This synchronize rcu is waiting for readers of both the ib
276 * client data and the devices list to finish before we drop
277 * both of those references.
280 rds_ib_dev_put(rds_ibdev);
281 rds_ib_dev_put(rds_ibdev);
284 struct ib_client rds_ib_client = {
286 .add = rds_ib_add_one,
287 .remove = rds_ib_remove_one
290 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
293 struct rds_info_rdma_connection *iinfo = buffer;
294 struct rds_ib_connection *ic = conn->c_transport_data;
296 /* We will only ever look at IB transports */
297 if (conn->c_trans != &rds_ib_transport)
302 iinfo->src_addr = conn->c_laddr.s6_addr32[3];
303 iinfo->dst_addr = conn->c_faddr.s6_addr32[3];
305 iinfo->tos = conn->c_tos;
306 iinfo->sl = ic->i_sl;
309 memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
310 memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
311 if (rds_conn_state(conn) == RDS_CONN_UP) {
312 struct rds_ib_device *rds_ibdev;
314 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid,
315 (union ib_gid *)&iinfo->dst_gid);
317 rds_ibdev = ic->rds_ibdev;
318 iinfo->max_send_wr = ic->i_send_ring.w_nr;
319 iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
320 iinfo->max_send_sge = rds_ibdev->max_sge;
321 rds_ib_get_mr_info(rds_ibdev, iinfo);
322 iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs);
327 #if IS_ENABLED(CONFIG_IPV6)
328 /* IPv6 version of rds_ib_conn_info_visitor(). */
329 static int rds6_ib_conn_info_visitor(struct rds_connection *conn,
332 struct rds6_info_rdma_connection *iinfo6 = buffer;
333 struct rds_ib_connection *ic = conn->c_transport_data;
335 /* We will only ever look at IB transports */
336 if (conn->c_trans != &rds_ib_transport)
339 iinfo6->src_addr = conn->c_laddr;
340 iinfo6->dst_addr = conn->c_faddr;
342 iinfo6->tos = conn->c_tos;
343 iinfo6->sl = ic->i_sl;
346 memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid));
347 memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid));
349 if (rds_conn_state(conn) == RDS_CONN_UP) {
350 struct rds_ib_device *rds_ibdev;
352 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid,
353 (union ib_gid *)&iinfo6->dst_gid);
354 rds_ibdev = ic->rds_ibdev;
355 iinfo6->max_send_wr = ic->i_send_ring.w_nr;
356 iinfo6->max_recv_wr = ic->i_recv_ring.w_nr;
357 iinfo6->max_send_sge = rds_ibdev->max_sge;
358 rds6_ib_get_mr_info(rds_ibdev, iinfo6);
359 iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs);
365 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
366 struct rds_info_iterator *iter,
367 struct rds_info_lengths *lens)
369 u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8];
371 rds_for_each_conn_info(sock, len, iter, lens,
372 rds_ib_conn_info_visitor,
374 sizeof(struct rds_info_rdma_connection));
377 #if IS_ENABLED(CONFIG_IPV6)
378 /* IPv6 version of rds_ib_ic_info(). */
379 static void rds6_ib_ic_info(struct socket *sock, unsigned int len,
380 struct rds_info_iterator *iter,
381 struct rds_info_lengths *lens)
383 u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8];
385 rds_for_each_conn_info(sock, len, iter, lens,
386 rds6_ib_conn_info_visitor,
388 sizeof(struct rds6_info_rdma_connection));
393 * Early RDS/IB was built to only bind to an address if there is an IPoIB
394 * device with that address set.
396 * If it were me, I'd advocate for something more flexible. Sending and
397 * receiving should be device-agnostic. Transports would try and maintain
398 * connections between peers who have messages queued. Userspace would be
399 * allowed to influence which paths have priority. We could call userspace
400 * asserting this policy "routing".
402 static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr,
406 struct rdma_cm_id *cm_id;
407 #if IS_ENABLED(CONFIG_IPV6)
408 struct sockaddr_in6 sin6;
410 struct sockaddr_in sin;
414 isv4 = ipv6_addr_v4mapped(addr);
415 /* Create a CMA ID and try to bind it. This catches both
416 * IB and iWARP capable NICs.
418 cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler,
419 NULL, RDMA_PS_TCP, IB_QPT_RC);
421 return PTR_ERR(cm_id);
424 memset(&sin, 0, sizeof(sin));
425 sin.sin_family = AF_INET;
426 sin.sin_addr.s_addr = addr->s6_addr32[3];
427 sa = (struct sockaddr *)&sin;
429 #if IS_ENABLED(CONFIG_IPV6)
430 memset(&sin6, 0, sizeof(sin6));
431 sin6.sin6_family = AF_INET6;
432 sin6.sin6_addr = *addr;
433 sin6.sin6_scope_id = scope_id;
434 sa = (struct sockaddr *)&sin6;
436 /* XXX Do a special IPv6 link local address check here. The
437 * reason is that rdma_bind_addr() always succeeds with IPv6
438 * link local address regardless it is indeed configured in a
441 if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) {
442 struct net_device *dev;
445 ret = -EADDRNOTAVAIL;
449 /* Use init_net for now as RDS is not network
452 dev = dev_get_by_index(&init_net, scope_id);
454 ret = -EADDRNOTAVAIL;
457 if (!ipv6_chk_addr(&init_net, addr, dev, 1)) {
459 ret = -EADDRNOTAVAIL;
465 ret = -EADDRNOTAVAIL;
470 /* rdma_bind_addr will only succeed for IB & iWARP devices */
471 ret = rdma_bind_addr(cm_id, sa);
472 /* due to this, we will claim to support iWARP devices unless we
474 if (ret || !cm_id->device ||
475 cm_id->device->node_type != RDMA_NODE_IB_CA)
476 ret = -EADDRNOTAVAIL;
478 rdsdebug("addr %pI6c%%%u ret %d node type %d\n",
480 cm_id->device ? cm_id->device->node_type : -1);
483 rdma_destroy_id(cm_id);
488 static void rds_ib_unregister_client(void)
490 ib_unregister_client(&rds_ib_client);
491 /* wait for rds_ib_dev_free() to complete */
492 flush_workqueue(rds_wq);
495 static void rds_ib_set_unloading(void)
497 atomic_set(&rds_ib_unloading, 1);
500 static bool rds_ib_is_unloading(struct rds_connection *conn)
502 struct rds_conn_path *cp = &conn->c_path[0];
504 return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) ||
505 atomic_read(&rds_ib_unloading) != 0);
508 void rds_ib_exit(void)
510 rds_ib_set_unloading();
512 rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
513 #if IS_ENABLED(CONFIG_IPV6)
514 rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
516 rds_ib_unregister_client();
517 rds_ib_destroy_nodev_conns();
518 rds_ib_sysctl_exit();
520 rds_trans_unregister(&rds_ib_transport);
524 static u8 rds_ib_get_tos_map(u8 tos)
526 /* 1:1 user to transport map for RDMA transport.
527 * In future, if custom map is desired, hook can export
528 * user configurable map.
533 struct rds_transport rds_ib_transport = {
534 .laddr_check = rds_ib_laddr_check,
535 .xmit_path_complete = rds_ib_xmit_path_complete,
537 .xmit_rdma = rds_ib_xmit_rdma,
538 .xmit_atomic = rds_ib_xmit_atomic,
539 .recv_path = rds_ib_recv_path,
540 .conn_alloc = rds_ib_conn_alloc,
541 .conn_free = rds_ib_conn_free,
542 .conn_path_connect = rds_ib_conn_path_connect,
543 .conn_path_shutdown = rds_ib_conn_path_shutdown,
544 .inc_copy_to_user = rds_ib_inc_copy_to_user,
545 .inc_free = rds_ib_inc_free,
546 .cm_initiate_connect = rds_ib_cm_initiate_connect,
547 .cm_handle_connect = rds_ib_cm_handle_connect,
548 .cm_connect_complete = rds_ib_cm_connect_complete,
549 .stats_info_copy = rds_ib_stats_info_copy,
551 .get_mr = rds_ib_get_mr,
552 .sync_mr = rds_ib_sync_mr,
553 .free_mr = rds_ib_free_mr,
554 .flush_mrs = rds_ib_flush_mrs,
555 .get_tos_map = rds_ib_get_tos_map,
556 .t_owner = THIS_MODULE,
557 .t_name = "infiniband",
558 .t_unloading = rds_ib_is_unloading,
559 .t_type = RDS_TRANS_IB
562 int rds_ib_init(void)
566 INIT_LIST_HEAD(&rds_ib_devices);
568 ret = rds_ib_mr_init();
572 ret = ib_register_client(&rds_ib_client);
576 ret = rds_ib_sysctl_init();
580 ret = rds_ib_recv_init();
584 rds_trans_register(&rds_ib_transport);
586 rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
587 #if IS_ENABLED(CONFIG_IPV6)
588 rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
594 rds_ib_sysctl_exit();
596 rds_ib_unregister_client();
603 MODULE_LICENSE("GPL");