Merge tag 'tag-chrome-platform-for-v5.15' of git://git.kernel.org/pub/scm/linux/kerne...
[platform/kernel/linux-rpi.git] / net / rds / af_rds.c
1 /*
2  * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/module.h>
34 #include <linux/errno.h>
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/in.h>
38 #include <linux/ipv6.h>
39 #include <linux/poll.h>
40 #include <net/sock.h>
41
42 #include "rds.h"
43
44 /* this is just used for stats gathering :/ */
45 static DEFINE_SPINLOCK(rds_sock_lock);
46 static unsigned long rds_sock_count;
47 static LIST_HEAD(rds_sock_list);
48 DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
49
50 /*
51  * This is called as the final descriptor referencing this socket is closed.
52  * We have to unbind the socket so that another socket can be bound to the
53  * address it was using.
54  *
55  * We have to be careful about racing with the incoming path.  sock_orphan()
56  * sets SOCK_DEAD and we use that as an indicator to the rx path that new
57  * messages shouldn't be queued.
58  */
59 static int rds_release(struct socket *sock)
60 {
61         struct sock *sk = sock->sk;
62         struct rds_sock *rs;
63
64         if (!sk)
65                 goto out;
66
67         rs = rds_sk_to_rs(sk);
68
69         sock_orphan(sk);
70         /* Note - rds_clear_recv_queue grabs rs_recv_lock, so
71          * that ensures the recv path has completed messing
72          * with the socket. */
73         rds_clear_recv_queue(rs);
74         rds_cong_remove_socket(rs);
75
76         rds_remove_bound(rs);
77
78         rds_send_drop_to(rs, NULL);
79         rds_rdma_drop_keys(rs);
80         rds_notify_queue_get(rs, NULL);
81         rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
82
83         spin_lock_bh(&rds_sock_lock);
84         list_del_init(&rs->rs_item);
85         rds_sock_count--;
86         spin_unlock_bh(&rds_sock_lock);
87
88         rds_trans_put(rs->rs_transport);
89
90         sock->sk = NULL;
91         sock_put(sk);
92 out:
93         return 0;
94 }
95
96 /*
97  * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
98  * _bh() isn't OK here, we're called from interrupt handlers.  It's probably OK
99  * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
100  * this seems more conservative.
101  * NB - normally, one would use sk_callback_lock for this, but we can
102  * get here from interrupts, whereas the network code grabs sk_callback_lock
103  * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
104  */
105 void rds_wake_sk_sleep(struct rds_sock *rs)
106 {
107         unsigned long flags;
108
109         read_lock_irqsave(&rs->rs_recv_lock, flags);
110         __rds_wake_sk_sleep(rds_rs_to_sk(rs));
111         read_unlock_irqrestore(&rs->rs_recv_lock, flags);
112 }
113
114 static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
115                        int peer)
116 {
117         struct rds_sock *rs = rds_sk_to_rs(sock->sk);
118         struct sockaddr_in6 *sin6;
119         struct sockaddr_in *sin;
120         int uaddr_len;
121
122         /* racey, don't care */
123         if (peer) {
124                 if (ipv6_addr_any(&rs->rs_conn_addr))
125                         return -ENOTCONN;
126
127                 if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) {
128                         sin = (struct sockaddr_in *)uaddr;
129                         memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
130                         sin->sin_family = AF_INET;
131                         sin->sin_port = rs->rs_conn_port;
132                         sin->sin_addr.s_addr = rs->rs_conn_addr_v4;
133                         uaddr_len = sizeof(*sin);
134                 } else {
135                         sin6 = (struct sockaddr_in6 *)uaddr;
136                         sin6->sin6_family = AF_INET6;
137                         sin6->sin6_port = rs->rs_conn_port;
138                         sin6->sin6_addr = rs->rs_conn_addr;
139                         sin6->sin6_flowinfo = 0;
140                         /* scope_id is the same as in the bound address. */
141                         sin6->sin6_scope_id = rs->rs_bound_scope_id;
142                         uaddr_len = sizeof(*sin6);
143                 }
144         } else {
145                 /* If socket is not yet bound and the socket is connected,
146                  * set the return address family to be the same as the
147                  * connected address, but with 0 address value.  If it is not
148                  * connected, set the family to be AF_UNSPEC (value 0) and
149                  * the address size to be that of an IPv4 address.
150                  */
151                 if (ipv6_addr_any(&rs->rs_bound_addr)) {
152                         if (ipv6_addr_any(&rs->rs_conn_addr)) {
153                                 sin = (struct sockaddr_in *)uaddr;
154                                 memset(sin, 0, sizeof(*sin));
155                                 sin->sin_family = AF_UNSPEC;
156                                 return sizeof(*sin);
157                         }
158
159 #if IS_ENABLED(CONFIG_IPV6)
160                         if (!(ipv6_addr_type(&rs->rs_conn_addr) &
161                               IPV6_ADDR_MAPPED)) {
162                                 sin6 = (struct sockaddr_in6 *)uaddr;
163                                 memset(sin6, 0, sizeof(*sin6));
164                                 sin6->sin6_family = AF_INET6;
165                                 return sizeof(*sin6);
166                         }
167 #endif
168
169                         sin = (struct sockaddr_in *)uaddr;
170                         memset(sin, 0, sizeof(*sin));
171                         sin->sin_family = AF_INET;
172                         return sizeof(*sin);
173                 }
174                 if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
175                         sin = (struct sockaddr_in *)uaddr;
176                         memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
177                         sin->sin_family = AF_INET;
178                         sin->sin_port = rs->rs_bound_port;
179                         sin->sin_addr.s_addr = rs->rs_bound_addr_v4;
180                         uaddr_len = sizeof(*sin);
181                 } else {
182                         sin6 = (struct sockaddr_in6 *)uaddr;
183                         sin6->sin6_family = AF_INET6;
184                         sin6->sin6_port = rs->rs_bound_port;
185                         sin6->sin6_addr = rs->rs_bound_addr;
186                         sin6->sin6_flowinfo = 0;
187                         sin6->sin6_scope_id = rs->rs_bound_scope_id;
188                         uaddr_len = sizeof(*sin6);
189                 }
190         }
191
192         return uaddr_len;
193 }
194
195 /*
196  * RDS' poll is without a doubt the least intuitive part of the interface,
197  * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
198  * a network protocol.
199  *
200  * EPOLLIN is asserted if
201  *  -   there is data on the receive queue.
202  *  -   to signal that a previously congested destination may have become
203  *      uncongested
204  *  -   A notification has been queued to the socket (this can be a congestion
205  *      update, or a RDMA completion, or a MSG_ZEROCOPY completion).
206  *
207  * EPOLLOUT is asserted if there is room on the send queue. This does not mean
208  * however, that the next sendmsg() call will succeed. If the application tries
209  * to send to a congested destination, the system call may still fail (and
210  * return ENOBUFS).
211  */
212 static __poll_t rds_poll(struct file *file, struct socket *sock,
213                              poll_table *wait)
214 {
215         struct sock *sk = sock->sk;
216         struct rds_sock *rs = rds_sk_to_rs(sk);
217         __poll_t mask = 0;
218         unsigned long flags;
219
220         poll_wait(file, sk_sleep(sk), wait);
221
222         if (rs->rs_seen_congestion)
223                 poll_wait(file, &rds_poll_waitq, wait);
224
225         read_lock_irqsave(&rs->rs_recv_lock, flags);
226         if (!rs->rs_cong_monitor) {
227                 /* When a congestion map was updated, we signal EPOLLIN for
228                  * "historical" reasons. Applications can also poll for
229                  * WRBAND instead. */
230                 if (rds_cong_updated_since(&rs->rs_cong_track))
231                         mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
232         } else {
233                 spin_lock(&rs->rs_lock);
234                 if (rs->rs_cong_notify)
235                         mask |= (EPOLLIN | EPOLLRDNORM);
236                 spin_unlock(&rs->rs_lock);
237         }
238         if (!list_empty(&rs->rs_recv_queue) ||
239             !list_empty(&rs->rs_notify_queue) ||
240             !list_empty(&rs->rs_zcookie_queue.zcookie_head))
241                 mask |= (EPOLLIN | EPOLLRDNORM);
242         if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
243                 mask |= (EPOLLOUT | EPOLLWRNORM);
244         if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
245                 mask |= POLLERR;
246         read_unlock_irqrestore(&rs->rs_recv_lock, flags);
247
248         /* clear state any time we wake a seen-congested socket */
249         if (mask)
250                 rs->rs_seen_congestion = 0;
251
252         return mask;
253 }
254
255 static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
256 {
257         struct rds_sock *rs = rds_sk_to_rs(sock->sk);
258         rds_tos_t utos, tos = 0;
259
260         switch (cmd) {
261         case SIOCRDSSETTOS:
262                 if (get_user(utos, (rds_tos_t __user *)arg))
263                         return -EFAULT;
264
265                 if (rs->rs_transport &&
266                     rs->rs_transport->get_tos_map)
267                         tos = rs->rs_transport->get_tos_map(utos);
268                 else
269                         return -ENOIOCTLCMD;
270
271                 spin_lock_bh(&rds_sock_lock);
272                 if (rs->rs_tos || rs->rs_conn) {
273                         spin_unlock_bh(&rds_sock_lock);
274                         return -EINVAL;
275                 }
276                 rs->rs_tos = tos;
277                 spin_unlock_bh(&rds_sock_lock);
278                 break;
279         case SIOCRDSGETTOS:
280                 spin_lock_bh(&rds_sock_lock);
281                 tos = rs->rs_tos;
282                 spin_unlock_bh(&rds_sock_lock);
283                 if (put_user(tos, (rds_tos_t __user *)arg))
284                         return -EFAULT;
285                 break;
286         default:
287                 return -ENOIOCTLCMD;
288         }
289
290         return 0;
291 }
292
293 static int rds_cancel_sent_to(struct rds_sock *rs, sockptr_t optval, int len)
294 {
295         struct sockaddr_in6 sin6;
296         struct sockaddr_in sin;
297         int ret = 0;
298
299         /* racing with another thread binding seems ok here */
300         if (ipv6_addr_any(&rs->rs_bound_addr)) {
301                 ret = -ENOTCONN; /* XXX not a great errno */
302                 goto out;
303         }
304
305         if (len < sizeof(struct sockaddr_in)) {
306                 ret = -EINVAL;
307                 goto out;
308         } else if (len < sizeof(struct sockaddr_in6)) {
309                 /* Assume IPv4 */
310                 if (copy_from_sockptr(&sin, optval,
311                                 sizeof(struct sockaddr_in))) {
312                         ret = -EFAULT;
313                         goto out;
314                 }
315                 ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr);
316                 sin6.sin6_port = sin.sin_port;
317         } else {
318                 if (copy_from_sockptr(&sin6, optval,
319                                    sizeof(struct sockaddr_in6))) {
320                         ret = -EFAULT;
321                         goto out;
322                 }
323         }
324
325         rds_send_drop_to(rs, &sin6);
326 out:
327         return ret;
328 }
329
330 static int rds_set_bool_option(unsigned char *optvar, sockptr_t optval,
331                                int optlen)
332 {
333         int value;
334
335         if (optlen < sizeof(int))
336                 return -EINVAL;
337         if (copy_from_sockptr(&value, optval, sizeof(int)))
338                 return -EFAULT;
339         *optvar = !!value;
340         return 0;
341 }
342
343 static int rds_cong_monitor(struct rds_sock *rs, sockptr_t optval, int optlen)
344 {
345         int ret;
346
347         ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
348         if (ret == 0) {
349                 if (rs->rs_cong_monitor) {
350                         rds_cong_add_socket(rs);
351                 } else {
352                         rds_cong_remove_socket(rs);
353                         rs->rs_cong_mask = 0;
354                         rs->rs_cong_notify = 0;
355                 }
356         }
357         return ret;
358 }
359
360 static int rds_set_transport(struct rds_sock *rs, sockptr_t optval, int optlen)
361 {
362         int t_type;
363
364         if (rs->rs_transport)
365                 return -EOPNOTSUPP; /* previously attached to transport */
366
367         if (optlen != sizeof(int))
368                 return -EINVAL;
369
370         if (copy_from_sockptr(&t_type, optval, sizeof(t_type)))
371                 return -EFAULT;
372
373         if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
374                 return -EINVAL;
375
376         rs->rs_transport = rds_trans_get(t_type);
377
378         return rs->rs_transport ? 0 : -ENOPROTOOPT;
379 }
380
381 static int rds_enable_recvtstamp(struct sock *sk, sockptr_t optval,
382                                  int optlen, int optname)
383 {
384         int val, valbool;
385
386         if (optlen != sizeof(int))
387                 return -EFAULT;
388
389         if (copy_from_sockptr(&val, optval, sizeof(int)))
390                 return -EFAULT;
391
392         valbool = val ? 1 : 0;
393
394         if (optname == SO_TIMESTAMP_NEW)
395                 sock_set_flag(sk, SOCK_TSTAMP_NEW);
396
397         if (valbool)
398                 sock_set_flag(sk, SOCK_RCVTSTAMP);
399         else
400                 sock_reset_flag(sk, SOCK_RCVTSTAMP);
401
402         return 0;
403 }
404
405 static int rds_recv_track_latency(struct rds_sock *rs, sockptr_t optval,
406                                   int optlen)
407 {
408         struct rds_rx_trace_so trace;
409         int i;
410
411         if (optlen != sizeof(struct rds_rx_trace_so))
412                 return -EFAULT;
413
414         if (copy_from_sockptr(&trace, optval, sizeof(trace)))
415                 return -EFAULT;
416
417         if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
418                 return -EFAULT;
419
420         rs->rs_rx_traces = trace.rx_traces;
421         for (i = 0; i < rs->rs_rx_traces; i++) {
422                 if (trace.rx_trace_pos[i] > RDS_MSG_RX_DGRAM_TRACE_MAX) {
423                         rs->rs_rx_traces = 0;
424                         return -EFAULT;
425                 }
426                 rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
427         }
428
429         return 0;
430 }
431
432 static int rds_setsockopt(struct socket *sock, int level, int optname,
433                           sockptr_t optval, unsigned int optlen)
434 {
435         struct rds_sock *rs = rds_sk_to_rs(sock->sk);
436         int ret;
437
438         if (level != SOL_RDS) {
439                 ret = -ENOPROTOOPT;
440                 goto out;
441         }
442
443         switch (optname) {
444         case RDS_CANCEL_SENT_TO:
445                 ret = rds_cancel_sent_to(rs, optval, optlen);
446                 break;
447         case RDS_GET_MR:
448                 ret = rds_get_mr(rs, optval, optlen);
449                 break;
450         case RDS_GET_MR_FOR_DEST:
451                 ret = rds_get_mr_for_dest(rs, optval, optlen);
452                 break;
453         case RDS_FREE_MR:
454                 ret = rds_free_mr(rs, optval, optlen);
455                 break;
456         case RDS_RECVERR:
457                 ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
458                 break;
459         case RDS_CONG_MONITOR:
460                 ret = rds_cong_monitor(rs, optval, optlen);
461                 break;
462         case SO_RDS_TRANSPORT:
463                 lock_sock(sock->sk);
464                 ret = rds_set_transport(rs, optval, optlen);
465                 release_sock(sock->sk);
466                 break;
467         case SO_TIMESTAMP_OLD:
468         case SO_TIMESTAMP_NEW:
469                 lock_sock(sock->sk);
470                 ret = rds_enable_recvtstamp(sock->sk, optval, optlen, optname);
471                 release_sock(sock->sk);
472                 break;
473         case SO_RDS_MSG_RXPATH_LATENCY:
474                 ret = rds_recv_track_latency(rs, optval, optlen);
475                 break;
476         default:
477                 ret = -ENOPROTOOPT;
478         }
479 out:
480         return ret;
481 }
482
483 static int rds_getsockopt(struct socket *sock, int level, int optname,
484                           char __user *optval, int __user *optlen)
485 {
486         struct rds_sock *rs = rds_sk_to_rs(sock->sk);
487         int ret = -ENOPROTOOPT, len;
488         int trans;
489
490         if (level != SOL_RDS)
491                 goto out;
492
493         if (get_user(len, optlen)) {
494                 ret = -EFAULT;
495                 goto out;
496         }
497
498         switch (optname) {
499         case RDS_INFO_FIRST ... RDS_INFO_LAST:
500                 ret = rds_info_getsockopt(sock, optname, optval,
501                                           optlen);
502                 break;
503
504         case RDS_RECVERR:
505                 if (len < sizeof(int))
506                         ret = -EINVAL;
507                 else
508                 if (put_user(rs->rs_recverr, (int __user *) optval) ||
509                     put_user(sizeof(int), optlen))
510                         ret = -EFAULT;
511                 else
512                         ret = 0;
513                 break;
514         case SO_RDS_TRANSPORT:
515                 if (len < sizeof(int)) {
516                         ret = -EINVAL;
517                         break;
518                 }
519                 trans = (rs->rs_transport ? rs->rs_transport->t_type :
520                          RDS_TRANS_NONE); /* unbound */
521                 if (put_user(trans, (int __user *)optval) ||
522                     put_user(sizeof(int), optlen))
523                         ret = -EFAULT;
524                 else
525                         ret = 0;
526                 break;
527         default:
528                 break;
529         }
530
531 out:
532         return ret;
533
534 }
535
536 static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
537                        int addr_len, int flags)
538 {
539         struct sock *sk = sock->sk;
540         struct sockaddr_in *sin;
541         struct rds_sock *rs = rds_sk_to_rs(sk);
542         int ret = 0;
543
544         if (addr_len < offsetofend(struct sockaddr, sa_family))
545                 return -EINVAL;
546
547         lock_sock(sk);
548
549         switch (uaddr->sa_family) {
550         case AF_INET:
551                 sin = (struct sockaddr_in *)uaddr;
552                 if (addr_len < sizeof(struct sockaddr_in)) {
553                         ret = -EINVAL;
554                         break;
555                 }
556                 if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
557                         ret = -EDESTADDRREQ;
558                         break;
559                 }
560                 if (ipv4_is_multicast(sin->sin_addr.s_addr) ||
561                     sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) {
562                         ret = -EINVAL;
563                         break;
564                 }
565                 ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr);
566                 rs->rs_conn_port = sin->sin_port;
567                 break;
568
569 #if IS_ENABLED(CONFIG_IPV6)
570         case AF_INET6: {
571                 struct sockaddr_in6 *sin6;
572                 int addr_type;
573
574                 sin6 = (struct sockaddr_in6 *)uaddr;
575                 if (addr_len < sizeof(struct sockaddr_in6)) {
576                         ret = -EINVAL;
577                         break;
578                 }
579                 addr_type = ipv6_addr_type(&sin6->sin6_addr);
580                 if (!(addr_type & IPV6_ADDR_UNICAST)) {
581                         __be32 addr4;
582
583                         if (!(addr_type & IPV6_ADDR_MAPPED)) {
584                                 ret = -EPROTOTYPE;
585                                 break;
586                         }
587
588                         /* It is a mapped address.  Need to do some sanity
589                          * checks.
590                          */
591                         addr4 = sin6->sin6_addr.s6_addr32[3];
592                         if (addr4 == htonl(INADDR_ANY) ||
593                             addr4 == htonl(INADDR_BROADCAST) ||
594                             ipv4_is_multicast(addr4)) {
595                                 ret = -EPROTOTYPE;
596                                 break;
597                         }
598                 }
599
600                 if (addr_type & IPV6_ADDR_LINKLOCAL) {
601                         /* If socket is arleady bound to a link local address,
602                          * the peer address must be on the same link.
603                          */
604                         if (sin6->sin6_scope_id == 0 ||
605                             (!ipv6_addr_any(&rs->rs_bound_addr) &&
606                              rs->rs_bound_scope_id &&
607                              sin6->sin6_scope_id != rs->rs_bound_scope_id)) {
608                                 ret = -EINVAL;
609                                 break;
610                         }
611                         /* Remember the connected address scope ID.  It will
612                          * be checked against the binding local address when
613                          * the socket is bound.
614                          */
615                         rs->rs_bound_scope_id = sin6->sin6_scope_id;
616                 }
617                 rs->rs_conn_addr = sin6->sin6_addr;
618                 rs->rs_conn_port = sin6->sin6_port;
619                 break;
620         }
621 #endif
622
623         default:
624                 ret = -EAFNOSUPPORT;
625                 break;
626         }
627
628         release_sock(sk);
629         return ret;
630 }
631
632 static struct proto rds_proto = {
633         .name     = "RDS",
634         .owner    = THIS_MODULE,
635         .obj_size = sizeof(struct rds_sock),
636 };
637
638 static const struct proto_ops rds_proto_ops = {
639         .family =       AF_RDS,
640         .owner =        THIS_MODULE,
641         .release =      rds_release,
642         .bind =         rds_bind,
643         .connect =      rds_connect,
644         .socketpair =   sock_no_socketpair,
645         .accept =       sock_no_accept,
646         .getname =      rds_getname,
647         .poll =         rds_poll,
648         .ioctl =        rds_ioctl,
649         .listen =       sock_no_listen,
650         .shutdown =     sock_no_shutdown,
651         .setsockopt =   rds_setsockopt,
652         .getsockopt =   rds_getsockopt,
653         .sendmsg =      rds_sendmsg,
654         .recvmsg =      rds_recvmsg,
655         .mmap =         sock_no_mmap,
656         .sendpage =     sock_no_sendpage,
657 };
658
659 static void rds_sock_destruct(struct sock *sk)
660 {
661         struct rds_sock *rs = rds_sk_to_rs(sk);
662
663         WARN_ON((&rs->rs_item != rs->rs_item.next ||
664                  &rs->rs_item != rs->rs_item.prev));
665 }
666
667 static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
668 {
669         struct rds_sock *rs;
670
671         sock_init_data(sock, sk);
672         sock->ops               = &rds_proto_ops;
673         sk->sk_protocol         = protocol;
674         sk->sk_destruct         = rds_sock_destruct;
675
676         rs = rds_sk_to_rs(sk);
677         spin_lock_init(&rs->rs_lock);
678         rwlock_init(&rs->rs_recv_lock);
679         INIT_LIST_HEAD(&rs->rs_send_queue);
680         INIT_LIST_HEAD(&rs->rs_recv_queue);
681         INIT_LIST_HEAD(&rs->rs_notify_queue);
682         INIT_LIST_HEAD(&rs->rs_cong_list);
683         rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
684         spin_lock_init(&rs->rs_rdma_lock);
685         rs->rs_rdma_keys = RB_ROOT;
686         rs->rs_rx_traces = 0;
687         rs->rs_tos = 0;
688         rs->rs_conn = NULL;
689
690         spin_lock_bh(&rds_sock_lock);
691         list_add_tail(&rs->rs_item, &rds_sock_list);
692         rds_sock_count++;
693         spin_unlock_bh(&rds_sock_lock);
694
695         return 0;
696 }
697
698 static int rds_create(struct net *net, struct socket *sock, int protocol,
699                       int kern)
700 {
701         struct sock *sk;
702
703         if (sock->type != SOCK_SEQPACKET || protocol)
704                 return -ESOCKTNOSUPPORT;
705
706         sk = sk_alloc(net, AF_RDS, GFP_KERNEL, &rds_proto, kern);
707         if (!sk)
708                 return -ENOMEM;
709
710         return __rds_create(sock, sk, protocol);
711 }
712
713 void rds_sock_addref(struct rds_sock *rs)
714 {
715         sock_hold(rds_rs_to_sk(rs));
716 }
717
718 void rds_sock_put(struct rds_sock *rs)
719 {
720         sock_put(rds_rs_to_sk(rs));
721 }
722
723 static const struct net_proto_family rds_family_ops = {
724         .family =       AF_RDS,
725         .create =       rds_create,
726         .owner  =       THIS_MODULE,
727 };
728
729 static void rds_sock_inc_info(struct socket *sock, unsigned int len,
730                               struct rds_info_iterator *iter,
731                               struct rds_info_lengths *lens)
732 {
733         struct rds_sock *rs;
734         struct rds_incoming *inc;
735         unsigned int total = 0;
736
737         len /= sizeof(struct rds_info_message);
738
739         spin_lock_bh(&rds_sock_lock);
740
741         list_for_each_entry(rs, &rds_sock_list, rs_item) {
742                 /* This option only supports IPv4 sockets. */
743                 if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
744                         continue;
745
746                 read_lock(&rs->rs_recv_lock);
747
748                 /* XXX too lazy to maintain counts.. */
749                 list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
750                         total++;
751                         if (total <= len)
752                                 rds_inc_info_copy(inc, iter,
753                                                   inc->i_saddr.s6_addr32[3],
754                                                   rs->rs_bound_addr_v4,
755                                                   1);
756                 }
757
758                 read_unlock(&rs->rs_recv_lock);
759         }
760
761         spin_unlock_bh(&rds_sock_lock);
762
763         lens->nr = total;
764         lens->each = sizeof(struct rds_info_message);
765 }
766
767 #if IS_ENABLED(CONFIG_IPV6)
768 static void rds6_sock_inc_info(struct socket *sock, unsigned int len,
769                                struct rds_info_iterator *iter,
770                                struct rds_info_lengths *lens)
771 {
772         struct rds_incoming *inc;
773         unsigned int total = 0;
774         struct rds_sock *rs;
775
776         len /= sizeof(struct rds6_info_message);
777
778         spin_lock_bh(&rds_sock_lock);
779
780         list_for_each_entry(rs, &rds_sock_list, rs_item) {
781                 read_lock(&rs->rs_recv_lock);
782
783                 list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
784                         total++;
785                         if (total <= len)
786                                 rds6_inc_info_copy(inc, iter, &inc->i_saddr,
787                                                    &rs->rs_bound_addr, 1);
788                 }
789
790                 read_unlock(&rs->rs_recv_lock);
791         }
792
793         spin_unlock_bh(&rds_sock_lock);
794
795         lens->nr = total;
796         lens->each = sizeof(struct rds6_info_message);
797 }
798 #endif
799
800 static void rds_sock_info(struct socket *sock, unsigned int len,
801                           struct rds_info_iterator *iter,
802                           struct rds_info_lengths *lens)
803 {
804         struct rds_info_socket sinfo;
805         unsigned int cnt = 0;
806         struct rds_sock *rs;
807
808         len /= sizeof(struct rds_info_socket);
809
810         spin_lock_bh(&rds_sock_lock);
811
812         if (len < rds_sock_count) {
813                 cnt = rds_sock_count;
814                 goto out;
815         }
816
817         list_for_each_entry(rs, &rds_sock_list, rs_item) {
818                 /* This option only supports IPv4 sockets. */
819                 if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
820                         continue;
821                 sinfo.sndbuf = rds_sk_sndbuf(rs);
822                 sinfo.rcvbuf = rds_sk_rcvbuf(rs);
823                 sinfo.bound_addr = rs->rs_bound_addr_v4;
824                 sinfo.connected_addr = rs->rs_conn_addr_v4;
825                 sinfo.bound_port = rs->rs_bound_port;
826                 sinfo.connected_port = rs->rs_conn_port;
827                 sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
828
829                 rds_info_copy(iter, &sinfo, sizeof(sinfo));
830                 cnt++;
831         }
832
833 out:
834         lens->nr = cnt;
835         lens->each = sizeof(struct rds_info_socket);
836
837         spin_unlock_bh(&rds_sock_lock);
838 }
839
840 #if IS_ENABLED(CONFIG_IPV6)
841 static void rds6_sock_info(struct socket *sock, unsigned int len,
842                            struct rds_info_iterator *iter,
843                            struct rds_info_lengths *lens)
844 {
845         struct rds6_info_socket sinfo6;
846         struct rds_sock *rs;
847
848         len /= sizeof(struct rds6_info_socket);
849
850         spin_lock_bh(&rds_sock_lock);
851
852         if (len < rds_sock_count)
853                 goto out;
854
855         list_for_each_entry(rs, &rds_sock_list, rs_item) {
856                 sinfo6.sndbuf = rds_sk_sndbuf(rs);
857                 sinfo6.rcvbuf = rds_sk_rcvbuf(rs);
858                 sinfo6.bound_addr = rs->rs_bound_addr;
859                 sinfo6.connected_addr = rs->rs_conn_addr;
860                 sinfo6.bound_port = rs->rs_bound_port;
861                 sinfo6.connected_port = rs->rs_conn_port;
862                 sinfo6.inum = sock_i_ino(rds_rs_to_sk(rs));
863
864                 rds_info_copy(iter, &sinfo6, sizeof(sinfo6));
865         }
866
867  out:
868         lens->nr = rds_sock_count;
869         lens->each = sizeof(struct rds6_info_socket);
870
871         spin_unlock_bh(&rds_sock_lock);
872 }
873 #endif
874
875 static void rds_exit(void)
876 {
877         sock_unregister(rds_family_ops.family);
878         proto_unregister(&rds_proto);
879         rds_conn_exit();
880         rds_cong_exit();
881         rds_sysctl_exit();
882         rds_threads_exit();
883         rds_stats_exit();
884         rds_page_exit();
885         rds_bind_lock_destroy();
886         rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
887         rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
888 #if IS_ENABLED(CONFIG_IPV6)
889         rds_info_deregister_func(RDS6_INFO_SOCKETS, rds6_sock_info);
890         rds_info_deregister_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
891 #endif
892 }
893 module_exit(rds_exit);
894
895 u32 rds_gen_num;
896
897 static int rds_init(void)
898 {
899         int ret;
900
901         net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
902
903         ret = rds_bind_lock_init();
904         if (ret)
905                 goto out;
906
907         ret = rds_conn_init();
908         if (ret)
909                 goto out_bind;
910
911         ret = rds_threads_init();
912         if (ret)
913                 goto out_conn;
914         ret = rds_sysctl_init();
915         if (ret)
916                 goto out_threads;
917         ret = rds_stats_init();
918         if (ret)
919                 goto out_sysctl;
920         ret = proto_register(&rds_proto, 1);
921         if (ret)
922                 goto out_stats;
923         ret = sock_register(&rds_family_ops);
924         if (ret)
925                 goto out_proto;
926
927         rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
928         rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
929 #if IS_ENABLED(CONFIG_IPV6)
930         rds_info_register_func(RDS6_INFO_SOCKETS, rds6_sock_info);
931         rds_info_register_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
932 #endif
933
934         goto out;
935
936 out_proto:
937         proto_unregister(&rds_proto);
938 out_stats:
939         rds_stats_exit();
940 out_sysctl:
941         rds_sysctl_exit();
942 out_threads:
943         rds_threads_exit();
944 out_conn:
945         rds_conn_exit();
946         rds_cong_exit();
947         rds_page_exit();
948 out_bind:
949         rds_bind_lock_destroy();
950 out:
951         return ret;
952 }
953 module_init(rds_init);
954
955 #define DRV_VERSION     "4.0"
956 #define DRV_RELDATE     "Feb 12, 2009"
957
958 MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
959 MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
960                    " v" DRV_VERSION " (" DRV_RELDATE ")");
961 MODULE_VERSION(DRV_VERSION);
962 MODULE_LICENSE("Dual BSD/GPL");
963 MODULE_ALIAS_NETPROTO(PF_RDS);