bcache: fix potential deadlock in cached_def_free()
[platform/kernel/linux-starfive.git] / net / openvswitch / flow.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2014 Nicira, Inc.
4  */
5
6 #include <linux/uaccess.h>
7 #include <linux/netdevice.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_ether.h>
10 #include <linux/if_vlan.h>
11 #include <net/llc_pdu.h>
12 #include <linux/kernel.h>
13 #include <linux/jhash.h>
14 #include <linux/jiffies.h>
15 #include <linux/llc.h>
16 #include <linux/module.h>
17 #include <linux/in.h>
18 #include <linux/rcupdate.h>
19 #include <linux/cpumask.h>
20 #include <linux/if_arp.h>
21 #include <linux/ip.h>
22 #include <linux/ipv6.h>
23 #include <linux/mpls.h>
24 #include <linux/sctp.h>
25 #include <linux/smp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/icmp.h>
29 #include <linux/icmpv6.h>
30 #include <linux/rculist.h>
31 #include <net/ip.h>
32 #include <net/ip_tunnels.h>
33 #include <net/ipv6.h>
34 #include <net/mpls.h>
35 #include <net/ndisc.h>
36 #include <net/nsh.h>
37
38 #include "conntrack.h"
39 #include "datapath.h"
40 #include "flow.h"
41 #include "flow_netlink.h"
42 #include "vport.h"
43
44 u64 ovs_flow_used_time(unsigned long flow_jiffies)
45 {
46         struct timespec64 cur_ts;
47         u64 cur_ms, idle_ms;
48
49         ktime_get_ts64(&cur_ts);
50         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
51         cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
52                  cur_ts.tv_nsec / NSEC_PER_MSEC;
53
54         return cur_ms - idle_ms;
55 }
56
57 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
58
59 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
60                            const struct sk_buff *skb)
61 {
62         struct flow_stats *stats;
63         unsigned int cpu = smp_processor_id();
64         int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
65
66         stats = rcu_dereference(flow->stats[cpu]);
67
68         /* Check if already have CPU-specific stats. */
69         if (likely(stats)) {
70                 spin_lock(&stats->lock);
71                 /* Mark if we write on the pre-allocated stats. */
72                 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
73                         flow->stats_last_writer = cpu;
74         } else {
75                 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
76                 spin_lock(&stats->lock);
77
78                 /* If the current CPU is the only writer on the
79                  * pre-allocated stats keep using them.
80                  */
81                 if (unlikely(flow->stats_last_writer != cpu)) {
82                         /* A previous locker may have already allocated the
83                          * stats, so we need to check again.  If CPU-specific
84                          * stats were already allocated, we update the pre-
85                          * allocated stats as we have already locked them.
86                          */
87                         if (likely(flow->stats_last_writer != -1) &&
88                             likely(!rcu_access_pointer(flow->stats[cpu]))) {
89                                 /* Try to allocate CPU-specific stats. */
90                                 struct flow_stats *new_stats;
91
92                                 new_stats =
93                                         kmem_cache_alloc_node(flow_stats_cache,
94                                                               GFP_NOWAIT |
95                                                               __GFP_THISNODE |
96                                                               __GFP_NOWARN |
97                                                               __GFP_NOMEMALLOC,
98                                                               numa_node_id());
99                                 if (likely(new_stats)) {
100                                         new_stats->used = jiffies;
101                                         new_stats->packet_count = 1;
102                                         new_stats->byte_count = len;
103                                         new_stats->tcp_flags = tcp_flags;
104                                         spin_lock_init(&new_stats->lock);
105
106                                         rcu_assign_pointer(flow->stats[cpu],
107                                                            new_stats);
108                                         cpumask_set_cpu(cpu, &flow->cpu_used_mask);
109                                         goto unlock;
110                                 }
111                         }
112                         flow->stats_last_writer = cpu;
113                 }
114         }
115
116         stats->used = jiffies;
117         stats->packet_count++;
118         stats->byte_count += len;
119         stats->tcp_flags |= tcp_flags;
120 unlock:
121         spin_unlock(&stats->lock);
122 }
123
124 /* Must be called with rcu_read_lock or ovs_mutex. */
125 void ovs_flow_stats_get(const struct sw_flow *flow,
126                         struct ovs_flow_stats *ovs_stats,
127                         unsigned long *used, __be16 *tcp_flags)
128 {
129         int cpu;
130
131         *used = 0;
132         *tcp_flags = 0;
133         memset(ovs_stats, 0, sizeof(*ovs_stats));
134
135         /* We open code this to make sure cpu 0 is always considered */
136         for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
137                 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
138
139                 if (stats) {
140                         /* Local CPU may write on non-local stats, so we must
141                          * block bottom-halves here.
142                          */
143                         spin_lock_bh(&stats->lock);
144                         if (!*used || time_after(stats->used, *used))
145                                 *used = stats->used;
146                         *tcp_flags |= stats->tcp_flags;
147                         ovs_stats->n_packets += stats->packet_count;
148                         ovs_stats->n_bytes += stats->byte_count;
149                         spin_unlock_bh(&stats->lock);
150                 }
151         }
152 }
153
154 /* Called with ovs_mutex. */
155 void ovs_flow_stats_clear(struct sw_flow *flow)
156 {
157         int cpu;
158
159         /* We open code this to make sure cpu 0 is always considered */
160         for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
161                 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
162
163                 if (stats) {
164                         spin_lock_bh(&stats->lock);
165                         stats->used = 0;
166                         stats->packet_count = 0;
167                         stats->byte_count = 0;
168                         stats->tcp_flags = 0;
169                         spin_unlock_bh(&stats->lock);
170                 }
171         }
172 }
173
174 static int check_header(struct sk_buff *skb, int len)
175 {
176         if (unlikely(skb->len < len))
177                 return -EINVAL;
178         if (unlikely(!pskb_may_pull(skb, len)))
179                 return -ENOMEM;
180         return 0;
181 }
182
183 static bool arphdr_ok(struct sk_buff *skb)
184 {
185         return pskb_may_pull(skb, skb_network_offset(skb) +
186                                   sizeof(struct arp_eth_header));
187 }
188
189 static int check_iphdr(struct sk_buff *skb)
190 {
191         unsigned int nh_ofs = skb_network_offset(skb);
192         unsigned int ip_len;
193         int err;
194
195         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
196         if (unlikely(err))
197                 return err;
198
199         ip_len = ip_hdrlen(skb);
200         if (unlikely(ip_len < sizeof(struct iphdr) ||
201                      skb->len < nh_ofs + ip_len))
202                 return -EINVAL;
203
204         skb_set_transport_header(skb, nh_ofs + ip_len);
205         return 0;
206 }
207
208 static bool tcphdr_ok(struct sk_buff *skb)
209 {
210         int th_ofs = skb_transport_offset(skb);
211         int tcp_len;
212
213         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
214                 return false;
215
216         tcp_len = tcp_hdrlen(skb);
217         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
218                      skb->len < th_ofs + tcp_len))
219                 return false;
220
221         return true;
222 }
223
224 static bool udphdr_ok(struct sk_buff *skb)
225 {
226         return pskb_may_pull(skb, skb_transport_offset(skb) +
227                                   sizeof(struct udphdr));
228 }
229
230 static bool sctphdr_ok(struct sk_buff *skb)
231 {
232         return pskb_may_pull(skb, skb_transport_offset(skb) +
233                                   sizeof(struct sctphdr));
234 }
235
236 static bool icmphdr_ok(struct sk_buff *skb)
237 {
238         return pskb_may_pull(skb, skb_transport_offset(skb) +
239                                   sizeof(struct icmphdr));
240 }
241
242 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
243 {
244         unsigned short frag_off;
245         unsigned int payload_ofs = 0;
246         unsigned int nh_ofs = skb_network_offset(skb);
247         unsigned int nh_len;
248         struct ipv6hdr *nh;
249         int err, nexthdr, flags = 0;
250
251         err = check_header(skb, nh_ofs + sizeof(*nh));
252         if (unlikely(err))
253                 return err;
254
255         nh = ipv6_hdr(skb);
256
257         key->ip.proto = NEXTHDR_NONE;
258         key->ip.tos = ipv6_get_dsfield(nh);
259         key->ip.ttl = nh->hop_limit;
260         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
261         key->ipv6.addr.src = nh->saddr;
262         key->ipv6.addr.dst = nh->daddr;
263
264         nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
265         if (flags & IP6_FH_F_FRAG) {
266                 if (frag_off) {
267                         key->ip.frag = OVS_FRAG_TYPE_LATER;
268                         key->ip.proto = nexthdr;
269                         return 0;
270                 }
271                 key->ip.frag = OVS_FRAG_TYPE_FIRST;
272         } else {
273                 key->ip.frag = OVS_FRAG_TYPE_NONE;
274         }
275
276         /* Delayed handling of error in ipv6_find_hdr() as it
277          * always sets flags and frag_off to a valid value which may be
278          * used to set key->ip.frag above.
279          */
280         if (unlikely(nexthdr < 0))
281                 return -EPROTO;
282
283         nh_len = payload_ofs - nh_ofs;
284         skb_set_transport_header(skb, nh_ofs + nh_len);
285         key->ip.proto = nexthdr;
286         return nh_len;
287 }
288
289 static bool icmp6hdr_ok(struct sk_buff *skb)
290 {
291         return pskb_may_pull(skb, skb_transport_offset(skb) +
292                                   sizeof(struct icmp6hdr));
293 }
294
295 /**
296  * Parse vlan tag from vlan header.
297  * Returns ERROR on memory error.
298  * Returns 0 if it encounters a non-vlan or incomplete packet.
299  * Returns 1 after successfully parsing vlan tag.
300  */
301 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
302                           bool untag_vlan)
303 {
304         struct vlan_head *vh = (struct vlan_head *)skb->data;
305
306         if (likely(!eth_type_vlan(vh->tpid)))
307                 return 0;
308
309         if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
310                 return 0;
311
312         if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
313                                  sizeof(__be16))))
314                 return -ENOMEM;
315
316         vh = (struct vlan_head *)skb->data;
317         key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
318         key_vh->tpid = vh->tpid;
319
320         if (unlikely(untag_vlan)) {
321                 int offset = skb->data - skb_mac_header(skb);
322                 u16 tci;
323                 int err;
324
325                 __skb_push(skb, offset);
326                 err = __skb_vlan_pop(skb, &tci);
327                 __skb_pull(skb, offset);
328                 if (err)
329                         return err;
330                 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
331         } else {
332                 __skb_pull(skb, sizeof(struct vlan_head));
333         }
334         return 1;
335 }
336
337 static void clear_vlan(struct sw_flow_key *key)
338 {
339         key->eth.vlan.tci = 0;
340         key->eth.vlan.tpid = 0;
341         key->eth.cvlan.tci = 0;
342         key->eth.cvlan.tpid = 0;
343 }
344
345 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
346 {
347         int res;
348
349         if (skb_vlan_tag_present(skb)) {
350                 key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
351                 key->eth.vlan.tpid = skb->vlan_proto;
352         } else {
353                 /* Parse outer vlan tag in the non-accelerated case. */
354                 res = parse_vlan_tag(skb, &key->eth.vlan, true);
355                 if (res <= 0)
356                         return res;
357         }
358
359         /* Parse inner vlan tag. */
360         res = parse_vlan_tag(skb, &key->eth.cvlan, false);
361         if (res <= 0)
362                 return res;
363
364         return 0;
365 }
366
367 static __be16 parse_ethertype(struct sk_buff *skb)
368 {
369         struct llc_snap_hdr {
370                 u8  dsap;  /* Always 0xAA */
371                 u8  ssap;  /* Always 0xAA */
372                 u8  ctrl;
373                 u8  oui[3];
374                 __be16 ethertype;
375         };
376         struct llc_snap_hdr *llc;
377         __be16 proto;
378
379         proto = *(__be16 *) skb->data;
380         __skb_pull(skb, sizeof(__be16));
381
382         if (eth_proto_is_802_3(proto))
383                 return proto;
384
385         if (skb->len < sizeof(struct llc_snap_hdr))
386                 return htons(ETH_P_802_2);
387
388         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
389                 return htons(0);
390
391         llc = (struct llc_snap_hdr *) skb->data;
392         if (llc->dsap != LLC_SAP_SNAP ||
393             llc->ssap != LLC_SAP_SNAP ||
394             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
395                 return htons(ETH_P_802_2);
396
397         __skb_pull(skb, sizeof(struct llc_snap_hdr));
398
399         if (eth_proto_is_802_3(llc->ethertype))
400                 return llc->ethertype;
401
402         return htons(ETH_P_802_2);
403 }
404
405 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
406                         int nh_len)
407 {
408         struct icmp6hdr *icmp = icmp6_hdr(skb);
409
410         /* The ICMPv6 type and code fields use the 16-bit transport port
411          * fields, so we need to store them in 16-bit network byte order.
412          */
413         key->tp.src = htons(icmp->icmp6_type);
414         key->tp.dst = htons(icmp->icmp6_code);
415         memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
416
417         if (icmp->icmp6_code == 0 &&
418             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
419              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
420                 int icmp_len = skb->len - skb_transport_offset(skb);
421                 struct nd_msg *nd;
422                 int offset;
423
424                 /* In order to process neighbor discovery options, we need the
425                  * entire packet.
426                  */
427                 if (unlikely(icmp_len < sizeof(*nd)))
428                         return 0;
429
430                 if (unlikely(skb_linearize(skb)))
431                         return -ENOMEM;
432
433                 nd = (struct nd_msg *)skb_transport_header(skb);
434                 key->ipv6.nd.target = nd->target;
435
436                 icmp_len -= sizeof(*nd);
437                 offset = 0;
438                 while (icmp_len >= 8) {
439                         struct nd_opt_hdr *nd_opt =
440                                  (struct nd_opt_hdr *)(nd->opt + offset);
441                         int opt_len = nd_opt->nd_opt_len * 8;
442
443                         if (unlikely(!opt_len || opt_len > icmp_len))
444                                 return 0;
445
446                         /* Store the link layer address if the appropriate
447                          * option is provided.  It is considered an error if
448                          * the same link layer option is specified twice.
449                          */
450                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
451                             && opt_len == 8) {
452                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
453                                         goto invalid;
454                                 ether_addr_copy(key->ipv6.nd.sll,
455                                                 &nd->opt[offset+sizeof(*nd_opt)]);
456                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
457                                    && opt_len == 8) {
458                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
459                                         goto invalid;
460                                 ether_addr_copy(key->ipv6.nd.tll,
461                                                 &nd->opt[offset+sizeof(*nd_opt)]);
462                         }
463
464                         icmp_len -= opt_len;
465                         offset += opt_len;
466                 }
467         }
468
469         return 0;
470
471 invalid:
472         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
473         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
474         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
475
476         return 0;
477 }
478
479 static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
480 {
481         struct nshhdr *nh;
482         unsigned int nh_ofs = skb_network_offset(skb);
483         u8 version, length;
484         int err;
485
486         err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
487         if (unlikely(err))
488                 return err;
489
490         nh = nsh_hdr(skb);
491         version = nsh_get_ver(nh);
492         length = nsh_hdr_len(nh);
493
494         if (version != 0)
495                 return -EINVAL;
496
497         err = check_header(skb, nh_ofs + length);
498         if (unlikely(err))
499                 return err;
500
501         nh = nsh_hdr(skb);
502         key->nsh.base.flags = nsh_get_flags(nh);
503         key->nsh.base.ttl = nsh_get_ttl(nh);
504         key->nsh.base.mdtype = nh->mdtype;
505         key->nsh.base.np = nh->np;
506         key->nsh.base.path_hdr = nh->path_hdr;
507         switch (key->nsh.base.mdtype) {
508         case NSH_M_TYPE1:
509                 if (length != NSH_M_TYPE1_LEN)
510                         return -EINVAL;
511                 memcpy(key->nsh.context, nh->md1.context,
512                        sizeof(nh->md1));
513                 break;
514         case NSH_M_TYPE2:
515                 memset(key->nsh.context, 0,
516                        sizeof(nh->md1));
517                 break;
518         default:
519                 return -EINVAL;
520         }
521
522         return 0;
523 }
524
525 /**
526  * key_extract - extracts a flow key from an Ethernet frame.
527  * @skb: sk_buff that contains the frame, with skb->data pointing to the
528  * Ethernet header
529  * @key: output flow key
530  *
531  * The caller must ensure that skb->len >= ETH_HLEN.
532  *
533  * Returns 0 if successful, otherwise a negative errno value.
534  *
535  * Initializes @skb header fields as follows:
536  *
537  *    - skb->mac_header: the L2 header.
538  *
539  *    - skb->network_header: just past the L2 header, or just past the
540  *      VLAN header, to the first byte of the L2 payload.
541  *
542  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
543  *      on output, then just past the IP header, if one is present and
544  *      of a correct length, otherwise the same as skb->network_header.
545  *      For other key->eth.type values it is left untouched.
546  *
547  *    - skb->protocol: the type of the data starting at skb->network_header.
548  *      Equals to key->eth.type.
549  */
550 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
551 {
552         int error;
553         struct ethhdr *eth;
554
555         /* Flags are always used as part of stats */
556         key->tp.flags = 0;
557
558         skb_reset_mac_header(skb);
559
560         /* Link layer. */
561         clear_vlan(key);
562         if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
563                 if (unlikely(eth_type_vlan(skb->protocol)))
564                         return -EINVAL;
565
566                 skb_reset_network_header(skb);
567                 key->eth.type = skb->protocol;
568         } else {
569                 eth = eth_hdr(skb);
570                 ether_addr_copy(key->eth.src, eth->h_source);
571                 ether_addr_copy(key->eth.dst, eth->h_dest);
572
573                 __skb_pull(skb, 2 * ETH_ALEN);
574                 /* We are going to push all headers that we pull, so no need to
575                 * update skb->csum here.
576                 */
577
578                 if (unlikely(parse_vlan(skb, key)))
579                         return -ENOMEM;
580
581                 key->eth.type = parse_ethertype(skb);
582                 if (unlikely(key->eth.type == htons(0)))
583                         return -ENOMEM;
584
585                 /* Multiple tagged packets need to retain TPID to satisfy
586                  * skb_vlan_pop(), which will later shift the ethertype into
587                  * skb->protocol.
588                  */
589                 if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
590                         skb->protocol = key->eth.cvlan.tpid;
591                 else
592                         skb->protocol = key->eth.type;
593
594                 skb_reset_network_header(skb);
595                 __skb_push(skb, skb->data - skb_mac_header(skb));
596         }
597         skb_reset_mac_len(skb);
598
599         /* Network layer. */
600         if (key->eth.type == htons(ETH_P_IP)) {
601                 struct iphdr *nh;
602                 __be16 offset;
603
604                 error = check_iphdr(skb);
605                 if (unlikely(error)) {
606                         memset(&key->ip, 0, sizeof(key->ip));
607                         memset(&key->ipv4, 0, sizeof(key->ipv4));
608                         if (error == -EINVAL) {
609                                 skb->transport_header = skb->network_header;
610                                 error = 0;
611                         }
612                         return error;
613                 }
614
615                 nh = ip_hdr(skb);
616                 key->ipv4.addr.src = nh->saddr;
617                 key->ipv4.addr.dst = nh->daddr;
618
619                 key->ip.proto = nh->protocol;
620                 key->ip.tos = nh->tos;
621                 key->ip.ttl = nh->ttl;
622
623                 offset = nh->frag_off & htons(IP_OFFSET);
624                 if (offset) {
625                         key->ip.frag = OVS_FRAG_TYPE_LATER;
626                         return 0;
627                 }
628                 if (nh->frag_off & htons(IP_MF) ||
629                         skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
630                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
631                 else
632                         key->ip.frag = OVS_FRAG_TYPE_NONE;
633
634                 /* Transport layer. */
635                 if (key->ip.proto == IPPROTO_TCP) {
636                         if (tcphdr_ok(skb)) {
637                                 struct tcphdr *tcp = tcp_hdr(skb);
638                                 key->tp.src = tcp->source;
639                                 key->tp.dst = tcp->dest;
640                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
641                         } else {
642                                 memset(&key->tp, 0, sizeof(key->tp));
643                         }
644
645                 } else if (key->ip.proto == IPPROTO_UDP) {
646                         if (udphdr_ok(skb)) {
647                                 struct udphdr *udp = udp_hdr(skb);
648                                 key->tp.src = udp->source;
649                                 key->tp.dst = udp->dest;
650                         } else {
651                                 memset(&key->tp, 0, sizeof(key->tp));
652                         }
653                 } else if (key->ip.proto == IPPROTO_SCTP) {
654                         if (sctphdr_ok(skb)) {
655                                 struct sctphdr *sctp = sctp_hdr(skb);
656                                 key->tp.src = sctp->source;
657                                 key->tp.dst = sctp->dest;
658                         } else {
659                                 memset(&key->tp, 0, sizeof(key->tp));
660                         }
661                 } else if (key->ip.proto == IPPROTO_ICMP) {
662                         if (icmphdr_ok(skb)) {
663                                 struct icmphdr *icmp = icmp_hdr(skb);
664                                 /* The ICMP type and code fields use the 16-bit
665                                  * transport port fields, so we need to store
666                                  * them in 16-bit network byte order. */
667                                 key->tp.src = htons(icmp->type);
668                                 key->tp.dst = htons(icmp->code);
669                         } else {
670                                 memset(&key->tp, 0, sizeof(key->tp));
671                         }
672                 }
673
674         } else if (key->eth.type == htons(ETH_P_ARP) ||
675                    key->eth.type == htons(ETH_P_RARP)) {
676                 struct arp_eth_header *arp;
677                 bool arp_available = arphdr_ok(skb);
678
679                 arp = (struct arp_eth_header *)skb_network_header(skb);
680
681                 if (arp_available &&
682                     arp->ar_hrd == htons(ARPHRD_ETHER) &&
683                     arp->ar_pro == htons(ETH_P_IP) &&
684                     arp->ar_hln == ETH_ALEN &&
685                     arp->ar_pln == 4) {
686
687                         /* We only match on the lower 8 bits of the opcode. */
688                         if (ntohs(arp->ar_op) <= 0xff)
689                                 key->ip.proto = ntohs(arp->ar_op);
690                         else
691                                 key->ip.proto = 0;
692
693                         memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
694                         memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
695                         ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
696                         ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
697                 } else {
698                         memset(&key->ip, 0, sizeof(key->ip));
699                         memset(&key->ipv4, 0, sizeof(key->ipv4));
700                 }
701         } else if (eth_p_mpls(key->eth.type)) {
702                 size_t stack_len = MPLS_HLEN;
703
704                 skb_set_inner_network_header(skb, skb->mac_len);
705                 while (1) {
706                         __be32 lse;
707
708                         error = check_header(skb, skb->mac_len + stack_len);
709                         if (unlikely(error))
710                                 return 0;
711
712                         memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
713
714                         if (stack_len == MPLS_HLEN)
715                                 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
716
717                         skb_set_inner_network_header(skb, skb->mac_len + stack_len);
718                         if (lse & htonl(MPLS_LS_S_MASK))
719                                 break;
720
721                         stack_len += MPLS_HLEN;
722                 }
723         } else if (key->eth.type == htons(ETH_P_IPV6)) {
724                 int nh_len;             /* IPv6 Header + Extensions */
725
726                 nh_len = parse_ipv6hdr(skb, key);
727                 if (unlikely(nh_len < 0)) {
728                         switch (nh_len) {
729                         case -EINVAL:
730                                 memset(&key->ip, 0, sizeof(key->ip));
731                                 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
732                                 /* fall-through */
733                         case -EPROTO:
734                                 skb->transport_header = skb->network_header;
735                                 error = 0;
736                                 break;
737                         default:
738                                 error = nh_len;
739                         }
740                         return error;
741                 }
742
743                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
744                         return 0;
745                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
746                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
747
748                 /* Transport layer. */
749                 if (key->ip.proto == NEXTHDR_TCP) {
750                         if (tcphdr_ok(skb)) {
751                                 struct tcphdr *tcp = tcp_hdr(skb);
752                                 key->tp.src = tcp->source;
753                                 key->tp.dst = tcp->dest;
754                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
755                         } else {
756                                 memset(&key->tp, 0, sizeof(key->tp));
757                         }
758                 } else if (key->ip.proto == NEXTHDR_UDP) {
759                         if (udphdr_ok(skb)) {
760                                 struct udphdr *udp = udp_hdr(skb);
761                                 key->tp.src = udp->source;
762                                 key->tp.dst = udp->dest;
763                         } else {
764                                 memset(&key->tp, 0, sizeof(key->tp));
765                         }
766                 } else if (key->ip.proto == NEXTHDR_SCTP) {
767                         if (sctphdr_ok(skb)) {
768                                 struct sctphdr *sctp = sctp_hdr(skb);
769                                 key->tp.src = sctp->source;
770                                 key->tp.dst = sctp->dest;
771                         } else {
772                                 memset(&key->tp, 0, sizeof(key->tp));
773                         }
774                 } else if (key->ip.proto == NEXTHDR_ICMP) {
775                         if (icmp6hdr_ok(skb)) {
776                                 error = parse_icmpv6(skb, key, nh_len);
777                                 if (error)
778                                         return error;
779                         } else {
780                                 memset(&key->tp, 0, sizeof(key->tp));
781                         }
782                 }
783         } else if (key->eth.type == htons(ETH_P_NSH)) {
784                 error = parse_nsh(skb, key);
785                 if (error)
786                         return error;
787         }
788         return 0;
789 }
790
791 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
792 {
793         int res;
794
795         res = key_extract(skb, key);
796         if (!res)
797                 key->mac_proto &= ~SW_FLOW_KEY_INVALID;
798
799         return res;
800 }
801
802 static int key_extract_mac_proto(struct sk_buff *skb)
803 {
804         switch (skb->dev->type) {
805         case ARPHRD_ETHER:
806                 return MAC_PROTO_ETHERNET;
807         case ARPHRD_NONE:
808                 if (skb->protocol == htons(ETH_P_TEB))
809                         return MAC_PROTO_ETHERNET;
810                 return MAC_PROTO_NONE;
811         }
812         WARN_ON_ONCE(1);
813         return -EINVAL;
814 }
815
816 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
817                          struct sk_buff *skb, struct sw_flow_key *key)
818 {
819         int res, err;
820
821         /* Extract metadata from packet. */
822         if (tun_info) {
823                 key->tun_proto = ip_tunnel_info_af(tun_info);
824                 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
825
826                 if (tun_info->options_len) {
827                         BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
828                                                    8)) - 1
829                                         > sizeof(key->tun_opts));
830
831                         ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
832                                                 tun_info);
833                         key->tun_opts_len = tun_info->options_len;
834                 } else {
835                         key->tun_opts_len = 0;
836                 }
837         } else  {
838                 key->tun_proto = 0;
839                 key->tun_opts_len = 0;
840                 memset(&key->tun_key, 0, sizeof(key->tun_key));
841         }
842
843         key->phy.priority = skb->priority;
844         key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
845         key->phy.skb_mark = skb->mark;
846         key->ovs_flow_hash = 0;
847         res = key_extract_mac_proto(skb);
848         if (res < 0)
849                 return res;
850         key->mac_proto = res;
851         key->recirc_id = 0;
852
853         err = key_extract(skb, key);
854         if (!err)
855                 ovs_ct_fill_key(skb, key);   /* Must be after key_extract(). */
856         return err;
857 }
858
859 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
860                                    struct sk_buff *skb,
861                                    struct sw_flow_key *key, bool log)
862 {
863         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
864         u64 attrs = 0;
865         int err;
866
867         err = parse_flow_nlattrs(attr, a, &attrs, log);
868         if (err)
869                 return -EINVAL;
870
871         /* Extract metadata from netlink attributes. */
872         err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
873         if (err)
874                 return err;
875
876         /* key_extract assumes that skb->protocol is set-up for
877          * layer 3 packets which is the case for other callers,
878          * in particular packets received from the network stack.
879          * Here the correct value can be set from the metadata
880          * extracted above.
881          * For L2 packet key eth type would be zero. skb protocol
882          * would be set to correct value later during key-extact.
883          */
884
885         skb->protocol = key->eth.type;
886         err = key_extract(skb, key);
887         if (err)
888                 return err;
889
890         /* Check that we have conntrack original direction tuple metadata only
891          * for packets for which it makes sense.  Otherwise the key may be
892          * corrupted due to overlapping key fields.
893          */
894         if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
895             key->eth.type != htons(ETH_P_IP))
896                 return -EINVAL;
897         if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
898             (key->eth.type != htons(ETH_P_IPV6) ||
899              sw_flow_key_is_nd(key)))
900                 return -EINVAL;
901
902         return 0;
903 }