Merge commit 'f8b5036361412a27c07a4ac9c3a4b80678cbd1e1' into stm32-dt-for-v4.11
[platform/kernel/linux-starfive.git] / net / openvswitch / flow.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/cpumask.h>
33 #include <linux/if_arp.h>
34 #include <linux/ip.h>
35 #include <linux/ipv6.h>
36 #include <linux/mpls.h>
37 #include <linux/sctp.h>
38 #include <linux/smp.h>
39 #include <linux/tcp.h>
40 #include <linux/udp.h>
41 #include <linux/icmp.h>
42 #include <linux/icmpv6.h>
43 #include <linux/rculist.h>
44 #include <net/ip.h>
45 #include <net/ip_tunnels.h>
46 #include <net/ipv6.h>
47 #include <net/mpls.h>
48 #include <net/ndisc.h>
49
50 #include "conntrack.h"
51 #include "datapath.h"
52 #include "flow.h"
53 #include "flow_netlink.h"
54 #include "vport.h"
55
56 u64 ovs_flow_used_time(unsigned long flow_jiffies)
57 {
58         struct timespec cur_ts;
59         u64 cur_ms, idle_ms;
60
61         ktime_get_ts(&cur_ts);
62         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
63         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
64                  cur_ts.tv_nsec / NSEC_PER_MSEC;
65
66         return cur_ms - idle_ms;
67 }
68
69 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
70
71 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
72                            const struct sk_buff *skb)
73 {
74         struct flow_stats *stats;
75         int node = numa_node_id();
76         int cpu = smp_processor_id();
77         int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
78
79         stats = rcu_dereference(flow->stats[cpu]);
80
81         /* Check if already have CPU-specific stats. */
82         if (likely(stats)) {
83                 spin_lock(&stats->lock);
84                 /* Mark if we write on the pre-allocated stats. */
85                 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
86                         flow->stats_last_writer = cpu;
87         } else {
88                 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
89                 spin_lock(&stats->lock);
90
91                 /* If the current CPU is the only writer on the
92                  * pre-allocated stats keep using them.
93                  */
94                 if (unlikely(flow->stats_last_writer != cpu)) {
95                         /* A previous locker may have already allocated the
96                          * stats, so we need to check again.  If CPU-specific
97                          * stats were already allocated, we update the pre-
98                          * allocated stats as we have already locked them.
99                          */
100                         if (likely(flow->stats_last_writer != -1) &&
101                             likely(!rcu_access_pointer(flow->stats[cpu]))) {
102                                 /* Try to allocate CPU-specific stats. */
103                                 struct flow_stats *new_stats;
104
105                                 new_stats =
106                                         kmem_cache_alloc_node(flow_stats_cache,
107                                                               GFP_NOWAIT |
108                                                               __GFP_THISNODE |
109                                                               __GFP_NOWARN |
110                                                               __GFP_NOMEMALLOC,
111                                                               node);
112                                 if (likely(new_stats)) {
113                                         new_stats->used = jiffies;
114                                         new_stats->packet_count = 1;
115                                         new_stats->byte_count = len;
116                                         new_stats->tcp_flags = tcp_flags;
117                                         spin_lock_init(&new_stats->lock);
118
119                                         rcu_assign_pointer(flow->stats[cpu],
120                                                            new_stats);
121                                         goto unlock;
122                                 }
123                         }
124                         flow->stats_last_writer = cpu;
125                 }
126         }
127
128         stats->used = jiffies;
129         stats->packet_count++;
130         stats->byte_count += len;
131         stats->tcp_flags |= tcp_flags;
132 unlock:
133         spin_unlock(&stats->lock);
134 }
135
136 /* Must be called with rcu_read_lock or ovs_mutex. */
137 void ovs_flow_stats_get(const struct sw_flow *flow,
138                         struct ovs_flow_stats *ovs_stats,
139                         unsigned long *used, __be16 *tcp_flags)
140 {
141         int cpu;
142
143         *used = 0;
144         *tcp_flags = 0;
145         memset(ovs_stats, 0, sizeof(*ovs_stats));
146
147         /* We open code this to make sure cpu 0 is always considered */
148         for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, cpu_possible_mask)) {
149                 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
150
151                 if (stats) {
152                         /* Local CPU may write on non-local stats, so we must
153                          * block bottom-halves here.
154                          */
155                         spin_lock_bh(&stats->lock);
156                         if (!*used || time_after(stats->used, *used))
157                                 *used = stats->used;
158                         *tcp_flags |= stats->tcp_flags;
159                         ovs_stats->n_packets += stats->packet_count;
160                         ovs_stats->n_bytes += stats->byte_count;
161                         spin_unlock_bh(&stats->lock);
162                 }
163         }
164 }
165
166 /* Called with ovs_mutex. */
167 void ovs_flow_stats_clear(struct sw_flow *flow)
168 {
169         int cpu;
170
171         /* We open code this to make sure cpu 0 is always considered */
172         for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, cpu_possible_mask)) {
173                 struct flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
174
175                 if (stats) {
176                         spin_lock_bh(&stats->lock);
177                         stats->used = 0;
178                         stats->packet_count = 0;
179                         stats->byte_count = 0;
180                         stats->tcp_flags = 0;
181                         spin_unlock_bh(&stats->lock);
182                 }
183         }
184 }
185
186 static int check_header(struct sk_buff *skb, int len)
187 {
188         if (unlikely(skb->len < len))
189                 return -EINVAL;
190         if (unlikely(!pskb_may_pull(skb, len)))
191                 return -ENOMEM;
192         return 0;
193 }
194
195 static bool arphdr_ok(struct sk_buff *skb)
196 {
197         return pskb_may_pull(skb, skb_network_offset(skb) +
198                                   sizeof(struct arp_eth_header));
199 }
200
201 static int check_iphdr(struct sk_buff *skb)
202 {
203         unsigned int nh_ofs = skb_network_offset(skb);
204         unsigned int ip_len;
205         int err;
206
207         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
208         if (unlikely(err))
209                 return err;
210
211         ip_len = ip_hdrlen(skb);
212         if (unlikely(ip_len < sizeof(struct iphdr) ||
213                      skb->len < nh_ofs + ip_len))
214                 return -EINVAL;
215
216         skb_set_transport_header(skb, nh_ofs + ip_len);
217         return 0;
218 }
219
220 static bool tcphdr_ok(struct sk_buff *skb)
221 {
222         int th_ofs = skb_transport_offset(skb);
223         int tcp_len;
224
225         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
226                 return false;
227
228         tcp_len = tcp_hdrlen(skb);
229         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
230                      skb->len < th_ofs + tcp_len))
231                 return false;
232
233         return true;
234 }
235
236 static bool udphdr_ok(struct sk_buff *skb)
237 {
238         return pskb_may_pull(skb, skb_transport_offset(skb) +
239                                   sizeof(struct udphdr));
240 }
241
242 static bool sctphdr_ok(struct sk_buff *skb)
243 {
244         return pskb_may_pull(skb, skb_transport_offset(skb) +
245                                   sizeof(struct sctphdr));
246 }
247
248 static bool icmphdr_ok(struct sk_buff *skb)
249 {
250         return pskb_may_pull(skb, skb_transport_offset(skb) +
251                                   sizeof(struct icmphdr));
252 }
253
254 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
255 {
256         unsigned int nh_ofs = skb_network_offset(skb);
257         unsigned int nh_len;
258         int payload_ofs;
259         struct ipv6hdr *nh;
260         uint8_t nexthdr;
261         __be16 frag_off;
262         int err;
263
264         err = check_header(skb, nh_ofs + sizeof(*nh));
265         if (unlikely(err))
266                 return err;
267
268         nh = ipv6_hdr(skb);
269         nexthdr = nh->nexthdr;
270         payload_ofs = (u8 *)(nh + 1) - skb->data;
271
272         key->ip.proto = NEXTHDR_NONE;
273         key->ip.tos = ipv6_get_dsfield(nh);
274         key->ip.ttl = nh->hop_limit;
275         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
276         key->ipv6.addr.src = nh->saddr;
277         key->ipv6.addr.dst = nh->daddr;
278
279         payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
280
281         if (frag_off) {
282                 if (frag_off & htons(~0x7))
283                         key->ip.frag = OVS_FRAG_TYPE_LATER;
284                 else
285                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
286         } else {
287                 key->ip.frag = OVS_FRAG_TYPE_NONE;
288         }
289
290         /* Delayed handling of error in ipv6_skip_exthdr() as it
291          * always sets frag_off to a valid value which may be
292          * used to set key->ip.frag above.
293          */
294         if (unlikely(payload_ofs < 0))
295                 return -EPROTO;
296
297         nh_len = payload_ofs - nh_ofs;
298         skb_set_transport_header(skb, nh_ofs + nh_len);
299         key->ip.proto = nexthdr;
300         return nh_len;
301 }
302
303 static bool icmp6hdr_ok(struct sk_buff *skb)
304 {
305         return pskb_may_pull(skb, skb_transport_offset(skb) +
306                                   sizeof(struct icmp6hdr));
307 }
308
309 /**
310  * Parse vlan tag from vlan header.
311  * Returns ERROR on memory error.
312  * Returns 0 if it encounters a non-vlan or incomplete packet.
313  * Returns 1 after successfully parsing vlan tag.
314  */
315 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh)
316 {
317         struct vlan_head *vh = (struct vlan_head *)skb->data;
318
319         if (likely(!eth_type_vlan(vh->tpid)))
320                 return 0;
321
322         if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
323                 return 0;
324
325         if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
326                                  sizeof(__be16))))
327                 return -ENOMEM;
328
329         vh = (struct vlan_head *)skb->data;
330         key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT);
331         key_vh->tpid = vh->tpid;
332
333         __skb_pull(skb, sizeof(struct vlan_head));
334         return 1;
335 }
336
337 static void clear_vlan(struct sw_flow_key *key)
338 {
339         key->eth.vlan.tci = 0;
340         key->eth.vlan.tpid = 0;
341         key->eth.cvlan.tci = 0;
342         key->eth.cvlan.tpid = 0;
343 }
344
345 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
346 {
347         int res;
348
349         if (skb_vlan_tag_present(skb)) {
350                 key->eth.vlan.tci = htons(skb->vlan_tci);
351                 key->eth.vlan.tpid = skb->vlan_proto;
352         } else {
353                 /* Parse outer vlan tag in the non-accelerated case. */
354                 res = parse_vlan_tag(skb, &key->eth.vlan);
355                 if (res <= 0)
356                         return res;
357         }
358
359         /* Parse inner vlan tag. */
360         res = parse_vlan_tag(skb, &key->eth.cvlan);
361         if (res <= 0)
362                 return res;
363
364         return 0;
365 }
366
367 static __be16 parse_ethertype(struct sk_buff *skb)
368 {
369         struct llc_snap_hdr {
370                 u8  dsap;  /* Always 0xAA */
371                 u8  ssap;  /* Always 0xAA */
372                 u8  ctrl;
373                 u8  oui[3];
374                 __be16 ethertype;
375         };
376         struct llc_snap_hdr *llc;
377         __be16 proto;
378
379         proto = *(__be16 *) skb->data;
380         __skb_pull(skb, sizeof(__be16));
381
382         if (eth_proto_is_802_3(proto))
383                 return proto;
384
385         if (skb->len < sizeof(struct llc_snap_hdr))
386                 return htons(ETH_P_802_2);
387
388         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
389                 return htons(0);
390
391         llc = (struct llc_snap_hdr *) skb->data;
392         if (llc->dsap != LLC_SAP_SNAP ||
393             llc->ssap != LLC_SAP_SNAP ||
394             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
395                 return htons(ETH_P_802_2);
396
397         __skb_pull(skb, sizeof(struct llc_snap_hdr));
398
399         if (eth_proto_is_802_3(llc->ethertype))
400                 return llc->ethertype;
401
402         return htons(ETH_P_802_2);
403 }
404
405 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
406                         int nh_len)
407 {
408         struct icmp6hdr *icmp = icmp6_hdr(skb);
409
410         /* The ICMPv6 type and code fields use the 16-bit transport port
411          * fields, so we need to store them in 16-bit network byte order.
412          */
413         key->tp.src = htons(icmp->icmp6_type);
414         key->tp.dst = htons(icmp->icmp6_code);
415         memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
416
417         if (icmp->icmp6_code == 0 &&
418             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
419              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
420                 int icmp_len = skb->len - skb_transport_offset(skb);
421                 struct nd_msg *nd;
422                 int offset;
423
424                 /* In order to process neighbor discovery options, we need the
425                  * entire packet.
426                  */
427                 if (unlikely(icmp_len < sizeof(*nd)))
428                         return 0;
429
430                 if (unlikely(skb_linearize(skb)))
431                         return -ENOMEM;
432
433                 nd = (struct nd_msg *)skb_transport_header(skb);
434                 key->ipv6.nd.target = nd->target;
435
436                 icmp_len -= sizeof(*nd);
437                 offset = 0;
438                 while (icmp_len >= 8) {
439                         struct nd_opt_hdr *nd_opt =
440                                  (struct nd_opt_hdr *)(nd->opt + offset);
441                         int opt_len = nd_opt->nd_opt_len * 8;
442
443                         if (unlikely(!opt_len || opt_len > icmp_len))
444                                 return 0;
445
446                         /* Store the link layer address if the appropriate
447                          * option is provided.  It is considered an error if
448                          * the same link layer option is specified twice.
449                          */
450                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
451                             && opt_len == 8) {
452                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
453                                         goto invalid;
454                                 ether_addr_copy(key->ipv6.nd.sll,
455                                                 &nd->opt[offset+sizeof(*nd_opt)]);
456                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
457                                    && opt_len == 8) {
458                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
459                                         goto invalid;
460                                 ether_addr_copy(key->ipv6.nd.tll,
461                                                 &nd->opt[offset+sizeof(*nd_opt)]);
462                         }
463
464                         icmp_len -= opt_len;
465                         offset += opt_len;
466                 }
467         }
468
469         return 0;
470
471 invalid:
472         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
473         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
474         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
475
476         return 0;
477 }
478
479 /**
480  * key_extract - extracts a flow key from an Ethernet frame.
481  * @skb: sk_buff that contains the frame, with skb->data pointing to the
482  * Ethernet header
483  * @key: output flow key
484  *
485  * The caller must ensure that skb->len >= ETH_HLEN.
486  *
487  * Returns 0 if successful, otherwise a negative errno value.
488  *
489  * Initializes @skb header fields as follows:
490  *
491  *    - skb->mac_header: the L2 header.
492  *
493  *    - skb->network_header: just past the L2 header, or just past the
494  *      VLAN header, to the first byte of the L2 payload.
495  *
496  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
497  *      on output, then just past the IP header, if one is present and
498  *      of a correct length, otherwise the same as skb->network_header.
499  *      For other key->eth.type values it is left untouched.
500  *
501  *    - skb->protocol: the type of the data starting at skb->network_header.
502  *      Equals to key->eth.type.
503  */
504 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
505 {
506         int error;
507         struct ethhdr *eth;
508
509         /* Flags are always used as part of stats */
510         key->tp.flags = 0;
511
512         skb_reset_mac_header(skb);
513
514         /* Link layer. */
515         clear_vlan(key);
516         if (key->mac_proto == MAC_PROTO_NONE) {
517                 if (unlikely(eth_type_vlan(skb->protocol)))
518                         return -EINVAL;
519
520                 skb_reset_network_header(skb);
521         } else {
522                 eth = eth_hdr(skb);
523                 ether_addr_copy(key->eth.src, eth->h_source);
524                 ether_addr_copy(key->eth.dst, eth->h_dest);
525
526                 __skb_pull(skb, 2 * ETH_ALEN);
527                 /* We are going to push all headers that we pull, so no need to
528                 * update skb->csum here.
529                 */
530
531                 if (unlikely(parse_vlan(skb, key)))
532                         return -ENOMEM;
533
534                 skb->protocol = parse_ethertype(skb);
535                 if (unlikely(skb->protocol == htons(0)))
536                         return -ENOMEM;
537
538                 skb_reset_network_header(skb);
539                 __skb_push(skb, skb->data - skb_mac_header(skb));
540         }
541         skb_reset_mac_len(skb);
542         key->eth.type = skb->protocol;
543
544         /* Network layer. */
545         if (key->eth.type == htons(ETH_P_IP)) {
546                 struct iphdr *nh;
547                 __be16 offset;
548
549                 error = check_iphdr(skb);
550                 if (unlikely(error)) {
551                         memset(&key->ip, 0, sizeof(key->ip));
552                         memset(&key->ipv4, 0, sizeof(key->ipv4));
553                         if (error == -EINVAL) {
554                                 skb->transport_header = skb->network_header;
555                                 error = 0;
556                         }
557                         return error;
558                 }
559
560                 nh = ip_hdr(skb);
561                 key->ipv4.addr.src = nh->saddr;
562                 key->ipv4.addr.dst = nh->daddr;
563
564                 key->ip.proto = nh->protocol;
565                 key->ip.tos = nh->tos;
566                 key->ip.ttl = nh->ttl;
567
568                 offset = nh->frag_off & htons(IP_OFFSET);
569                 if (offset) {
570                         key->ip.frag = OVS_FRAG_TYPE_LATER;
571                         return 0;
572                 }
573                 if (nh->frag_off & htons(IP_MF) ||
574                         skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
575                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
576                 else
577                         key->ip.frag = OVS_FRAG_TYPE_NONE;
578
579                 /* Transport layer. */
580                 if (key->ip.proto == IPPROTO_TCP) {
581                         if (tcphdr_ok(skb)) {
582                                 struct tcphdr *tcp = tcp_hdr(skb);
583                                 key->tp.src = tcp->source;
584                                 key->tp.dst = tcp->dest;
585                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
586                         } else {
587                                 memset(&key->tp, 0, sizeof(key->tp));
588                         }
589
590                 } else if (key->ip.proto == IPPROTO_UDP) {
591                         if (udphdr_ok(skb)) {
592                                 struct udphdr *udp = udp_hdr(skb);
593                                 key->tp.src = udp->source;
594                                 key->tp.dst = udp->dest;
595                         } else {
596                                 memset(&key->tp, 0, sizeof(key->tp));
597                         }
598                 } else if (key->ip.proto == IPPROTO_SCTP) {
599                         if (sctphdr_ok(skb)) {
600                                 struct sctphdr *sctp = sctp_hdr(skb);
601                                 key->tp.src = sctp->source;
602                                 key->tp.dst = sctp->dest;
603                         } else {
604                                 memset(&key->tp, 0, sizeof(key->tp));
605                         }
606                 } else if (key->ip.proto == IPPROTO_ICMP) {
607                         if (icmphdr_ok(skb)) {
608                                 struct icmphdr *icmp = icmp_hdr(skb);
609                                 /* The ICMP type and code fields use the 16-bit
610                                  * transport port fields, so we need to store
611                                  * them in 16-bit network byte order. */
612                                 key->tp.src = htons(icmp->type);
613                                 key->tp.dst = htons(icmp->code);
614                         } else {
615                                 memset(&key->tp, 0, sizeof(key->tp));
616                         }
617                 }
618
619         } else if (key->eth.type == htons(ETH_P_ARP) ||
620                    key->eth.type == htons(ETH_P_RARP)) {
621                 struct arp_eth_header *arp;
622                 bool arp_available = arphdr_ok(skb);
623
624                 arp = (struct arp_eth_header *)skb_network_header(skb);
625
626                 if (arp_available &&
627                     arp->ar_hrd == htons(ARPHRD_ETHER) &&
628                     arp->ar_pro == htons(ETH_P_IP) &&
629                     arp->ar_hln == ETH_ALEN &&
630                     arp->ar_pln == 4) {
631
632                         /* We only match on the lower 8 bits of the opcode. */
633                         if (ntohs(arp->ar_op) <= 0xff)
634                                 key->ip.proto = ntohs(arp->ar_op);
635                         else
636                                 key->ip.proto = 0;
637
638                         memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
639                         memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
640                         ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
641                         ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
642                 } else {
643                         memset(&key->ip, 0, sizeof(key->ip));
644                         memset(&key->ipv4, 0, sizeof(key->ipv4));
645                 }
646         } else if (eth_p_mpls(key->eth.type)) {
647                 size_t stack_len = MPLS_HLEN;
648
649                 skb_set_inner_network_header(skb, skb->mac_len);
650                 while (1) {
651                         __be32 lse;
652
653                         error = check_header(skb, skb->mac_len + stack_len);
654                         if (unlikely(error))
655                                 return 0;
656
657                         memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
658
659                         if (stack_len == MPLS_HLEN)
660                                 memcpy(&key->mpls.top_lse, &lse, MPLS_HLEN);
661
662                         skb_set_inner_network_header(skb, skb->mac_len + stack_len);
663                         if (lse & htonl(MPLS_LS_S_MASK))
664                                 break;
665
666                         stack_len += MPLS_HLEN;
667                 }
668         } else if (key->eth.type == htons(ETH_P_IPV6)) {
669                 int nh_len;             /* IPv6 Header + Extensions */
670
671                 nh_len = parse_ipv6hdr(skb, key);
672                 if (unlikely(nh_len < 0)) {
673                         switch (nh_len) {
674                         case -EINVAL:
675                                 memset(&key->ip, 0, sizeof(key->ip));
676                                 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
677                                 /* fall-through */
678                         case -EPROTO:
679                                 skb->transport_header = skb->network_header;
680                                 error = 0;
681                                 break;
682                         default:
683                                 error = nh_len;
684                         }
685                         return error;
686                 }
687
688                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
689                         return 0;
690                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
691                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
692
693                 /* Transport layer. */
694                 if (key->ip.proto == NEXTHDR_TCP) {
695                         if (tcphdr_ok(skb)) {
696                                 struct tcphdr *tcp = tcp_hdr(skb);
697                                 key->tp.src = tcp->source;
698                                 key->tp.dst = tcp->dest;
699                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
700                         } else {
701                                 memset(&key->tp, 0, sizeof(key->tp));
702                         }
703                 } else if (key->ip.proto == NEXTHDR_UDP) {
704                         if (udphdr_ok(skb)) {
705                                 struct udphdr *udp = udp_hdr(skb);
706                                 key->tp.src = udp->source;
707                                 key->tp.dst = udp->dest;
708                         } else {
709                                 memset(&key->tp, 0, sizeof(key->tp));
710                         }
711                 } else if (key->ip.proto == NEXTHDR_SCTP) {
712                         if (sctphdr_ok(skb)) {
713                                 struct sctphdr *sctp = sctp_hdr(skb);
714                                 key->tp.src = sctp->source;
715                                 key->tp.dst = sctp->dest;
716                         } else {
717                                 memset(&key->tp, 0, sizeof(key->tp));
718                         }
719                 } else if (key->ip.proto == NEXTHDR_ICMP) {
720                         if (icmp6hdr_ok(skb)) {
721                                 error = parse_icmpv6(skb, key, nh_len);
722                                 if (error)
723                                         return error;
724                         } else {
725                                 memset(&key->tp, 0, sizeof(key->tp));
726                         }
727                 }
728         }
729         return 0;
730 }
731
732 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
733 {
734         return key_extract(skb, key);
735 }
736
737 static int key_extract_mac_proto(struct sk_buff *skb)
738 {
739         switch (skb->dev->type) {
740         case ARPHRD_ETHER:
741                 return MAC_PROTO_ETHERNET;
742         case ARPHRD_NONE:
743                 if (skb->protocol == htons(ETH_P_TEB))
744                         return MAC_PROTO_ETHERNET;
745                 return MAC_PROTO_NONE;
746         }
747         WARN_ON_ONCE(1);
748         return -EINVAL;
749 }
750
751 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
752                          struct sk_buff *skb, struct sw_flow_key *key)
753 {
754         int res;
755
756         /* Extract metadata from packet. */
757         if (tun_info) {
758                 key->tun_proto = ip_tunnel_info_af(tun_info);
759                 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
760
761                 if (tun_info->options_len) {
762                         BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
763                                                    8)) - 1
764                                         > sizeof(key->tun_opts));
765
766                         ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
767                                                 tun_info);
768                         key->tun_opts_len = tun_info->options_len;
769                 } else {
770                         key->tun_opts_len = 0;
771                 }
772         } else  {
773                 key->tun_proto = 0;
774                 key->tun_opts_len = 0;
775                 memset(&key->tun_key, 0, sizeof(key->tun_key));
776         }
777
778         key->phy.priority = skb->priority;
779         key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
780         key->phy.skb_mark = skb->mark;
781         ovs_ct_fill_key(skb, key);
782         key->ovs_flow_hash = 0;
783         res = key_extract_mac_proto(skb);
784         if (res < 0)
785                 return res;
786         key->mac_proto = res;
787         key->recirc_id = 0;
788
789         return key_extract(skb, key);
790 }
791
792 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
793                                    struct sk_buff *skb,
794                                    struct sw_flow_key *key, bool log)
795 {
796         int err;
797
798         /* Extract metadata from netlink attributes. */
799         err = ovs_nla_get_flow_metadata(net, attr, key, log);
800         if (err)
801                 return err;
802
803         if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
804                 /* key_extract assumes that skb->protocol is set-up for
805                  * layer 3 packets which is the case for other callers,
806                  * in particular packets recieved from the network stack.
807                  * Here the correct value can be set from the metadata
808                  * extracted above.
809                  */
810                 skb->protocol = key->eth.type;
811         } else {
812                 struct ethhdr *eth;
813
814                 skb_reset_mac_header(skb);
815                 eth = eth_hdr(skb);
816
817                 /* Normally, setting the skb 'protocol' field would be
818                  * handled by a call to eth_type_trans(), but it assumes
819                  * there's a sending device, which we may not have.
820                  */
821                 if (eth_proto_is_802_3(eth->h_proto))
822                         skb->protocol = eth->h_proto;
823                 else
824                         skb->protocol = htons(ETH_P_802_2);
825         }
826
827         return key_extract(skb, key);
828 }