Merge remote-tracking branch 'stable/linux-5.15.y' into rpi-5.15.y
[platform/kernel/linux-rpi.git] / net / openvswitch / flow.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2007-2014 Nicira, Inc.
4  */
5
6 #include <linux/uaccess.h>
7 #include <linux/netdevice.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_ether.h>
10 #include <linux/if_vlan.h>
11 #include <net/llc_pdu.h>
12 #include <linux/kernel.h>
13 #include <linux/jhash.h>
14 #include <linux/jiffies.h>
15 #include <linux/llc.h>
16 #include <linux/module.h>
17 #include <linux/in.h>
18 #include <linux/rcupdate.h>
19 #include <linux/cpumask.h>
20 #include <linux/if_arp.h>
21 #include <linux/ip.h>
22 #include <linux/ipv6.h>
23 #include <linux/mpls.h>
24 #include <linux/sctp.h>
25 #include <linux/smp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/icmp.h>
29 #include <linux/icmpv6.h>
30 #include <linux/rculist.h>
31 #include <net/ip.h>
32 #include <net/ip_tunnels.h>
33 #include <net/ipv6.h>
34 #include <net/mpls.h>
35 #include <net/ndisc.h>
36 #include <net/nsh.h>
37 #include <net/netfilter/nf_conntrack_zones.h>
38
39 #include "conntrack.h"
40 #include "datapath.h"
41 #include "flow.h"
42 #include "flow_netlink.h"
43 #include "vport.h"
44
45 u64 ovs_flow_used_time(unsigned long flow_jiffies)
46 {
47         struct timespec64 cur_ts;
48         u64 cur_ms, idle_ms;
49
50         ktime_get_ts64(&cur_ts);
51         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
52         cur_ms = (u64)(u32)cur_ts.tv_sec * MSEC_PER_SEC +
53                  cur_ts.tv_nsec / NSEC_PER_MSEC;
54
55         return cur_ms - idle_ms;
56 }
57
58 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
59
60 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
61                            const struct sk_buff *skb)
62 {
63         struct sw_flow_stats *stats;
64         unsigned int cpu = smp_processor_id();
65         int len = skb->len + (skb_vlan_tag_present(skb) ? VLAN_HLEN : 0);
66
67         stats = rcu_dereference(flow->stats[cpu]);
68
69         /* Check if already have CPU-specific stats. */
70         if (likely(stats)) {
71                 spin_lock(&stats->lock);
72                 /* Mark if we write on the pre-allocated stats. */
73                 if (cpu == 0 && unlikely(flow->stats_last_writer != cpu))
74                         flow->stats_last_writer = cpu;
75         } else {
76                 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
77                 spin_lock(&stats->lock);
78
79                 /* If the current CPU is the only writer on the
80                  * pre-allocated stats keep using them.
81                  */
82                 if (unlikely(flow->stats_last_writer != cpu)) {
83                         /* A previous locker may have already allocated the
84                          * stats, so we need to check again.  If CPU-specific
85                          * stats were already allocated, we update the pre-
86                          * allocated stats as we have already locked them.
87                          */
88                         if (likely(flow->stats_last_writer != -1) &&
89                             likely(!rcu_access_pointer(flow->stats[cpu]))) {
90                                 /* Try to allocate CPU-specific stats. */
91                                 struct sw_flow_stats *new_stats;
92
93                                 new_stats =
94                                         kmem_cache_alloc_node(flow_stats_cache,
95                                                               GFP_NOWAIT |
96                                                               __GFP_THISNODE |
97                                                               __GFP_NOWARN |
98                                                               __GFP_NOMEMALLOC,
99                                                               numa_node_id());
100                                 if (likely(new_stats)) {
101                                         new_stats->used = jiffies;
102                                         new_stats->packet_count = 1;
103                                         new_stats->byte_count = len;
104                                         new_stats->tcp_flags = tcp_flags;
105                                         spin_lock_init(&new_stats->lock);
106
107                                         rcu_assign_pointer(flow->stats[cpu],
108                                                            new_stats);
109                                         cpumask_set_cpu(cpu, &flow->cpu_used_mask);
110                                         goto unlock;
111                                 }
112                         }
113                         flow->stats_last_writer = cpu;
114                 }
115         }
116
117         stats->used = jiffies;
118         stats->packet_count++;
119         stats->byte_count += len;
120         stats->tcp_flags |= tcp_flags;
121 unlock:
122         spin_unlock(&stats->lock);
123 }
124
125 /* Must be called with rcu_read_lock or ovs_mutex. */
126 void ovs_flow_stats_get(const struct sw_flow *flow,
127                         struct ovs_flow_stats *ovs_stats,
128                         unsigned long *used, __be16 *tcp_flags)
129 {
130         int cpu;
131
132         *used = 0;
133         *tcp_flags = 0;
134         memset(ovs_stats, 0, sizeof(*ovs_stats));
135
136         /* We open code this to make sure cpu 0 is always considered */
137         for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
138                 struct sw_flow_stats *stats = rcu_dereference_ovsl(flow->stats[cpu]);
139
140                 if (stats) {
141                         /* Local CPU may write on non-local stats, so we must
142                          * block bottom-halves here.
143                          */
144                         spin_lock_bh(&stats->lock);
145                         if (!*used || time_after(stats->used, *used))
146                                 *used = stats->used;
147                         *tcp_flags |= stats->tcp_flags;
148                         ovs_stats->n_packets += stats->packet_count;
149                         ovs_stats->n_bytes += stats->byte_count;
150                         spin_unlock_bh(&stats->lock);
151                 }
152         }
153 }
154
155 /* Called with ovs_mutex. */
156 void ovs_flow_stats_clear(struct sw_flow *flow)
157 {
158         int cpu;
159
160         /* We open code this to make sure cpu 0 is always considered */
161         for (cpu = 0; cpu < nr_cpu_ids; cpu = cpumask_next(cpu, &flow->cpu_used_mask)) {
162                 struct sw_flow_stats *stats = ovsl_dereference(flow->stats[cpu]);
163
164                 if (stats) {
165                         spin_lock_bh(&stats->lock);
166                         stats->used = 0;
167                         stats->packet_count = 0;
168                         stats->byte_count = 0;
169                         stats->tcp_flags = 0;
170                         spin_unlock_bh(&stats->lock);
171                 }
172         }
173 }
174
175 static int check_header(struct sk_buff *skb, int len)
176 {
177         if (unlikely(skb->len < len))
178                 return -EINVAL;
179         if (unlikely(!pskb_may_pull(skb, len)))
180                 return -ENOMEM;
181         return 0;
182 }
183
184 static bool arphdr_ok(struct sk_buff *skb)
185 {
186         return pskb_may_pull(skb, skb_network_offset(skb) +
187                                   sizeof(struct arp_eth_header));
188 }
189
190 static int check_iphdr(struct sk_buff *skb)
191 {
192         unsigned int nh_ofs = skb_network_offset(skb);
193         unsigned int ip_len;
194         int err;
195
196         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
197         if (unlikely(err))
198                 return err;
199
200         ip_len = ip_hdrlen(skb);
201         if (unlikely(ip_len < sizeof(struct iphdr) ||
202                      skb->len < nh_ofs + ip_len))
203                 return -EINVAL;
204
205         skb_set_transport_header(skb, nh_ofs + ip_len);
206         return 0;
207 }
208
209 static bool tcphdr_ok(struct sk_buff *skb)
210 {
211         int th_ofs = skb_transport_offset(skb);
212         int tcp_len;
213
214         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
215                 return false;
216
217         tcp_len = tcp_hdrlen(skb);
218         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
219                      skb->len < th_ofs + tcp_len))
220                 return false;
221
222         return true;
223 }
224
225 static bool udphdr_ok(struct sk_buff *skb)
226 {
227         return pskb_may_pull(skb, skb_transport_offset(skb) +
228                                   sizeof(struct udphdr));
229 }
230
231 static bool sctphdr_ok(struct sk_buff *skb)
232 {
233         return pskb_may_pull(skb, skb_transport_offset(skb) +
234                                   sizeof(struct sctphdr));
235 }
236
237 static bool icmphdr_ok(struct sk_buff *skb)
238 {
239         return pskb_may_pull(skb, skb_transport_offset(skb) +
240                                   sizeof(struct icmphdr));
241 }
242
243 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
244 {
245         unsigned short frag_off;
246         unsigned int payload_ofs = 0;
247         unsigned int nh_ofs = skb_network_offset(skb);
248         unsigned int nh_len;
249         struct ipv6hdr *nh;
250         int err, nexthdr, flags = 0;
251
252         err = check_header(skb, nh_ofs + sizeof(*nh));
253         if (unlikely(err))
254                 return err;
255
256         nh = ipv6_hdr(skb);
257
258         key->ip.proto = NEXTHDR_NONE;
259         key->ip.tos = ipv6_get_dsfield(nh);
260         key->ip.ttl = nh->hop_limit;
261         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
262         key->ipv6.addr.src = nh->saddr;
263         key->ipv6.addr.dst = nh->daddr;
264
265         nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags);
266         if (flags & IP6_FH_F_FRAG) {
267                 if (frag_off) {
268                         key->ip.frag = OVS_FRAG_TYPE_LATER;
269                         key->ip.proto = nexthdr;
270                         return 0;
271                 }
272                 key->ip.frag = OVS_FRAG_TYPE_FIRST;
273         } else {
274                 key->ip.frag = OVS_FRAG_TYPE_NONE;
275         }
276
277         /* Delayed handling of error in ipv6_find_hdr() as it
278          * always sets flags and frag_off to a valid value which may be
279          * used to set key->ip.frag above.
280          */
281         if (unlikely(nexthdr < 0))
282                 return -EPROTO;
283
284         nh_len = payload_ofs - nh_ofs;
285         skb_set_transport_header(skb, nh_ofs + nh_len);
286         key->ip.proto = nexthdr;
287         return nh_len;
288 }
289
290 static bool icmp6hdr_ok(struct sk_buff *skb)
291 {
292         return pskb_may_pull(skb, skb_transport_offset(skb) +
293                                   sizeof(struct icmp6hdr));
294 }
295
296 /**
297  * parse_vlan_tag - Parse vlan tag from vlan header.
298  * @skb: skb containing frame to parse
299  * @key_vh: pointer to parsed vlan tag
300  * @untag_vlan: should the vlan header be removed from the frame
301  *
302  * Return: ERROR on memory error.
303  * %0 if it encounters a non-vlan or incomplete packet.
304  * %1 after successfully parsing vlan tag.
305  */
306 static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh,
307                           bool untag_vlan)
308 {
309         struct vlan_head *vh = (struct vlan_head *)skb->data;
310
311         if (likely(!eth_type_vlan(vh->tpid)))
312                 return 0;
313
314         if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
315                 return 0;
316
317         if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
318                                  sizeof(__be16))))
319                 return -ENOMEM;
320
321         vh = (struct vlan_head *)skb->data;
322         key_vh->tci = vh->tci | htons(VLAN_CFI_MASK);
323         key_vh->tpid = vh->tpid;
324
325         if (unlikely(untag_vlan)) {
326                 int offset = skb->data - skb_mac_header(skb);
327                 u16 tci;
328                 int err;
329
330                 __skb_push(skb, offset);
331                 err = __skb_vlan_pop(skb, &tci);
332                 __skb_pull(skb, offset);
333                 if (err)
334                         return err;
335                 __vlan_hwaccel_put_tag(skb, key_vh->tpid, tci);
336         } else {
337                 __skb_pull(skb, sizeof(struct vlan_head));
338         }
339         return 1;
340 }
341
342 static void clear_vlan(struct sw_flow_key *key)
343 {
344         key->eth.vlan.tci = 0;
345         key->eth.vlan.tpid = 0;
346         key->eth.cvlan.tci = 0;
347         key->eth.cvlan.tpid = 0;
348 }
349
350 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
351 {
352         int res;
353
354         if (skb_vlan_tag_present(skb)) {
355                 key->eth.vlan.tci = htons(skb->vlan_tci) | htons(VLAN_CFI_MASK);
356                 key->eth.vlan.tpid = skb->vlan_proto;
357         } else {
358                 /* Parse outer vlan tag in the non-accelerated case. */
359                 res = parse_vlan_tag(skb, &key->eth.vlan, true);
360                 if (res <= 0)
361                         return res;
362         }
363
364         /* Parse inner vlan tag. */
365         res = parse_vlan_tag(skb, &key->eth.cvlan, false);
366         if (res <= 0)
367                 return res;
368
369         return 0;
370 }
371
372 static __be16 parse_ethertype(struct sk_buff *skb)
373 {
374         struct llc_snap_hdr {
375                 u8  dsap;  /* Always 0xAA */
376                 u8  ssap;  /* Always 0xAA */
377                 u8  ctrl;
378                 u8  oui[3];
379                 __be16 ethertype;
380         };
381         struct llc_snap_hdr *llc;
382         __be16 proto;
383
384         proto = *(__be16 *) skb->data;
385         __skb_pull(skb, sizeof(__be16));
386
387         if (eth_proto_is_802_3(proto))
388                 return proto;
389
390         if (skb->len < sizeof(struct llc_snap_hdr))
391                 return htons(ETH_P_802_2);
392
393         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
394                 return htons(0);
395
396         llc = (struct llc_snap_hdr *) skb->data;
397         if (llc->dsap != LLC_SAP_SNAP ||
398             llc->ssap != LLC_SAP_SNAP ||
399             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
400                 return htons(ETH_P_802_2);
401
402         __skb_pull(skb, sizeof(struct llc_snap_hdr));
403
404         if (eth_proto_is_802_3(llc->ethertype))
405                 return llc->ethertype;
406
407         return htons(ETH_P_802_2);
408 }
409
410 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
411                         int nh_len)
412 {
413         struct icmp6hdr *icmp = icmp6_hdr(skb);
414
415         /* The ICMPv6 type and code fields use the 16-bit transport port
416          * fields, so we need to store them in 16-bit network byte order.
417          */
418         key->tp.src = htons(icmp->icmp6_type);
419         key->tp.dst = htons(icmp->icmp6_code);
420         memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
421
422         if (icmp->icmp6_code == 0 &&
423             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
424              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
425                 int icmp_len = skb->len - skb_transport_offset(skb);
426                 struct nd_msg *nd;
427                 int offset;
428
429                 /* In order to process neighbor discovery options, we need the
430                  * entire packet.
431                  */
432                 if (unlikely(icmp_len < sizeof(*nd)))
433                         return 0;
434
435                 if (unlikely(skb_linearize(skb)))
436                         return -ENOMEM;
437
438                 nd = (struct nd_msg *)skb_transport_header(skb);
439                 key->ipv6.nd.target = nd->target;
440
441                 icmp_len -= sizeof(*nd);
442                 offset = 0;
443                 while (icmp_len >= 8) {
444                         struct nd_opt_hdr *nd_opt =
445                                  (struct nd_opt_hdr *)(nd->opt + offset);
446                         int opt_len = nd_opt->nd_opt_len * 8;
447
448                         if (unlikely(!opt_len || opt_len > icmp_len))
449                                 return 0;
450
451                         /* Store the link layer address if the appropriate
452                          * option is provided.  It is considered an error if
453                          * the same link layer option is specified twice.
454                          */
455                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
456                             && opt_len == 8) {
457                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
458                                         goto invalid;
459                                 ether_addr_copy(key->ipv6.nd.sll,
460                                                 &nd->opt[offset+sizeof(*nd_opt)]);
461                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
462                                    && opt_len == 8) {
463                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
464                                         goto invalid;
465                                 ether_addr_copy(key->ipv6.nd.tll,
466                                                 &nd->opt[offset+sizeof(*nd_opt)]);
467                         }
468
469                         icmp_len -= opt_len;
470                         offset += opt_len;
471                 }
472         }
473
474         return 0;
475
476 invalid:
477         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
478         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
479         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
480
481         return 0;
482 }
483
484 static int parse_nsh(struct sk_buff *skb, struct sw_flow_key *key)
485 {
486         struct nshhdr *nh;
487         unsigned int nh_ofs = skb_network_offset(skb);
488         u8 version, length;
489         int err;
490
491         err = check_header(skb, nh_ofs + NSH_BASE_HDR_LEN);
492         if (unlikely(err))
493                 return err;
494
495         nh = nsh_hdr(skb);
496         version = nsh_get_ver(nh);
497         length = nsh_hdr_len(nh);
498
499         if (version != 0)
500                 return -EINVAL;
501
502         err = check_header(skb, nh_ofs + length);
503         if (unlikely(err))
504                 return err;
505
506         nh = nsh_hdr(skb);
507         key->nsh.base.flags = nsh_get_flags(nh);
508         key->nsh.base.ttl = nsh_get_ttl(nh);
509         key->nsh.base.mdtype = nh->mdtype;
510         key->nsh.base.np = nh->np;
511         key->nsh.base.path_hdr = nh->path_hdr;
512         switch (key->nsh.base.mdtype) {
513         case NSH_M_TYPE1:
514                 if (length != NSH_M_TYPE1_LEN)
515                         return -EINVAL;
516                 memcpy(key->nsh.context, nh->md1.context,
517                        sizeof(nh->md1));
518                 break;
519         case NSH_M_TYPE2:
520                 memset(key->nsh.context, 0,
521                        sizeof(nh->md1));
522                 break;
523         default:
524                 return -EINVAL;
525         }
526
527         return 0;
528 }
529
530 /**
531  * key_extract_l3l4 - extracts L3/L4 header information.
532  * @skb: sk_buff that contains the frame, with skb->data pointing to the
533  *       L3 header
534  * @key: output flow key
535  *
536  * Return: %0 if successful, otherwise a negative errno value.
537  */
538 static int key_extract_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
539 {
540         int error;
541
542         /* Network layer. */
543         if (key->eth.type == htons(ETH_P_IP)) {
544                 struct iphdr *nh;
545                 __be16 offset;
546
547                 error = check_iphdr(skb);
548                 if (unlikely(error)) {
549                         memset(&key->ip, 0, sizeof(key->ip));
550                         memset(&key->ipv4, 0, sizeof(key->ipv4));
551                         if (error == -EINVAL) {
552                                 skb->transport_header = skb->network_header;
553                                 error = 0;
554                         }
555                         return error;
556                 }
557
558                 nh = ip_hdr(skb);
559                 key->ipv4.addr.src = nh->saddr;
560                 key->ipv4.addr.dst = nh->daddr;
561
562                 key->ip.proto = nh->protocol;
563                 key->ip.tos = nh->tos;
564                 key->ip.ttl = nh->ttl;
565
566                 offset = nh->frag_off & htons(IP_OFFSET);
567                 if (offset) {
568                         key->ip.frag = OVS_FRAG_TYPE_LATER;
569                         memset(&key->tp, 0, sizeof(key->tp));
570                         return 0;
571                 }
572                 if (nh->frag_off & htons(IP_MF) ||
573                         skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
574                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
575                 else
576                         key->ip.frag = OVS_FRAG_TYPE_NONE;
577
578                 /* Transport layer. */
579                 if (key->ip.proto == IPPROTO_TCP) {
580                         if (tcphdr_ok(skb)) {
581                                 struct tcphdr *tcp = tcp_hdr(skb);
582                                 key->tp.src = tcp->source;
583                                 key->tp.dst = tcp->dest;
584                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
585                         } else {
586                                 memset(&key->tp, 0, sizeof(key->tp));
587                         }
588
589                 } else if (key->ip.proto == IPPROTO_UDP) {
590                         if (udphdr_ok(skb)) {
591                                 struct udphdr *udp = udp_hdr(skb);
592                                 key->tp.src = udp->source;
593                                 key->tp.dst = udp->dest;
594                         } else {
595                                 memset(&key->tp, 0, sizeof(key->tp));
596                         }
597                 } else if (key->ip.proto == IPPROTO_SCTP) {
598                         if (sctphdr_ok(skb)) {
599                                 struct sctphdr *sctp = sctp_hdr(skb);
600                                 key->tp.src = sctp->source;
601                                 key->tp.dst = sctp->dest;
602                         } else {
603                                 memset(&key->tp, 0, sizeof(key->tp));
604                         }
605                 } else if (key->ip.proto == IPPROTO_ICMP) {
606                         if (icmphdr_ok(skb)) {
607                                 struct icmphdr *icmp = icmp_hdr(skb);
608                                 /* The ICMP type and code fields use the 16-bit
609                                  * transport port fields, so we need to store
610                                  * them in 16-bit network byte order. */
611                                 key->tp.src = htons(icmp->type);
612                                 key->tp.dst = htons(icmp->code);
613                         } else {
614                                 memset(&key->tp, 0, sizeof(key->tp));
615                         }
616                 }
617
618         } else if (key->eth.type == htons(ETH_P_ARP) ||
619                    key->eth.type == htons(ETH_P_RARP)) {
620                 struct arp_eth_header *arp;
621                 bool arp_available = arphdr_ok(skb);
622
623                 arp = (struct arp_eth_header *)skb_network_header(skb);
624
625                 if (arp_available &&
626                     arp->ar_hrd == htons(ARPHRD_ETHER) &&
627                     arp->ar_pro == htons(ETH_P_IP) &&
628                     arp->ar_hln == ETH_ALEN &&
629                     arp->ar_pln == 4) {
630
631                         /* We only match on the lower 8 bits of the opcode. */
632                         if (ntohs(arp->ar_op) <= 0xff)
633                                 key->ip.proto = ntohs(arp->ar_op);
634                         else
635                                 key->ip.proto = 0;
636
637                         memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
638                         memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
639                         ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
640                         ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
641                 } else {
642                         memset(&key->ip, 0, sizeof(key->ip));
643                         memset(&key->ipv4, 0, sizeof(key->ipv4));
644                 }
645         } else if (eth_p_mpls(key->eth.type)) {
646                 u8 label_count = 1;
647
648                 memset(&key->mpls, 0, sizeof(key->mpls));
649                 skb_set_inner_network_header(skb, skb->mac_len);
650                 while (1) {
651                         __be32 lse;
652
653                         error = check_header(skb, skb->mac_len +
654                                              label_count * MPLS_HLEN);
655                         if (unlikely(error))
656                                 return 0;
657
658                         memcpy(&lse, skb_inner_network_header(skb), MPLS_HLEN);
659
660                         if (label_count <= MPLS_LABEL_DEPTH)
661                                 memcpy(&key->mpls.lse[label_count - 1], &lse,
662                                        MPLS_HLEN);
663
664                         skb_set_inner_network_header(skb, skb->mac_len +
665                                                      label_count * MPLS_HLEN);
666                         if (lse & htonl(MPLS_LS_S_MASK))
667                                 break;
668
669                         label_count++;
670                 }
671                 if (label_count > MPLS_LABEL_DEPTH)
672                         label_count = MPLS_LABEL_DEPTH;
673
674                 key->mpls.num_labels_mask = GENMASK(label_count - 1, 0);
675         } else if (key->eth.type == htons(ETH_P_IPV6)) {
676                 int nh_len;             /* IPv6 Header + Extensions */
677
678                 nh_len = parse_ipv6hdr(skb, key);
679                 if (unlikely(nh_len < 0)) {
680                         switch (nh_len) {
681                         case -EINVAL:
682                                 memset(&key->ip, 0, sizeof(key->ip));
683                                 memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
684                                 fallthrough;
685                         case -EPROTO:
686                                 skb->transport_header = skb->network_header;
687                                 error = 0;
688                                 break;
689                         default:
690                                 error = nh_len;
691                         }
692                         return error;
693                 }
694
695                 if (key->ip.frag == OVS_FRAG_TYPE_LATER) {
696                         memset(&key->tp, 0, sizeof(key->tp));
697                         return 0;
698                 }
699                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
700                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
701
702                 /* Transport layer. */
703                 if (key->ip.proto == NEXTHDR_TCP) {
704                         if (tcphdr_ok(skb)) {
705                                 struct tcphdr *tcp = tcp_hdr(skb);
706                                 key->tp.src = tcp->source;
707                                 key->tp.dst = tcp->dest;
708                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
709                         } else {
710                                 memset(&key->tp, 0, sizeof(key->tp));
711                         }
712                 } else if (key->ip.proto == NEXTHDR_UDP) {
713                         if (udphdr_ok(skb)) {
714                                 struct udphdr *udp = udp_hdr(skb);
715                                 key->tp.src = udp->source;
716                                 key->tp.dst = udp->dest;
717                         } else {
718                                 memset(&key->tp, 0, sizeof(key->tp));
719                         }
720                 } else if (key->ip.proto == NEXTHDR_SCTP) {
721                         if (sctphdr_ok(skb)) {
722                                 struct sctphdr *sctp = sctp_hdr(skb);
723                                 key->tp.src = sctp->source;
724                                 key->tp.dst = sctp->dest;
725                         } else {
726                                 memset(&key->tp, 0, sizeof(key->tp));
727                         }
728                 } else if (key->ip.proto == NEXTHDR_ICMP) {
729                         if (icmp6hdr_ok(skb)) {
730                                 error = parse_icmpv6(skb, key, nh_len);
731                                 if (error)
732                                         return error;
733                         } else {
734                                 memset(&key->tp, 0, sizeof(key->tp));
735                         }
736                 }
737         } else if (key->eth.type == htons(ETH_P_NSH)) {
738                 error = parse_nsh(skb, key);
739                 if (error)
740                         return error;
741         }
742         return 0;
743 }
744
745 /**
746  * key_extract - extracts a flow key from an Ethernet frame.
747  * @skb: sk_buff that contains the frame, with skb->data pointing to the
748  * Ethernet header
749  * @key: output flow key
750  *
751  * The caller must ensure that skb->len >= ETH_HLEN.
752  *
753  * Initializes @skb header fields as follows:
754  *
755  *    - skb->mac_header: the L2 header.
756  *
757  *    - skb->network_header: just past the L2 header, or just past the
758  *      VLAN header, to the first byte of the L2 payload.
759  *
760  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
761  *      on output, then just past the IP header, if one is present and
762  *      of a correct length, otherwise the same as skb->network_header.
763  *      For other key->eth.type values it is left untouched.
764  *
765  *    - skb->protocol: the type of the data starting at skb->network_header.
766  *      Equals to key->eth.type.
767  *
768  * Return: %0 if successful, otherwise a negative errno value.
769  */
770 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
771 {
772         struct ethhdr *eth;
773
774         /* Flags are always used as part of stats */
775         key->tp.flags = 0;
776
777         skb_reset_mac_header(skb);
778
779         /* Link layer. */
780         clear_vlan(key);
781         if (ovs_key_mac_proto(key) == MAC_PROTO_NONE) {
782                 if (unlikely(eth_type_vlan(skb->protocol)))
783                         return -EINVAL;
784
785                 skb_reset_network_header(skb);
786                 key->eth.type = skb->protocol;
787         } else {
788                 eth = eth_hdr(skb);
789                 ether_addr_copy(key->eth.src, eth->h_source);
790                 ether_addr_copy(key->eth.dst, eth->h_dest);
791
792                 __skb_pull(skb, 2 * ETH_ALEN);
793                 /* We are going to push all headers that we pull, so no need to
794                  * update skb->csum here.
795                  */
796
797                 if (unlikely(parse_vlan(skb, key)))
798                         return -ENOMEM;
799
800                 key->eth.type = parse_ethertype(skb);
801                 if (unlikely(key->eth.type == htons(0)))
802                         return -ENOMEM;
803
804                 /* Multiple tagged packets need to retain TPID to satisfy
805                  * skb_vlan_pop(), which will later shift the ethertype into
806                  * skb->protocol.
807                  */
808                 if (key->eth.cvlan.tci & htons(VLAN_CFI_MASK))
809                         skb->protocol = key->eth.cvlan.tpid;
810                 else
811                         skb->protocol = key->eth.type;
812
813                 skb_reset_network_header(skb);
814                 __skb_push(skb, skb->data - skb_mac_header(skb));
815         }
816
817         skb_reset_mac_len(skb);
818
819         /* Fill out L3/L4 key info, if any */
820         return key_extract_l3l4(skb, key);
821 }
822
823 /* In the case of conntrack fragment handling it expects L3 headers,
824  * add a helper.
825  */
826 int ovs_flow_key_update_l3l4(struct sk_buff *skb, struct sw_flow_key *key)
827 {
828         return key_extract_l3l4(skb, key);
829 }
830
831 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
832 {
833         int res;
834
835         res = key_extract(skb, key);
836         if (!res)
837                 key->mac_proto &= ~SW_FLOW_KEY_INVALID;
838
839         return res;
840 }
841
842 static int key_extract_mac_proto(struct sk_buff *skb)
843 {
844         switch (skb->dev->type) {
845         case ARPHRD_ETHER:
846                 return MAC_PROTO_ETHERNET;
847         case ARPHRD_NONE:
848                 if (skb->protocol == htons(ETH_P_TEB))
849                         return MAC_PROTO_ETHERNET;
850                 return MAC_PROTO_NONE;
851         }
852         WARN_ON_ONCE(1);
853         return -EINVAL;
854 }
855
856 int ovs_flow_key_extract(const struct ip_tunnel_info *tun_info,
857                          struct sk_buff *skb, struct sw_flow_key *key)
858 {
859 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
860         struct tc_skb_ext *tc_ext;
861 #endif
862         bool post_ct = false, post_ct_snat = false, post_ct_dnat = false;
863         int res, err;
864         u16 zone = 0;
865
866         /* Extract metadata from packet. */
867         if (tun_info) {
868                 key->tun_proto = ip_tunnel_info_af(tun_info);
869                 memcpy(&key->tun_key, &tun_info->key, sizeof(key->tun_key));
870
871                 if (tun_info->options_len) {
872                         BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
873                                                    8)) - 1
874                                         > sizeof(key->tun_opts));
875
876                         ip_tunnel_info_opts_get(TUN_METADATA_OPTS(key, tun_info->options_len),
877                                                 tun_info);
878                         key->tun_opts_len = tun_info->options_len;
879                 } else {
880                         key->tun_opts_len = 0;
881                 }
882         } else  {
883                 key->tun_proto = 0;
884                 key->tun_opts_len = 0;
885                 memset(&key->tun_key, 0, sizeof(key->tun_key));
886         }
887
888         key->phy.priority = skb->priority;
889         key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
890         key->phy.skb_mark = skb->mark;
891         key->ovs_flow_hash = 0;
892         res = key_extract_mac_proto(skb);
893         if (res < 0)
894                 return res;
895         key->mac_proto = res;
896
897 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
898         if (static_branch_unlikely(&tc_recirc_sharing_support)) {
899                 tc_ext = skb_ext_find(skb, TC_SKB_EXT);
900                 key->recirc_id = tc_ext ? tc_ext->chain : 0;
901                 OVS_CB(skb)->mru = tc_ext ? tc_ext->mru : 0;
902                 post_ct = tc_ext ? tc_ext->post_ct : false;
903                 post_ct_snat = post_ct ? tc_ext->post_ct_snat : false;
904                 post_ct_dnat = post_ct ? tc_ext->post_ct_dnat : false;
905                 zone = post_ct ? tc_ext->zone : 0;
906         } else {
907                 key->recirc_id = 0;
908         }
909 #else
910         key->recirc_id = 0;
911 #endif
912
913         err = key_extract(skb, key);
914         if (!err) {
915                 ovs_ct_fill_key(skb, key, post_ct);   /* Must be after key_extract(). */
916                 if (post_ct) {
917                         if (!skb_get_nfct(skb)) {
918                                 key->ct_zone = zone;
919                         } else {
920                                 if (!post_ct_dnat)
921                                         key->ct_state &= ~OVS_CS_F_DST_NAT;
922                                 if (!post_ct_snat)
923                                         key->ct_state &= ~OVS_CS_F_SRC_NAT;
924                         }
925                 }
926         }
927         return err;
928 }
929
930 int ovs_flow_key_extract_userspace(struct net *net, const struct nlattr *attr,
931                                    struct sk_buff *skb,
932                                    struct sw_flow_key *key, bool log)
933 {
934         const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
935         u64 attrs = 0;
936         int err;
937
938         err = parse_flow_nlattrs(attr, a, &attrs, log);
939         if (err)
940                 return -EINVAL;
941
942         /* Extract metadata from netlink attributes. */
943         err = ovs_nla_get_flow_metadata(net, a, attrs, key, log);
944         if (err)
945                 return err;
946
947         /* key_extract assumes that skb->protocol is set-up for
948          * layer 3 packets which is the case for other callers,
949          * in particular packets received from the network stack.
950          * Here the correct value can be set from the metadata
951          * extracted above.
952          * For L2 packet key eth type would be zero. skb protocol
953          * would be set to correct value later during key-extact.
954          */
955
956         skb->protocol = key->eth.type;
957         err = key_extract(skb, key);
958         if (err)
959                 return err;
960
961         /* Check that we have conntrack original direction tuple metadata only
962          * for packets for which it makes sense.  Otherwise the key may be
963          * corrupted due to overlapping key fields.
964          */
965         if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4) &&
966             key->eth.type != htons(ETH_P_IP))
967                 return -EINVAL;
968         if (attrs & (1 << OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6) &&
969             (key->eth.type != htons(ETH_P_IPV6) ||
970              sw_flow_key_is_nd(key)))
971                 return -EINVAL;
972
973         return 0;
974 }