1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2007-2017 Nicira, Inc.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <linux/skbuff.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
27 #include <net/sctp/checksum.h>
32 #include "conntrack.h"
34 #include "flow_netlink.h"
35 #include "openvswitch_trace.h"
37 struct deferred_action {
39 const struct nlattr *actions;
42 /* Store pkt_key clone when creating deferred action. */
43 struct sw_flow_key pkt_key;
46 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
47 struct ovs_frag_data {
51 __be16 inner_protocol;
52 u16 network_offset; /* valid only for MPLS */
57 u8 l2_data[MAX_L2_LEN];
60 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
62 #define DEFERRED_ACTION_FIFO_SIZE 10
63 #define OVS_RECURSION_LIMIT 5
64 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
68 /* Deferred action fifo queue storage. */
69 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
72 struct action_flow_keys {
73 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
76 static struct action_fifo __percpu *action_fifos;
77 static struct action_flow_keys __percpu *flow_keys;
78 static DEFINE_PER_CPU(int, exec_actions_level);
80 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
81 * space. Return NULL if out of key spaces.
83 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
85 struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
86 int level = this_cpu_read(exec_actions_level);
87 struct sw_flow_key *key = NULL;
89 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
90 key = &keys->key[level - 1];
97 static void action_fifo_init(struct action_fifo *fifo)
103 static bool action_fifo_is_empty(const struct action_fifo *fifo)
105 return (fifo->head == fifo->tail);
108 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
110 if (action_fifo_is_empty(fifo))
113 return &fifo->fifo[fifo->tail++];
116 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
118 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
121 return &fifo->fifo[fifo->head++];
124 /* Return true if fifo is not full */
125 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
126 const struct sw_flow_key *key,
127 const struct nlattr *actions,
128 const int actions_len)
130 struct action_fifo *fifo;
131 struct deferred_action *da;
133 fifo = this_cpu_ptr(action_fifos);
134 da = action_fifo_put(fifo);
137 da->actions = actions;
138 da->actions_len = actions_len;
145 static void invalidate_flow_key(struct sw_flow_key *key)
147 key->mac_proto |= SW_FLOW_KEY_INVALID;
150 static bool is_flow_key_valid(const struct sw_flow_key *key)
152 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
155 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
156 struct sw_flow_key *key,
158 const struct nlattr *actions, int len,
159 bool last, bool clone_flow_key);
161 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
162 struct sw_flow_key *key,
163 const struct nlattr *attr, int len);
165 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
166 __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
170 err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
175 key->mac_proto = MAC_PROTO_NONE;
177 invalidate_flow_key(key);
181 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
182 const __be16 ethertype)
186 err = skb_mpls_pop(skb, ethertype, skb->mac_len,
187 ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
191 if (ethertype == htons(ETH_P_TEB))
192 key->mac_proto = MAC_PROTO_ETHERNET;
194 invalidate_flow_key(key);
198 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
199 const __be32 *mpls_lse, const __be32 *mask)
201 struct mpls_shim_hdr *stack;
205 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
208 stack = mpls_hdr(skb);
209 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
210 err = skb_mpls_update_lse(skb, lse);
214 flow_key->mpls.lse[0] = lse;
218 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
222 err = skb_vlan_pop(skb);
223 if (skb_vlan_tag_present(skb)) {
224 invalidate_flow_key(key);
226 key->eth.vlan.tci = 0;
227 key->eth.vlan.tpid = 0;
232 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
233 const struct ovs_action_push_vlan *vlan)
235 if (skb_vlan_tag_present(skb)) {
236 invalidate_flow_key(key);
238 key->eth.vlan.tci = vlan->vlan_tci;
239 key->eth.vlan.tpid = vlan->vlan_tpid;
241 return skb_vlan_push(skb, vlan->vlan_tpid,
242 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
245 /* 'src' is already properly masked. */
246 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
248 u16 *dst = (u16 *)dst_;
249 const u16 *src = (const u16 *)src_;
250 const u16 *mask = (const u16 *)mask_;
252 OVS_SET_MASKED(dst[0], src[0], mask[0]);
253 OVS_SET_MASKED(dst[1], src[1], mask[1]);
254 OVS_SET_MASKED(dst[2], src[2], mask[2]);
257 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
258 const struct ovs_key_ethernet *key,
259 const struct ovs_key_ethernet *mask)
263 err = skb_ensure_writable(skb, ETH_HLEN);
267 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
269 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
271 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
274 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
276 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
277 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
281 /* pop_eth does not support VLAN packets as this action is never called
284 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
288 err = skb_eth_pop(skb);
292 /* safe right before invalidate_flow_key */
293 key->mac_proto = MAC_PROTO_NONE;
294 invalidate_flow_key(key);
298 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
299 const struct ovs_action_push_eth *ethh)
303 err = skb_eth_push(skb, ethh->addresses.eth_dst,
304 ethh->addresses.eth_src);
308 /* safe right before invalidate_flow_key */
309 key->mac_proto = MAC_PROTO_ETHERNET;
310 invalidate_flow_key(key);
314 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
315 const struct nshhdr *nh)
319 err = nsh_push(skb, nh);
323 /* safe right before invalidate_flow_key */
324 key->mac_proto = MAC_PROTO_NONE;
325 invalidate_flow_key(key);
329 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
337 /* safe right before invalidate_flow_key */
338 if (skb->protocol == htons(ETH_P_TEB))
339 key->mac_proto = MAC_PROTO_ETHERNET;
341 key->mac_proto = MAC_PROTO_NONE;
342 invalidate_flow_key(key);
346 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
347 __be32 addr, __be32 new_addr)
349 int transport_len = skb->len - skb_transport_offset(skb);
351 if (nh->frag_off & htons(IP_OFFSET))
354 if (nh->protocol == IPPROTO_TCP) {
355 if (likely(transport_len >= sizeof(struct tcphdr)))
356 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
357 addr, new_addr, true);
358 } else if (nh->protocol == IPPROTO_UDP) {
359 if (likely(transport_len >= sizeof(struct udphdr))) {
360 struct udphdr *uh = udp_hdr(skb);
362 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
363 inet_proto_csum_replace4(&uh->check, skb,
364 addr, new_addr, true);
366 uh->check = CSUM_MANGLED_0;
372 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
373 __be32 *addr, __be32 new_addr)
375 update_ip_l4_checksum(skb, nh, *addr, new_addr);
376 csum_replace4(&nh->check, *addr, new_addr);
378 ovs_ct_clear(skb, NULL);
382 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
383 __be32 addr[4], const __be32 new_addr[4])
385 int transport_len = skb->len - skb_transport_offset(skb);
387 if (l4_proto == NEXTHDR_TCP) {
388 if (likely(transport_len >= sizeof(struct tcphdr)))
389 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
390 addr, new_addr, true);
391 } else if (l4_proto == NEXTHDR_UDP) {
392 if (likely(transport_len >= sizeof(struct udphdr))) {
393 struct udphdr *uh = udp_hdr(skb);
395 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
396 inet_proto_csum_replace16(&uh->check, skb,
397 addr, new_addr, true);
399 uh->check = CSUM_MANGLED_0;
402 } else if (l4_proto == NEXTHDR_ICMP) {
403 if (likely(transport_len >= sizeof(struct icmp6hdr)))
404 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
405 skb, addr, new_addr, true);
409 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
410 const __be32 mask[4], __be32 masked[4])
412 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
413 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
414 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
415 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
418 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
419 __be32 addr[4], const __be32 new_addr[4],
420 bool recalculate_csum)
422 if (recalculate_csum)
423 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
426 ovs_ct_clear(skb, NULL);
427 memcpy(addr, new_addr, sizeof(__be32[4]));
430 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
432 u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
434 ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
436 if (skb->ip_summed == CHECKSUM_COMPLETE)
437 csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
438 (__force __wsum)(ipv6_tclass << 12));
440 ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
443 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
447 ofl = nh->flow_lbl[0] << 16 | nh->flow_lbl[1] << 8 | nh->flow_lbl[2];
448 fl = OVS_MASKED(ofl, fl, mask);
450 /* Bits 21-24 are always unmasked, so this retains their values. */
451 nh->flow_lbl[0] = (u8)(fl >> 16);
452 nh->flow_lbl[1] = (u8)(fl >> 8);
453 nh->flow_lbl[2] = (u8)fl;
455 if (skb->ip_summed == CHECKSUM_COMPLETE)
456 csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
459 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
461 new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
463 if (skb->ip_summed == CHECKSUM_COMPLETE)
464 csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
465 (__force __wsum)(new_ttl << 8));
466 nh->hop_limit = new_ttl;
469 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
472 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
474 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
478 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
479 const struct ovs_key_ipv4 *key,
480 const struct ovs_key_ipv4 *mask)
486 err = skb_ensure_writable(skb, skb_network_offset(skb) +
487 sizeof(struct iphdr));
493 /* Setting an IP addresses is typically only a side effect of
494 * matching on them in the current userspace implementation, so it
495 * makes sense to check if the value actually changed.
497 if (mask->ipv4_src) {
498 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
500 if (unlikely(new_addr != nh->saddr)) {
501 set_ip_addr(skb, nh, &nh->saddr, new_addr);
502 flow_key->ipv4.addr.src = new_addr;
505 if (mask->ipv4_dst) {
506 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
508 if (unlikely(new_addr != nh->daddr)) {
509 set_ip_addr(skb, nh, &nh->daddr, new_addr);
510 flow_key->ipv4.addr.dst = new_addr;
513 if (mask->ipv4_tos) {
514 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
515 flow_key->ip.tos = nh->tos;
517 if (mask->ipv4_ttl) {
518 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
519 flow_key->ip.ttl = nh->ttl;
525 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
527 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
530 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
531 const struct ovs_key_ipv6 *key,
532 const struct ovs_key_ipv6 *mask)
537 err = skb_ensure_writable(skb, skb_network_offset(skb) +
538 sizeof(struct ipv6hdr));
544 /* Setting an IP addresses is typically only a side effect of
545 * matching on them in the current userspace implementation, so it
546 * makes sense to check if the value actually changed.
548 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
549 __be32 *saddr = (__be32 *)&nh->saddr;
552 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
554 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
555 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
557 memcpy(&flow_key->ipv6.addr.src, masked,
558 sizeof(flow_key->ipv6.addr.src));
561 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
562 unsigned int offset = 0;
563 int flags = IP6_FH_F_SKIP_RH;
564 bool recalc_csum = true;
565 __be32 *daddr = (__be32 *)&nh->daddr;
568 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
570 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
571 if (ipv6_ext_hdr(nh->nexthdr))
572 recalc_csum = (ipv6_find_hdr(skb, &offset,
577 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
579 memcpy(&flow_key->ipv6.addr.dst, masked,
580 sizeof(flow_key->ipv6.addr.dst));
583 if (mask->ipv6_tclass) {
584 set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
585 flow_key->ip.tos = ipv6_get_dsfield(nh);
587 if (mask->ipv6_label) {
588 set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
589 ntohl(mask->ipv6_label));
590 flow_key->ipv6.label =
591 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
593 if (mask->ipv6_hlimit) {
594 set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
595 flow_key->ip.ttl = nh->hop_limit;
600 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
601 const struct nlattr *a)
610 struct ovs_key_nsh key;
611 struct ovs_key_nsh mask;
613 err = nsh_key_from_nlattr(a, &key, &mask);
617 /* Make sure the NSH base header is there */
618 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
622 length = nsh_hdr_len(nh);
624 /* Make sure the whole NSH header is there */
625 err = skb_ensure_writable(skb, skb_network_offset(skb) +
631 skb_postpull_rcsum(skb, nh, length);
632 flags = nsh_get_flags(nh);
633 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
634 flow_key->nsh.base.flags = flags;
635 ttl = nsh_get_ttl(nh);
636 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
637 flow_key->nsh.base.ttl = ttl;
638 nsh_set_flags_and_ttl(nh, flags, ttl);
639 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
641 flow_key->nsh.base.path_hdr = nh->path_hdr;
642 switch (nh->mdtype) {
644 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
646 OVS_MASKED(nh->md1.context[i], key.context[i],
649 memcpy(flow_key->nsh.context, nh->md1.context,
650 sizeof(nh->md1.context));
653 memset(flow_key->nsh.context, 0,
654 sizeof(flow_key->nsh.context));
659 skb_postpush_rcsum(skb, nh, length);
663 /* Must follow skb_ensure_writable() since that can move the skb data. */
664 static void set_tp_port(struct sk_buff *skb, __be16 *port,
665 __be16 new_port, __sum16 *check)
667 ovs_ct_clear(skb, NULL);
668 inet_proto_csum_replace2(check, skb, *port, new_port, false);
672 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
673 const struct ovs_key_udp *key,
674 const struct ovs_key_udp *mask)
680 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
681 sizeof(struct udphdr));
686 /* Either of the masks is non-zero, so do not bother checking them. */
687 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
688 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
690 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
691 if (likely(src != uh->source)) {
692 set_tp_port(skb, &uh->source, src, &uh->check);
693 flow_key->tp.src = src;
695 if (likely(dst != uh->dest)) {
696 set_tp_port(skb, &uh->dest, dst, &uh->check);
697 flow_key->tp.dst = dst;
700 if (unlikely(!uh->check))
701 uh->check = CSUM_MANGLED_0;
705 flow_key->tp.src = src;
706 flow_key->tp.dst = dst;
707 ovs_ct_clear(skb, NULL);
715 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
716 const struct ovs_key_tcp *key,
717 const struct ovs_key_tcp *mask)
723 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
724 sizeof(struct tcphdr));
729 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
730 if (likely(src != th->source)) {
731 set_tp_port(skb, &th->source, src, &th->check);
732 flow_key->tp.src = src;
734 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
735 if (likely(dst != th->dest)) {
736 set_tp_port(skb, &th->dest, dst, &th->check);
737 flow_key->tp.dst = dst;
744 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
745 const struct ovs_key_sctp *key,
746 const struct ovs_key_sctp *mask)
748 unsigned int sctphoff = skb_transport_offset(skb);
750 __le32 old_correct_csum, new_csum, old_csum;
753 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
758 old_csum = sh->checksum;
759 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
761 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
762 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
764 new_csum = sctp_compute_cksum(skb, sctphoff);
766 /* Carry any checksum errors through. */
767 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
770 ovs_ct_clear(skb, NULL);
772 flow_key->tp.src = sh->source;
773 flow_key->tp.dst = sh->dest;
778 static int ovs_vport_output(struct net *net, struct sock *sk,
781 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
782 struct vport *vport = data->vport;
784 if (skb_cow_head(skb, data->l2_len) < 0) {
785 kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
789 __skb_dst_copy(skb, data->dst);
790 *OVS_CB(skb) = data->cb;
791 skb->inner_protocol = data->inner_protocol;
792 if (data->vlan_tci & VLAN_CFI_MASK)
793 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
795 __vlan_hwaccel_clear_tag(skb);
797 /* Reconstruct the MAC header. */
798 skb_push(skb, data->l2_len);
799 memcpy(skb->data, &data->l2_data, data->l2_len);
800 skb_postpush_rcsum(skb, skb->data, data->l2_len);
801 skb_reset_mac_header(skb);
803 if (eth_p_mpls(skb->protocol)) {
804 skb->inner_network_header = skb->network_header;
805 skb_set_network_header(skb, data->network_offset);
806 skb_reset_mac_len(skb);
809 ovs_vport_send(vport, skb, data->mac_proto);
814 ovs_dst_get_mtu(const struct dst_entry *dst)
816 return dst->dev->mtu;
819 static struct dst_ops ovs_dst_ops = {
821 .mtu = ovs_dst_get_mtu,
824 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
825 * ovs_vport_output(), which is called once per fragmented packet.
827 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
828 u16 orig_network_offset, u8 mac_proto)
830 unsigned int hlen = skb_network_offset(skb);
831 struct ovs_frag_data *data;
833 data = this_cpu_ptr(&ovs_frag_data_storage);
834 data->dst = skb->_skb_refdst;
836 data->cb = *OVS_CB(skb);
837 data->inner_protocol = skb->inner_protocol;
838 data->network_offset = orig_network_offset;
839 if (skb_vlan_tag_present(skb))
840 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
843 data->vlan_proto = skb->vlan_proto;
844 data->mac_proto = mac_proto;
846 memcpy(&data->l2_data, skb->data, hlen);
848 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
852 static void ovs_fragment(struct net *net, struct vport *vport,
853 struct sk_buff *skb, u16 mru,
854 struct sw_flow_key *key)
856 enum ovs_drop_reason reason;
857 u16 orig_network_offset = 0;
859 if (eth_p_mpls(skb->protocol)) {
860 orig_network_offset = skb_network_offset(skb);
861 skb->network_header = skb->inner_network_header;
864 if (skb_network_offset(skb) > MAX_L2_LEN) {
865 OVS_NLERR(1, "L2 header too long to fragment");
866 reason = OVS_DROP_FRAG_L2_TOO_LONG;
870 if (key->eth.type == htons(ETH_P_IP)) {
871 struct rtable ovs_rt = { 0 };
872 unsigned long orig_dst;
874 prepare_frag(vport, skb, orig_network_offset,
875 ovs_key_mac_proto(key));
876 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
877 DST_OBSOLETE_NONE, DST_NOCOUNT);
878 ovs_rt.dst.dev = vport->dev;
880 orig_dst = skb->_skb_refdst;
881 skb_dst_set_noref(skb, &ovs_rt.dst);
882 IPCB(skb)->frag_max_size = mru;
884 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
885 refdst_drop(orig_dst);
886 } else if (key->eth.type == htons(ETH_P_IPV6)) {
887 unsigned long orig_dst;
888 struct rt6_info ovs_rt;
890 prepare_frag(vport, skb, orig_network_offset,
891 ovs_key_mac_proto(key));
892 memset(&ovs_rt, 0, sizeof(ovs_rt));
893 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
894 DST_OBSOLETE_NONE, DST_NOCOUNT);
895 ovs_rt.dst.dev = vport->dev;
897 orig_dst = skb->_skb_refdst;
898 skb_dst_set_noref(skb, &ovs_rt.dst);
899 IP6CB(skb)->frag_max_size = mru;
901 ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
902 refdst_drop(orig_dst);
904 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
905 ovs_vport_name(vport), ntohs(key->eth.type), mru,
907 reason = OVS_DROP_FRAG_INVALID_PROTO;
913 ovs_kfree_skb_reason(skb, reason);
916 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
917 struct sw_flow_key *key)
919 struct vport *vport = ovs_vport_rcu(dp, out_port);
921 if (likely(vport && netif_carrier_ok(vport->dev))) {
922 u16 mru = OVS_CB(skb)->mru;
923 u32 cutlen = OVS_CB(skb)->cutlen;
925 if (unlikely(cutlen > 0)) {
926 if (skb->len - cutlen > ovs_mac_header_len(key))
927 pskb_trim(skb, skb->len - cutlen);
929 pskb_trim(skb, ovs_mac_header_len(key));
933 (skb->len <= mru + vport->dev->hard_header_len))) {
934 ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
935 } else if (mru <= vport->dev->mtu) {
936 struct net *net = read_pnet(&dp->net);
938 ovs_fragment(net, vport, skb, mru, key);
940 kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
943 kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
947 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
948 struct sw_flow_key *key, const struct nlattr *attr,
949 const struct nlattr *actions, int actions_len,
952 struct dp_upcall_info upcall;
953 const struct nlattr *a;
956 memset(&upcall, 0, sizeof(upcall));
957 upcall.cmd = OVS_PACKET_CMD_ACTION;
958 upcall.mru = OVS_CB(skb)->mru;
960 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
961 a = nla_next(a, &rem)) {
962 switch (nla_type(a)) {
963 case OVS_USERSPACE_ATTR_USERDATA:
967 case OVS_USERSPACE_ATTR_PID:
968 if (dp->user_features &
969 OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
971 ovs_dp_get_upcall_portid(dp,
974 upcall.portid = nla_get_u32(a);
977 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
978 /* Get out tunnel info. */
981 vport = ovs_vport_rcu(dp, nla_get_u32(a));
985 err = dev_fill_metadata_dst(vport->dev, skb);
987 upcall.egress_tun_info = skb_tunnel_info(skb);
993 case OVS_USERSPACE_ATTR_ACTIONS: {
994 /* Include actions. */
995 upcall.actions = actions;
996 upcall.actions_len = actions_len;
1000 } /* End of switch. */
1003 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1006 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1007 struct sw_flow_key *key,
1008 const struct nlattr *attr)
1010 /* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1011 struct nlattr *actions = nla_data(attr);
1013 if (nla_len(actions))
1014 return clone_execute(dp, skb, key, 0, nla_data(actions),
1015 nla_len(actions), true, false);
1017 ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
1021 /* When 'last' is true, sample() should always consume the 'skb'.
1022 * Otherwise, sample() should keep 'skb' intact regardless what
1023 * actions are executed within sample().
1025 static int sample(struct datapath *dp, struct sk_buff *skb,
1026 struct sw_flow_key *key, const struct nlattr *attr,
1029 struct nlattr *actions;
1030 struct nlattr *sample_arg;
1031 int rem = nla_len(attr);
1032 const struct sample_arg *arg;
1033 bool clone_flow_key;
1035 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1036 sample_arg = nla_data(attr);
1037 arg = nla_data(sample_arg);
1038 actions = nla_next(sample_arg, &rem);
1040 if ((arg->probability != U32_MAX) &&
1041 (!arg->probability || get_random_u32() > arg->probability)) {
1043 ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1047 clone_flow_key = !arg->exec;
1048 return clone_execute(dp, skb, key, 0, actions, rem, last,
1052 /* When 'last' is true, clone() should always consume the 'skb'.
1053 * Otherwise, clone() should keep 'skb' intact regardless what
1054 * actions are executed within clone().
1056 static int clone(struct datapath *dp, struct sk_buff *skb,
1057 struct sw_flow_key *key, const struct nlattr *attr,
1060 struct nlattr *actions;
1061 struct nlattr *clone_arg;
1062 int rem = nla_len(attr);
1063 bool dont_clone_flow_key;
1065 /* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1066 clone_arg = nla_data(attr);
1067 dont_clone_flow_key = nla_get_u32(clone_arg);
1068 actions = nla_next(clone_arg, &rem);
1070 return clone_execute(dp, skb, key, 0, actions, rem, last,
1071 !dont_clone_flow_key);
1074 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1075 const struct nlattr *attr)
1077 struct ovs_action_hash *hash_act = nla_data(attr);
1080 if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
1081 /* OVS_HASH_ALG_L4 hasing type. */
1082 hash = skb_get_hash(skb);
1083 } else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
1084 /* OVS_HASH_ALG_SYM_L4 hashing type. NOTE: this doesn't
1085 * extend past an encapsulated header.
1087 hash = __skb_get_hash_symmetric(skb);
1090 hash = jhash_1word(hash, hash_act->hash_basis);
1094 key->ovs_flow_hash = hash;
1097 static int execute_set_action(struct sk_buff *skb,
1098 struct sw_flow_key *flow_key,
1099 const struct nlattr *a)
1101 /* Only tunnel set execution is supported without a mask. */
1102 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1103 struct ovs_tunnel_info *tun = nla_data(a);
1106 dst_hold((struct dst_entry *)tun->tun_dst);
1107 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1114 /* Mask is at the midpoint of the data. */
1115 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1117 static int execute_masked_set_action(struct sk_buff *skb,
1118 struct sw_flow_key *flow_key,
1119 const struct nlattr *a)
1123 switch (nla_type(a)) {
1124 case OVS_KEY_ATTR_PRIORITY:
1125 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1126 *get_mask(a, u32 *));
1127 flow_key->phy.priority = skb->priority;
1130 case OVS_KEY_ATTR_SKB_MARK:
1131 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1132 flow_key->phy.skb_mark = skb->mark;
1135 case OVS_KEY_ATTR_TUNNEL_INFO:
1136 /* Masked data not supported for tunnel. */
1140 case OVS_KEY_ATTR_ETHERNET:
1141 err = set_eth_addr(skb, flow_key, nla_data(a),
1142 get_mask(a, struct ovs_key_ethernet *));
1145 case OVS_KEY_ATTR_NSH:
1146 err = set_nsh(skb, flow_key, a);
1149 case OVS_KEY_ATTR_IPV4:
1150 err = set_ipv4(skb, flow_key, nla_data(a),
1151 get_mask(a, struct ovs_key_ipv4 *));
1154 case OVS_KEY_ATTR_IPV6:
1155 err = set_ipv6(skb, flow_key, nla_data(a),
1156 get_mask(a, struct ovs_key_ipv6 *));
1159 case OVS_KEY_ATTR_TCP:
1160 err = set_tcp(skb, flow_key, nla_data(a),
1161 get_mask(a, struct ovs_key_tcp *));
1164 case OVS_KEY_ATTR_UDP:
1165 err = set_udp(skb, flow_key, nla_data(a),
1166 get_mask(a, struct ovs_key_udp *));
1169 case OVS_KEY_ATTR_SCTP:
1170 err = set_sctp(skb, flow_key, nla_data(a),
1171 get_mask(a, struct ovs_key_sctp *));
1174 case OVS_KEY_ATTR_MPLS:
1175 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1179 case OVS_KEY_ATTR_CT_STATE:
1180 case OVS_KEY_ATTR_CT_ZONE:
1181 case OVS_KEY_ATTR_CT_MARK:
1182 case OVS_KEY_ATTR_CT_LABELS:
1183 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1184 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1192 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1193 struct sw_flow_key *key,
1194 const struct nlattr *a, bool last)
1198 if (!is_flow_key_valid(key)) {
1201 err = ovs_flow_key_update(skb, key);
1205 BUG_ON(!is_flow_key_valid(key));
1207 recirc_id = nla_get_u32(a);
1208 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1211 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1212 struct sw_flow_key *key,
1213 const struct nlattr *attr, bool last)
1215 struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1216 const struct nlattr *actions, *cpl_arg;
1217 int len, max_len, rem = nla_len(attr);
1218 const struct check_pkt_len_arg *arg;
1219 bool clone_flow_key;
1221 /* The first netlink attribute in 'attr' is always
1222 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1224 cpl_arg = nla_data(attr);
1225 arg = nla_data(cpl_arg);
1227 len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1228 max_len = arg->pkt_len;
1230 if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1232 /* Second netlink attribute in 'attr' is always
1233 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1235 actions = nla_next(cpl_arg, &rem);
1236 clone_flow_key = !arg->exec_for_lesser_equal;
1238 /* Third netlink attribute in 'attr' is always
1239 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1241 actions = nla_next(cpl_arg, &rem);
1242 actions = nla_next(actions, &rem);
1243 clone_flow_key = !arg->exec_for_greater;
1246 return clone_execute(dp, skb, key, 0, nla_data(actions),
1247 nla_len(actions), last, clone_flow_key);
1250 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1254 if (skb->protocol == htons(ETH_P_IPV6)) {
1257 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1264 if (nh->hop_limit <= 1)
1265 return -EHOSTUNREACH;
1267 key->ip.ttl = --nh->hop_limit;
1268 } else if (skb->protocol == htons(ETH_P_IP)) {
1272 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1279 return -EHOSTUNREACH;
1281 old_ttl = nh->ttl--;
1282 csum_replace2(&nh->check, htons(old_ttl << 8),
1283 htons(nh->ttl << 8));
1284 key->ip.ttl = nh->ttl;
1289 /* Execute a list of actions against 'skb'. */
1290 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1291 struct sw_flow_key *key,
1292 const struct nlattr *attr, int len)
1294 const struct nlattr *a;
1297 for (a = attr, rem = len; rem > 0;
1298 a = nla_next(a, &rem)) {
1301 if (trace_ovs_do_execute_action_enabled())
1302 trace_ovs_do_execute_action(dp, skb, key, a, rem);
1304 /* Actions that rightfully have to consume the skb should do it
1305 * and return directly.
1307 switch (nla_type(a)) {
1308 case OVS_ACTION_ATTR_OUTPUT: {
1309 int port = nla_get_u32(a);
1310 struct sk_buff *clone;
1312 /* Every output action needs a separate clone
1313 * of 'skb', In case the output action is the
1314 * last action, cloning can be avoided.
1316 if (nla_is_last(a, rem)) {
1317 do_output(dp, skb, port, key);
1318 /* 'skb' has been used for output.
1323 clone = skb_clone(skb, GFP_ATOMIC);
1325 do_output(dp, clone, port, key);
1326 OVS_CB(skb)->cutlen = 0;
1330 case OVS_ACTION_ATTR_TRUNC: {
1331 struct ovs_action_trunc *trunc = nla_data(a);
1333 if (skb->len > trunc->max_len)
1334 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1338 case OVS_ACTION_ATTR_USERSPACE:
1339 output_userspace(dp, skb, key, a, attr,
1340 len, OVS_CB(skb)->cutlen);
1341 OVS_CB(skb)->cutlen = 0;
1342 if (nla_is_last(a, rem)) {
1348 case OVS_ACTION_ATTR_HASH:
1349 execute_hash(skb, key, a);
1352 case OVS_ACTION_ATTR_PUSH_MPLS: {
1353 struct ovs_action_push_mpls *mpls = nla_data(a);
1355 err = push_mpls(skb, key, mpls->mpls_lse,
1356 mpls->mpls_ethertype, skb->mac_len);
1359 case OVS_ACTION_ATTR_ADD_MPLS: {
1360 struct ovs_action_add_mpls *mpls = nla_data(a);
1363 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1364 mac_len = skb->mac_len;
1366 err = push_mpls(skb, key, mpls->mpls_lse,
1367 mpls->mpls_ethertype, mac_len);
1370 case OVS_ACTION_ATTR_POP_MPLS:
1371 err = pop_mpls(skb, key, nla_get_be16(a));
1374 case OVS_ACTION_ATTR_PUSH_VLAN:
1375 err = push_vlan(skb, key, nla_data(a));
1378 case OVS_ACTION_ATTR_POP_VLAN:
1379 err = pop_vlan(skb, key);
1382 case OVS_ACTION_ATTR_RECIRC: {
1383 bool last = nla_is_last(a, rem);
1385 err = execute_recirc(dp, skb, key, a, last);
1387 /* If this is the last action, the skb has
1388 * been consumed or freed.
1389 * Return immediately.
1396 case OVS_ACTION_ATTR_SET:
1397 err = execute_set_action(skb, key, nla_data(a));
1400 case OVS_ACTION_ATTR_SET_MASKED:
1401 case OVS_ACTION_ATTR_SET_TO_MASKED:
1402 err = execute_masked_set_action(skb, key, nla_data(a));
1405 case OVS_ACTION_ATTR_SAMPLE: {
1406 bool last = nla_is_last(a, rem);
1408 err = sample(dp, skb, key, a, last);
1415 case OVS_ACTION_ATTR_CT:
1416 if (!is_flow_key_valid(key)) {
1417 err = ovs_flow_key_update(skb, key);
1422 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1425 /* Hide stolen IP fragments from user space. */
1427 return err == -EINPROGRESS ? 0 : err;
1430 case OVS_ACTION_ATTR_CT_CLEAR:
1431 err = ovs_ct_clear(skb, key);
1434 case OVS_ACTION_ATTR_PUSH_ETH:
1435 err = push_eth(skb, key, nla_data(a));
1438 case OVS_ACTION_ATTR_POP_ETH:
1439 err = pop_eth(skb, key);
1442 case OVS_ACTION_ATTR_PUSH_NSH: {
1443 u8 buffer[NSH_HDR_MAX_LEN];
1444 struct nshhdr *nh = (struct nshhdr *)buffer;
1446 err = nsh_hdr_from_nlattr(nla_data(a), nh,
1450 err = push_nsh(skb, key, nh);
1454 case OVS_ACTION_ATTR_POP_NSH:
1455 err = pop_nsh(skb, key);
1458 case OVS_ACTION_ATTR_METER:
1459 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1460 ovs_kfree_skb_reason(skb, OVS_DROP_METER);
1465 case OVS_ACTION_ATTR_CLONE: {
1466 bool last = nla_is_last(a, rem);
1468 err = clone(dp, skb, key, a, last);
1475 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1476 bool last = nla_is_last(a, rem);
1478 err = execute_check_pkt_len(dp, skb, key, a, last);
1485 case OVS_ACTION_ATTR_DEC_TTL:
1486 err = execute_dec_ttl(skb, key);
1487 if (err == -EHOSTUNREACH)
1488 return dec_ttl_exception_handler(dp, skb,
1492 case OVS_ACTION_ATTR_DROP: {
1493 enum ovs_drop_reason reason = nla_get_u32(a)
1494 ? OVS_DROP_EXPLICIT_WITH_ERROR
1495 : OVS_DROP_EXPLICIT;
1497 ovs_kfree_skb_reason(skb, reason);
1502 if (unlikely(err)) {
1503 ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
1508 ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1512 /* Execute the actions on the clone of the packet. The effect of the
1513 * execution does not affect the original 'skb' nor the original 'key'.
1515 * The execution may be deferred in case the actions can not be executed
1518 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1519 struct sw_flow_key *key, u32 recirc_id,
1520 const struct nlattr *actions, int len,
1521 bool last, bool clone_flow_key)
1523 struct deferred_action *da;
1524 struct sw_flow_key *clone;
1526 skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1528 /* Out of memory, skip this action.
1533 /* When clone_flow_key is false, the 'key' will not be change
1534 * by the actions, then the 'key' can be used directly.
1535 * Otherwise, try to clone key from the next recursion level of
1536 * 'flow_keys'. If clone is successful, execute the actions
1537 * without deferring.
1539 clone = clone_flow_key ? clone_key(key) : key;
1543 if (actions) { /* Sample action */
1545 __this_cpu_inc(exec_actions_level);
1547 err = do_execute_actions(dp, skb, clone,
1551 __this_cpu_dec(exec_actions_level);
1552 } else { /* Recirc action */
1553 clone->recirc_id = recirc_id;
1554 ovs_dp_process_packet(skb, clone);
1559 /* Out of 'flow_keys' space. Defer actions */
1560 da = add_deferred_actions(skb, key, actions, len);
1562 if (!actions) { /* Recirc action */
1564 key->recirc_id = recirc_id;
1567 /* Out of per CPU action FIFO space. Drop the 'skb' and
1570 ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
1572 if (net_ratelimit()) {
1573 if (actions) { /* Sample action */
1574 pr_warn("%s: deferred action limit reached, drop sample action\n",
1576 } else { /* Recirc action */
1577 pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1578 ovs_dp_name(dp), recirc_id);
1585 static void process_deferred_actions(struct datapath *dp)
1587 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1589 /* Do not touch the FIFO in case there is no deferred actions. */
1590 if (action_fifo_is_empty(fifo))
1593 /* Finishing executing all deferred actions. */
1595 struct deferred_action *da = action_fifo_get(fifo);
1596 struct sk_buff *skb = da->skb;
1597 struct sw_flow_key *key = &da->pkt_key;
1598 const struct nlattr *actions = da->actions;
1599 int actions_len = da->actions_len;
1602 do_execute_actions(dp, skb, key, actions, actions_len);
1604 ovs_dp_process_packet(skb, key);
1605 } while (!action_fifo_is_empty(fifo));
1607 /* Reset FIFO for the next packet. */
1608 action_fifo_init(fifo);
1611 /* Execute a list of actions against 'skb'. */
1612 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1613 const struct sw_flow_actions *acts,
1614 struct sw_flow_key *key)
1618 level = __this_cpu_inc_return(exec_actions_level);
1619 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1620 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1622 ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
1627 OVS_CB(skb)->acts_origlen = acts->orig_len;
1628 err = do_execute_actions(dp, skb, key,
1629 acts->actions, acts->actions_len);
1632 process_deferred_actions(dp);
1635 __this_cpu_dec(exec_actions_level);
1639 int action_fifos_init(void)
1641 action_fifos = alloc_percpu(struct action_fifo);
1645 flow_keys = alloc_percpu(struct action_flow_keys);
1647 free_percpu(action_fifos);
1654 void action_fifos_exit(void)
1656 free_percpu(action_fifos);
1657 free_percpu(flow_keys);