Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[platform/kernel/linux-starfive.git] / net / netfilter / nf_conntrack_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_l4proto.h>
38 #include <net/netfilter/nf_conntrack_expect.h>
39 #include <net/netfilter/nf_conntrack_helper.h>
40 #include <net/netfilter/nf_conntrack_seqadj.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_conntrack_labels.h>
49 #include <net/netfilter/nf_conntrack_synproxy.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_helper.h>
52 #include <net/netns/hash.h>
53 #include <net/ip.h>
54
55 #include "nf_internals.h"
56
57 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62
63 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65
66 struct conntrack_gc_work {
67         struct delayed_work     dwork;
68         u32                     next_bucket;
69         bool                    exiting;
70         bool                    early_drop;
71 };
72
73 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
74 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
75 static __read_mostly bool nf_conntrack_locks_all;
76
77 /* serialize hash resizes and nf_ct_iterate_cleanup */
78 static DEFINE_MUTEX(nf_conntrack_mutex);
79
80 #define GC_SCAN_INTERVAL        (120u * HZ)
81 #define GC_SCAN_MAX_DURATION    msecs_to_jiffies(10)
82
83 #define MIN_CHAINLEN    8u
84 #define MAX_CHAINLEN    (32u - MIN_CHAINLEN)
85
86 static struct conntrack_gc_work conntrack_gc_work;
87
88 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
89 {
90         /* 1) Acquire the lock */
91         spin_lock(lock);
92
93         /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
94          * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
95          */
96         if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
97                 return;
98
99         /* fast path failed, unlock */
100         spin_unlock(lock);
101
102         /* Slow path 1) get global lock */
103         spin_lock(&nf_conntrack_locks_all_lock);
104
105         /* Slow path 2) get the lock we want */
106         spin_lock(lock);
107
108         /* Slow path 3) release the global lock */
109         spin_unlock(&nf_conntrack_locks_all_lock);
110 }
111 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
112
113 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
114 {
115         h1 %= CONNTRACK_LOCKS;
116         h2 %= CONNTRACK_LOCKS;
117         spin_unlock(&nf_conntrack_locks[h1]);
118         if (h1 != h2)
119                 spin_unlock(&nf_conntrack_locks[h2]);
120 }
121
122 /* return true if we need to recompute hashes (in case hash table was resized) */
123 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
124                                      unsigned int h2, unsigned int sequence)
125 {
126         h1 %= CONNTRACK_LOCKS;
127         h2 %= CONNTRACK_LOCKS;
128         if (h1 <= h2) {
129                 nf_conntrack_lock(&nf_conntrack_locks[h1]);
130                 if (h1 != h2)
131                         spin_lock_nested(&nf_conntrack_locks[h2],
132                                          SINGLE_DEPTH_NESTING);
133         } else {
134                 nf_conntrack_lock(&nf_conntrack_locks[h2]);
135                 spin_lock_nested(&nf_conntrack_locks[h1],
136                                  SINGLE_DEPTH_NESTING);
137         }
138         if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
139                 nf_conntrack_double_unlock(h1, h2);
140                 return true;
141         }
142         return false;
143 }
144
145 static void nf_conntrack_all_lock(void)
146         __acquires(&nf_conntrack_locks_all_lock)
147 {
148         int i;
149
150         spin_lock(&nf_conntrack_locks_all_lock);
151
152         /* For nf_contrack_locks_all, only the latest time when another
153          * CPU will see an update is controlled, by the "release" of the
154          * spin_lock below.
155          * The earliest time is not controlled, an thus KCSAN could detect
156          * a race when nf_conntract_lock() reads the variable.
157          * WRITE_ONCE() is used to ensure the compiler will not
158          * optimize the write.
159          */
160         WRITE_ONCE(nf_conntrack_locks_all, true);
161
162         for (i = 0; i < CONNTRACK_LOCKS; i++) {
163                 spin_lock(&nf_conntrack_locks[i]);
164
165                 /* This spin_unlock provides the "release" to ensure that
166                  * nf_conntrack_locks_all==true is visible to everyone that
167                  * acquired spin_lock(&nf_conntrack_locks[]).
168                  */
169                 spin_unlock(&nf_conntrack_locks[i]);
170         }
171 }
172
173 static void nf_conntrack_all_unlock(void)
174         __releases(&nf_conntrack_locks_all_lock)
175 {
176         /* All prior stores must be complete before we clear
177          * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
178          * might observe the false value but not the entire
179          * critical section.
180          * It pairs with the smp_load_acquire() in nf_conntrack_lock()
181          */
182         smp_store_release(&nf_conntrack_locks_all, false);
183         spin_unlock(&nf_conntrack_locks_all_lock);
184 }
185
186 unsigned int nf_conntrack_htable_size __read_mostly;
187 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
188
189 unsigned int nf_conntrack_max __read_mostly;
190 EXPORT_SYMBOL_GPL(nf_conntrack_max);
191 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
192 static siphash_key_t nf_conntrack_hash_rnd __read_mostly;
193
194 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
195                               unsigned int zoneid,
196                               const struct net *net)
197 {
198         struct {
199                 struct nf_conntrack_man src;
200                 union nf_inet_addr dst_addr;
201                 unsigned int zone;
202                 u32 net_mix;
203                 u16 dport;
204                 u16 proto;
205         } __aligned(SIPHASH_ALIGNMENT) combined;
206
207         get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
208
209         memset(&combined, 0, sizeof(combined));
210
211         /* The direction must be ignored, so handle usable members manually. */
212         combined.src = tuple->src;
213         combined.dst_addr = tuple->dst.u3;
214         combined.zone = zoneid;
215         combined.net_mix = net_hash_mix(net);
216         combined.dport = (__force __u16)tuple->dst.u.all;
217         combined.proto = tuple->dst.protonum;
218
219         return (u32)siphash(&combined, sizeof(combined), &nf_conntrack_hash_rnd);
220 }
221
222 static u32 scale_hash(u32 hash)
223 {
224         return reciprocal_scale(hash, nf_conntrack_htable_size);
225 }
226
227 static u32 __hash_conntrack(const struct net *net,
228                             const struct nf_conntrack_tuple *tuple,
229                             unsigned int zoneid,
230                             unsigned int size)
231 {
232         return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
233 }
234
235 static u32 hash_conntrack(const struct net *net,
236                           const struct nf_conntrack_tuple *tuple,
237                           unsigned int zoneid)
238 {
239         return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
240 }
241
242 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
243                                   unsigned int dataoff,
244                                   struct nf_conntrack_tuple *tuple)
245 {       struct {
246                 __be16 sport;
247                 __be16 dport;
248         } _inet_hdr, *inet_hdr;
249
250         /* Actually only need first 4 bytes to get ports. */
251         inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
252         if (!inet_hdr)
253                 return false;
254
255         tuple->src.u.udp.port = inet_hdr->sport;
256         tuple->dst.u.udp.port = inet_hdr->dport;
257         return true;
258 }
259
260 static bool
261 nf_ct_get_tuple(const struct sk_buff *skb,
262                 unsigned int nhoff,
263                 unsigned int dataoff,
264                 u_int16_t l3num,
265                 u_int8_t protonum,
266                 struct net *net,
267                 struct nf_conntrack_tuple *tuple)
268 {
269         unsigned int size;
270         const __be32 *ap;
271         __be32 _addrs[8];
272
273         memset(tuple, 0, sizeof(*tuple));
274
275         tuple->src.l3num = l3num;
276         switch (l3num) {
277         case NFPROTO_IPV4:
278                 nhoff += offsetof(struct iphdr, saddr);
279                 size = 2 * sizeof(__be32);
280                 break;
281         case NFPROTO_IPV6:
282                 nhoff += offsetof(struct ipv6hdr, saddr);
283                 size = sizeof(_addrs);
284                 break;
285         default:
286                 return true;
287         }
288
289         ap = skb_header_pointer(skb, nhoff, size, _addrs);
290         if (!ap)
291                 return false;
292
293         switch (l3num) {
294         case NFPROTO_IPV4:
295                 tuple->src.u3.ip = ap[0];
296                 tuple->dst.u3.ip = ap[1];
297                 break;
298         case NFPROTO_IPV6:
299                 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
300                 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
301                 break;
302         }
303
304         tuple->dst.protonum = protonum;
305         tuple->dst.dir = IP_CT_DIR_ORIGINAL;
306
307         switch (protonum) {
308 #if IS_ENABLED(CONFIG_IPV6)
309         case IPPROTO_ICMPV6:
310                 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
311 #endif
312         case IPPROTO_ICMP:
313                 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
314 #ifdef CONFIG_NF_CT_PROTO_GRE
315         case IPPROTO_GRE:
316                 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
317 #endif
318         case IPPROTO_TCP:
319         case IPPROTO_UDP: /* fallthrough */
320                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
321 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
322         case IPPROTO_UDPLITE:
323                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
324 #endif
325 #ifdef CONFIG_NF_CT_PROTO_SCTP
326         case IPPROTO_SCTP:
327                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
328 #endif
329 #ifdef CONFIG_NF_CT_PROTO_DCCP
330         case IPPROTO_DCCP:
331                 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
332 #endif
333         default:
334                 break;
335         }
336
337         return true;
338 }
339
340 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
341                             u_int8_t *protonum)
342 {
343         int dataoff = -1;
344         const struct iphdr *iph;
345         struct iphdr _iph;
346
347         iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
348         if (!iph)
349                 return -1;
350
351         /* Conntrack defragments packets, we might still see fragments
352          * inside ICMP packets though.
353          */
354         if (iph->frag_off & htons(IP_OFFSET))
355                 return -1;
356
357         dataoff = nhoff + (iph->ihl << 2);
358         *protonum = iph->protocol;
359
360         /* Check bogus IP headers */
361         if (dataoff > skb->len) {
362                 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
363                          nhoff, iph->ihl << 2, skb->len);
364                 return -1;
365         }
366         return dataoff;
367 }
368
369 #if IS_ENABLED(CONFIG_IPV6)
370 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
371                             u8 *protonum)
372 {
373         int protoff = -1;
374         unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
375         __be16 frag_off;
376         u8 nexthdr;
377
378         if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
379                           &nexthdr, sizeof(nexthdr)) != 0) {
380                 pr_debug("can't get nexthdr\n");
381                 return -1;
382         }
383         protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
384         /*
385          * (protoff == skb->len) means the packet has not data, just
386          * IPv6 and possibly extensions headers, but it is tracked anyway
387          */
388         if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
389                 pr_debug("can't find proto in pkt\n");
390                 return -1;
391         }
392
393         *protonum = nexthdr;
394         return protoff;
395 }
396 #endif
397
398 static int get_l4proto(const struct sk_buff *skb,
399                        unsigned int nhoff, u8 pf, u8 *l4num)
400 {
401         switch (pf) {
402         case NFPROTO_IPV4:
403                 return ipv4_get_l4proto(skb, nhoff, l4num);
404 #if IS_ENABLED(CONFIG_IPV6)
405         case NFPROTO_IPV6:
406                 return ipv6_get_l4proto(skb, nhoff, l4num);
407 #endif
408         default:
409                 *l4num = 0;
410                 break;
411         }
412         return -1;
413 }
414
415 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
416                        u_int16_t l3num,
417                        struct net *net, struct nf_conntrack_tuple *tuple)
418 {
419         u8 protonum;
420         int protoff;
421
422         protoff = get_l4proto(skb, nhoff, l3num, &protonum);
423         if (protoff <= 0)
424                 return false;
425
426         return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
427 }
428 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
429
430 bool
431 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
432                    const struct nf_conntrack_tuple *orig)
433 {
434         memset(inverse, 0, sizeof(*inverse));
435
436         inverse->src.l3num = orig->src.l3num;
437
438         switch (orig->src.l3num) {
439         case NFPROTO_IPV4:
440                 inverse->src.u3.ip = orig->dst.u3.ip;
441                 inverse->dst.u3.ip = orig->src.u3.ip;
442                 break;
443         case NFPROTO_IPV6:
444                 inverse->src.u3.in6 = orig->dst.u3.in6;
445                 inverse->dst.u3.in6 = orig->src.u3.in6;
446                 break;
447         default:
448                 break;
449         }
450
451         inverse->dst.dir = !orig->dst.dir;
452
453         inverse->dst.protonum = orig->dst.protonum;
454
455         switch (orig->dst.protonum) {
456         case IPPROTO_ICMP:
457                 return nf_conntrack_invert_icmp_tuple(inverse, orig);
458 #if IS_ENABLED(CONFIG_IPV6)
459         case IPPROTO_ICMPV6:
460                 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
461 #endif
462         }
463
464         inverse->src.u.all = orig->dst.u.all;
465         inverse->dst.u.all = orig->src.u.all;
466         return true;
467 }
468 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
469
470 /* Generate a almost-unique pseudo-id for a given conntrack.
471  *
472  * intentionally doesn't re-use any of the seeds used for hash
473  * table location, we assume id gets exposed to userspace.
474  *
475  * Following nf_conn items do not change throughout lifetime
476  * of the nf_conn:
477  *
478  * 1. nf_conn address
479  * 2. nf_conn->master address (normally NULL)
480  * 3. the associated net namespace
481  * 4. the original direction tuple
482  */
483 u32 nf_ct_get_id(const struct nf_conn *ct)
484 {
485         static __read_mostly siphash_key_t ct_id_seed;
486         unsigned long a, b, c, d;
487
488         net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
489
490         a = (unsigned long)ct;
491         b = (unsigned long)ct->master;
492         c = (unsigned long)nf_ct_net(ct);
493         d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
494                                    sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
495                                    &ct_id_seed);
496 #ifdef CONFIG_64BIT
497         return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
498 #else
499         return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
500 #endif
501 }
502 EXPORT_SYMBOL_GPL(nf_ct_get_id);
503
504 static void
505 clean_from_lists(struct nf_conn *ct)
506 {
507         pr_debug("clean_from_lists(%p)\n", ct);
508         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
509         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
510
511         /* Destroy all pending expectations */
512         nf_ct_remove_expectations(ct);
513 }
514
515 /* must be called with local_bh_disable */
516 static void nf_ct_add_to_dying_list(struct nf_conn *ct)
517 {
518         struct ct_pcpu *pcpu;
519
520         /* add this conntrack to the (per cpu) dying list */
521         ct->cpu = smp_processor_id();
522         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
523
524         spin_lock(&pcpu->lock);
525         hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
526                              &pcpu->dying);
527         spin_unlock(&pcpu->lock);
528 }
529
530 /* must be called with local_bh_disable */
531 static void nf_ct_add_to_unconfirmed_list(struct nf_conn *ct)
532 {
533         struct ct_pcpu *pcpu;
534
535         /* add this conntrack to the (per cpu) unconfirmed list */
536         ct->cpu = smp_processor_id();
537         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
538
539         spin_lock(&pcpu->lock);
540         hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
541                              &pcpu->unconfirmed);
542         spin_unlock(&pcpu->lock);
543 }
544
545 /* must be called with local_bh_disable */
546 static void nf_ct_del_from_dying_or_unconfirmed_list(struct nf_conn *ct)
547 {
548         struct ct_pcpu *pcpu;
549
550         /* We overload first tuple to link into unconfirmed or dying list.*/
551         pcpu = per_cpu_ptr(nf_ct_net(ct)->ct.pcpu_lists, ct->cpu);
552
553         spin_lock(&pcpu->lock);
554         BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
555         hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
556         spin_unlock(&pcpu->lock);
557 }
558
559 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
560
561 /* Released via destroy_conntrack() */
562 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
563                                  const struct nf_conntrack_zone *zone,
564                                  gfp_t flags)
565 {
566         struct nf_conn *tmpl, *p;
567
568         if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
569                 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
570                 if (!tmpl)
571                         return NULL;
572
573                 p = tmpl;
574                 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
575                 if (tmpl != p) {
576                         tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
577                         tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
578                 }
579         } else {
580                 tmpl = kzalloc(sizeof(*tmpl), flags);
581                 if (!tmpl)
582                         return NULL;
583         }
584
585         tmpl->status = IPS_TEMPLATE;
586         write_pnet(&tmpl->ct_net, net);
587         nf_ct_zone_add(tmpl, zone);
588         atomic_set(&tmpl->ct_general.use, 0);
589
590         return tmpl;
591 }
592 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
593
594 void nf_ct_tmpl_free(struct nf_conn *tmpl)
595 {
596         nf_ct_ext_destroy(tmpl);
597
598         if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
599                 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
600         else
601                 kfree(tmpl);
602 }
603 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
604
605 static void destroy_gre_conntrack(struct nf_conn *ct)
606 {
607 #ifdef CONFIG_NF_CT_PROTO_GRE
608         struct nf_conn *master = ct->master;
609
610         if (master)
611                 nf_ct_gre_keymap_destroy(master);
612 #endif
613 }
614
615 static void
616 destroy_conntrack(struct nf_conntrack *nfct)
617 {
618         struct nf_conn *ct = (struct nf_conn *)nfct;
619
620         pr_debug("destroy_conntrack(%p)\n", ct);
621         WARN_ON(atomic_read(&nfct->use) != 0);
622
623         if (unlikely(nf_ct_is_template(ct))) {
624                 nf_ct_tmpl_free(ct);
625                 return;
626         }
627
628         if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
629                 destroy_gre_conntrack(ct);
630
631         local_bh_disable();
632         /* Expectations will have been removed in clean_from_lists,
633          * except TFTP can create an expectation on the first packet,
634          * before connection is in the list, so we need to clean here,
635          * too.
636          */
637         nf_ct_remove_expectations(ct);
638
639         nf_ct_del_from_dying_or_unconfirmed_list(ct);
640
641         local_bh_enable();
642
643         if (ct->master)
644                 nf_ct_put(ct->master);
645
646         pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
647         nf_conntrack_free(ct);
648 }
649
650 static void nf_ct_delete_from_lists(struct nf_conn *ct)
651 {
652         struct net *net = nf_ct_net(ct);
653         unsigned int hash, reply_hash;
654         unsigned int sequence;
655
656         nf_ct_helper_destroy(ct);
657
658         local_bh_disable();
659         do {
660                 sequence = read_seqcount_begin(&nf_conntrack_generation);
661                 hash = hash_conntrack(net,
662                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
663                                       nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
664                 reply_hash = hash_conntrack(net,
665                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
666                                            nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
667         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
668
669         clean_from_lists(ct);
670         nf_conntrack_double_unlock(hash, reply_hash);
671
672         nf_ct_add_to_dying_list(ct);
673
674         local_bh_enable();
675 }
676
677 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
678 {
679         struct nf_conn_tstamp *tstamp;
680         struct net *net;
681
682         if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
683                 return false;
684
685         tstamp = nf_conn_tstamp_find(ct);
686         if (tstamp) {
687                 s32 timeout = ct->timeout - nfct_time_stamp;
688
689                 tstamp->stop = ktime_get_real_ns();
690                 if (timeout < 0)
691                         tstamp->stop -= jiffies_to_nsecs(-timeout);
692         }
693
694         if (nf_conntrack_event_report(IPCT_DESTROY, ct,
695                                     portid, report) < 0) {
696                 /* destroy event was not delivered. nf_ct_put will
697                  * be done by event cache worker on redelivery.
698                  */
699                 nf_ct_delete_from_lists(ct);
700                 nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
701                 return false;
702         }
703
704         net = nf_ct_net(ct);
705         if (nf_conntrack_ecache_dwork_pending(net))
706                 nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
707         nf_ct_delete_from_lists(ct);
708         nf_ct_put(ct);
709         return true;
710 }
711 EXPORT_SYMBOL_GPL(nf_ct_delete);
712
713 static inline bool
714 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
715                 const struct nf_conntrack_tuple *tuple,
716                 const struct nf_conntrack_zone *zone,
717                 const struct net *net)
718 {
719         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
720
721         /* A conntrack can be recreated with the equal tuple,
722          * so we need to check that the conntrack is confirmed
723          */
724         return nf_ct_tuple_equal(tuple, &h->tuple) &&
725                nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
726                nf_ct_is_confirmed(ct) &&
727                net_eq(net, nf_ct_net(ct));
728 }
729
730 static inline bool
731 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
732 {
733         return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
734                                  &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
735                nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
736                                  &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
737                nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
738                nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
739                net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
740 }
741
742 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
743 static void nf_ct_gc_expired(struct nf_conn *ct)
744 {
745         if (!atomic_inc_not_zero(&ct->ct_general.use))
746                 return;
747
748         if (nf_ct_should_gc(ct))
749                 nf_ct_kill(ct);
750
751         nf_ct_put(ct);
752 }
753
754 /*
755  * Warning :
756  * - Caller must take a reference on returned object
757  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
758  */
759 static struct nf_conntrack_tuple_hash *
760 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
761                       const struct nf_conntrack_tuple *tuple, u32 hash)
762 {
763         struct nf_conntrack_tuple_hash *h;
764         struct hlist_nulls_head *ct_hash;
765         struct hlist_nulls_node *n;
766         unsigned int bucket, hsize;
767
768 begin:
769         nf_conntrack_get_ht(&ct_hash, &hsize);
770         bucket = reciprocal_scale(hash, hsize);
771
772         hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
773                 struct nf_conn *ct;
774
775                 ct = nf_ct_tuplehash_to_ctrack(h);
776                 if (nf_ct_is_expired(ct)) {
777                         nf_ct_gc_expired(ct);
778                         continue;
779                 }
780
781                 if (nf_ct_key_equal(h, tuple, zone, net))
782                         return h;
783         }
784         /*
785          * if the nulls value we got at the end of this lookup is
786          * not the expected one, we must restart lookup.
787          * We probably met an item that was moved to another chain.
788          */
789         if (get_nulls_value(n) != bucket) {
790                 NF_CT_STAT_INC_ATOMIC(net, search_restart);
791                 goto begin;
792         }
793
794         return NULL;
795 }
796
797 /* Find a connection corresponding to a tuple. */
798 static struct nf_conntrack_tuple_hash *
799 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
800                         const struct nf_conntrack_tuple *tuple, u32 hash)
801 {
802         struct nf_conntrack_tuple_hash *h;
803         struct nf_conn *ct;
804
805         rcu_read_lock();
806
807         h = ____nf_conntrack_find(net, zone, tuple, hash);
808         if (h) {
809                 /* We have a candidate that matches the tuple we're interested
810                  * in, try to obtain a reference and re-check tuple
811                  */
812                 ct = nf_ct_tuplehash_to_ctrack(h);
813                 if (likely(atomic_inc_not_zero(&ct->ct_general.use))) {
814                         if (likely(nf_ct_key_equal(h, tuple, zone, net)))
815                                 goto found;
816
817                         /* TYPESAFE_BY_RCU recycled the candidate */
818                         nf_ct_put(ct);
819                 }
820
821                 h = NULL;
822         }
823 found:
824         rcu_read_unlock();
825
826         return h;
827 }
828
829 struct nf_conntrack_tuple_hash *
830 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
831                       const struct nf_conntrack_tuple *tuple)
832 {
833         unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
834         struct nf_conntrack_tuple_hash *thash;
835
836         thash = __nf_conntrack_find_get(net, zone, tuple,
837                                         hash_conntrack_raw(tuple, zone_id, net));
838
839         if (thash)
840                 return thash;
841
842         rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
843         if (rid != zone_id)
844                 return __nf_conntrack_find_get(net, zone, tuple,
845                                                hash_conntrack_raw(tuple, rid, net));
846         return thash;
847 }
848 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
849
850 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
851                                        unsigned int hash,
852                                        unsigned int reply_hash)
853 {
854         hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
855                            &nf_conntrack_hash[hash]);
856         hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
857                            &nf_conntrack_hash[reply_hash]);
858 }
859
860 int
861 nf_conntrack_hash_check_insert(struct nf_conn *ct)
862 {
863         const struct nf_conntrack_zone *zone;
864         struct net *net = nf_ct_net(ct);
865         unsigned int hash, reply_hash;
866         struct nf_conntrack_tuple_hash *h;
867         struct hlist_nulls_node *n;
868         unsigned int max_chainlen;
869         unsigned int chainlen = 0;
870         unsigned int sequence;
871         int err = -EEXIST;
872
873         zone = nf_ct_zone(ct);
874
875         local_bh_disable();
876         do {
877                 sequence = read_seqcount_begin(&nf_conntrack_generation);
878                 hash = hash_conntrack(net,
879                                       &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
880                                       nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
881                 reply_hash = hash_conntrack(net,
882                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
883                                            nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
884         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
885
886         max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
887
888         /* See if there's one in the list already, including reverse */
889         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
890                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
891                                     zone, net))
892                         goto out;
893
894                 if (chainlen++ > max_chainlen)
895                         goto chaintoolong;
896         }
897
898         chainlen = 0;
899
900         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
901                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
902                                     zone, net))
903                         goto out;
904                 if (chainlen++ > max_chainlen)
905                         goto chaintoolong;
906         }
907
908         smp_wmb();
909         /* The caller holds a reference to this object */
910         atomic_set(&ct->ct_general.use, 2);
911         __nf_conntrack_hash_insert(ct, hash, reply_hash);
912         nf_conntrack_double_unlock(hash, reply_hash);
913         NF_CT_STAT_INC(net, insert);
914         local_bh_enable();
915         return 0;
916 chaintoolong:
917         NF_CT_STAT_INC(net, chaintoolong);
918         err = -ENOSPC;
919 out:
920         nf_conntrack_double_unlock(hash, reply_hash);
921         local_bh_enable();
922         return err;
923 }
924 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
925
926 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
927                     unsigned int bytes)
928 {
929         struct nf_conn_acct *acct;
930
931         acct = nf_conn_acct_find(ct);
932         if (acct) {
933                 struct nf_conn_counter *counter = acct->counter;
934
935                 atomic64_add(packets, &counter[dir].packets);
936                 atomic64_add(bytes, &counter[dir].bytes);
937         }
938 }
939 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
940
941 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
942                              const struct nf_conn *loser_ct)
943 {
944         struct nf_conn_acct *acct;
945
946         acct = nf_conn_acct_find(loser_ct);
947         if (acct) {
948                 struct nf_conn_counter *counter = acct->counter;
949                 unsigned int bytes;
950
951                 /* u32 should be fine since we must have seen one packet. */
952                 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
953                 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
954         }
955 }
956
957 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
958 {
959         struct nf_conn_tstamp *tstamp;
960
961         atomic_inc(&ct->ct_general.use);
962         ct->status |= IPS_CONFIRMED;
963
964         /* set conntrack timestamp, if enabled. */
965         tstamp = nf_conn_tstamp_find(ct);
966         if (tstamp)
967                 tstamp->start = ktime_get_real_ns();
968 }
969
970 /* caller must hold locks to prevent concurrent changes */
971 static int __nf_ct_resolve_clash(struct sk_buff *skb,
972                                  struct nf_conntrack_tuple_hash *h)
973 {
974         /* This is the conntrack entry already in hashes that won race. */
975         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
976         enum ip_conntrack_info ctinfo;
977         struct nf_conn *loser_ct;
978
979         loser_ct = nf_ct_get(skb, &ctinfo);
980
981         if (nf_ct_is_dying(ct))
982                 return NF_DROP;
983
984         if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
985             nf_ct_match(ct, loser_ct)) {
986                 struct net *net = nf_ct_net(ct);
987
988                 nf_conntrack_get(&ct->ct_general);
989
990                 nf_ct_acct_merge(ct, ctinfo, loser_ct);
991                 nf_ct_add_to_dying_list(loser_ct);
992                 nf_conntrack_put(&loser_ct->ct_general);
993                 nf_ct_set(skb, ct, ctinfo);
994
995                 NF_CT_STAT_INC(net, clash_resolve);
996                 return NF_ACCEPT;
997         }
998
999         return NF_DROP;
1000 }
1001
1002 /**
1003  * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1004  *
1005  * @skb: skb that causes the collision
1006  * @repl_idx: hash slot for reply direction
1007  *
1008  * Called when origin or reply direction had a clash.
1009  * The skb can be handled without packet drop provided the reply direction
1010  * is unique or there the existing entry has the identical tuple in both
1011  * directions.
1012  *
1013  * Caller must hold conntrack table locks to prevent concurrent updates.
1014  *
1015  * Returns NF_DROP if the clash could not be handled.
1016  */
1017 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1018 {
1019         struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1020         const struct nf_conntrack_zone *zone;
1021         struct nf_conntrack_tuple_hash *h;
1022         struct hlist_nulls_node *n;
1023         struct net *net;
1024
1025         zone = nf_ct_zone(loser_ct);
1026         net = nf_ct_net(loser_ct);
1027
1028         /* Reply direction must never result in a clash, unless both origin
1029          * and reply tuples are identical.
1030          */
1031         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1032                 if (nf_ct_key_equal(h,
1033                                     &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1034                                     zone, net))
1035                         return __nf_ct_resolve_clash(skb, h);
1036         }
1037
1038         /* We want the clashing entry to go away real soon: 1 second timeout. */
1039         loser_ct->timeout = nfct_time_stamp + HZ;
1040
1041         /* IPS_NAT_CLASH removes the entry automatically on the first
1042          * reply.  Also prevents UDP tracker from moving the entry to
1043          * ASSURED state, i.e. the entry can always be evicted under
1044          * pressure.
1045          */
1046         loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1047
1048         __nf_conntrack_insert_prepare(loser_ct);
1049
1050         /* fake add for ORIGINAL dir: we want lookups to only find the entry
1051          * already in the table.  This also hides the clashing entry from
1052          * ctnetlink iteration, i.e. conntrack -L won't show them.
1053          */
1054         hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1055
1056         hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1057                                  &nf_conntrack_hash[repl_idx]);
1058
1059         NF_CT_STAT_INC(net, clash_resolve);
1060         return NF_ACCEPT;
1061 }
1062
1063 /**
1064  * nf_ct_resolve_clash - attempt to handle clash without packet drop
1065  *
1066  * @skb: skb that causes the clash
1067  * @h: tuplehash of the clashing entry already in table
1068  * @reply_hash: hash slot for reply direction
1069  *
1070  * A conntrack entry can be inserted to the connection tracking table
1071  * if there is no existing entry with an identical tuple.
1072  *
1073  * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1074  * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1075  * will find the already-existing entry.
1076  *
1077  * The major problem with such packet drop is the extra delay added by
1078  * the packet loss -- it will take some time for a retransmit to occur
1079  * (or the sender to time out when waiting for a reply).
1080  *
1081  * This function attempts to handle the situation without packet drop.
1082  *
1083  * If @skb has no NAT transformation or if the colliding entries are
1084  * exactly the same, only the to-be-confirmed conntrack entry is discarded
1085  * and @skb is associated with the conntrack entry already in the table.
1086  *
1087  * Failing that, the new, unconfirmed conntrack is still added to the table
1088  * provided that the collision only occurs in the ORIGINAL direction.
1089  * The new entry will be added only in the non-clashing REPLY direction,
1090  * so packets in the ORIGINAL direction will continue to match the existing
1091  * entry.  The new entry will also have a fixed timeout so it expires --
1092  * due to the collision, it will only see reply traffic.
1093  *
1094  * Returns NF_DROP if the clash could not be resolved.
1095  */
1096 static __cold noinline int
1097 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1098                     u32 reply_hash)
1099 {
1100         /* This is the conntrack entry already in hashes that won race. */
1101         struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1102         const struct nf_conntrack_l4proto *l4proto;
1103         enum ip_conntrack_info ctinfo;
1104         struct nf_conn *loser_ct;
1105         struct net *net;
1106         int ret;
1107
1108         loser_ct = nf_ct_get(skb, &ctinfo);
1109         net = nf_ct_net(loser_ct);
1110
1111         l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1112         if (!l4proto->allow_clash)
1113                 goto drop;
1114
1115         ret = __nf_ct_resolve_clash(skb, h);
1116         if (ret == NF_ACCEPT)
1117                 return ret;
1118
1119         ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1120         if (ret == NF_ACCEPT)
1121                 return ret;
1122
1123 drop:
1124         nf_ct_add_to_dying_list(loser_ct);
1125         NF_CT_STAT_INC(net, drop);
1126         NF_CT_STAT_INC(net, insert_failed);
1127         return NF_DROP;
1128 }
1129
1130 /* Confirm a connection given skb; places it in hash table */
1131 int
1132 __nf_conntrack_confirm(struct sk_buff *skb)
1133 {
1134         unsigned int chainlen = 0, sequence, max_chainlen;
1135         const struct nf_conntrack_zone *zone;
1136         unsigned int hash, reply_hash;
1137         struct nf_conntrack_tuple_hash *h;
1138         struct nf_conn *ct;
1139         struct nf_conn_help *help;
1140         struct hlist_nulls_node *n;
1141         enum ip_conntrack_info ctinfo;
1142         struct net *net;
1143         int ret = NF_DROP;
1144
1145         ct = nf_ct_get(skb, &ctinfo);
1146         net = nf_ct_net(ct);
1147
1148         /* ipt_REJECT uses nf_conntrack_attach to attach related
1149            ICMP/TCP RST packets in other direction.  Actual packet
1150            which created connection will be IP_CT_NEW or for an
1151            expected connection, IP_CT_RELATED. */
1152         if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1153                 return NF_ACCEPT;
1154
1155         zone = nf_ct_zone(ct);
1156         local_bh_disable();
1157
1158         do {
1159                 sequence = read_seqcount_begin(&nf_conntrack_generation);
1160                 /* reuse the hash saved before */
1161                 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1162                 hash = scale_hash(hash);
1163                 reply_hash = hash_conntrack(net,
1164                                            &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1165                                            nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1166         } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1167
1168         /* We're not in hash table, and we refuse to set up related
1169          * connections for unconfirmed conns.  But packet copies and
1170          * REJECT will give spurious warnings here.
1171          */
1172
1173         /* Another skb with the same unconfirmed conntrack may
1174          * win the race. This may happen for bridge(br_flood)
1175          * or broadcast/multicast packets do skb_clone with
1176          * unconfirmed conntrack.
1177          */
1178         if (unlikely(nf_ct_is_confirmed(ct))) {
1179                 WARN_ON_ONCE(1);
1180                 nf_conntrack_double_unlock(hash, reply_hash);
1181                 local_bh_enable();
1182                 return NF_DROP;
1183         }
1184
1185         pr_debug("Confirming conntrack %p\n", ct);
1186         /* We have to check the DYING flag after unlink to prevent
1187          * a race against nf_ct_get_next_corpse() possibly called from
1188          * user context, else we insert an already 'dead' hash, blocking
1189          * further use of that particular connection -JM.
1190          */
1191         nf_ct_del_from_dying_or_unconfirmed_list(ct);
1192
1193         if (unlikely(nf_ct_is_dying(ct))) {
1194                 nf_ct_add_to_dying_list(ct);
1195                 NF_CT_STAT_INC(net, insert_failed);
1196                 goto dying;
1197         }
1198
1199         max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
1200         /* See if there's one in the list already, including reverse:
1201            NAT could have grabbed it without realizing, since we're
1202            not in the hash.  If there is, we lost race. */
1203         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1204                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1205                                     zone, net))
1206                         goto out;
1207                 if (chainlen++ > max_chainlen)
1208                         goto chaintoolong;
1209         }
1210
1211         chainlen = 0;
1212         hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1213                 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1214                                     zone, net))
1215                         goto out;
1216                 if (chainlen++ > max_chainlen) {
1217 chaintoolong:
1218                         nf_ct_add_to_dying_list(ct);
1219                         NF_CT_STAT_INC(net, chaintoolong);
1220                         NF_CT_STAT_INC(net, insert_failed);
1221                         ret = NF_DROP;
1222                         goto dying;
1223                 }
1224         }
1225
1226         /* Timer relative to confirmation time, not original
1227            setting time, otherwise we'd get timer wrap in
1228            weird delay cases. */
1229         ct->timeout += nfct_time_stamp;
1230
1231         __nf_conntrack_insert_prepare(ct);
1232
1233         /* Since the lookup is lockless, hash insertion must be done after
1234          * starting the timer and setting the CONFIRMED bit. The RCU barriers
1235          * guarantee that no other CPU can find the conntrack before the above
1236          * stores are visible.
1237          */
1238         __nf_conntrack_hash_insert(ct, hash, reply_hash);
1239         nf_conntrack_double_unlock(hash, reply_hash);
1240         local_bh_enable();
1241
1242         help = nfct_help(ct);
1243         if (help && help->helper)
1244                 nf_conntrack_event_cache(IPCT_HELPER, ct);
1245
1246         nf_conntrack_event_cache(master_ct(ct) ?
1247                                  IPCT_RELATED : IPCT_NEW, ct);
1248         return NF_ACCEPT;
1249
1250 out:
1251         ret = nf_ct_resolve_clash(skb, h, reply_hash);
1252 dying:
1253         nf_conntrack_double_unlock(hash, reply_hash);
1254         local_bh_enable();
1255         return ret;
1256 }
1257 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1258
1259 /* Returns true if a connection correspondings to the tuple (required
1260    for NAT). */
1261 int
1262 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1263                          const struct nf_conn *ignored_conntrack)
1264 {
1265         struct net *net = nf_ct_net(ignored_conntrack);
1266         const struct nf_conntrack_zone *zone;
1267         struct nf_conntrack_tuple_hash *h;
1268         struct hlist_nulls_head *ct_hash;
1269         unsigned int hash, hsize;
1270         struct hlist_nulls_node *n;
1271         struct nf_conn *ct;
1272
1273         zone = nf_ct_zone(ignored_conntrack);
1274
1275         rcu_read_lock();
1276  begin:
1277         nf_conntrack_get_ht(&ct_hash, &hsize);
1278         hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1279
1280         hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1281                 ct = nf_ct_tuplehash_to_ctrack(h);
1282
1283                 if (ct == ignored_conntrack)
1284                         continue;
1285
1286                 if (nf_ct_is_expired(ct)) {
1287                         nf_ct_gc_expired(ct);
1288                         continue;
1289                 }
1290
1291                 if (nf_ct_key_equal(h, tuple, zone, net)) {
1292                         /* Tuple is taken already, so caller will need to find
1293                          * a new source port to use.
1294                          *
1295                          * Only exception:
1296                          * If the *original tuples* are identical, then both
1297                          * conntracks refer to the same flow.
1298                          * This is a rare situation, it can occur e.g. when
1299                          * more than one UDP packet is sent from same socket
1300                          * in different threads.
1301                          *
1302                          * Let nf_ct_resolve_clash() deal with this later.
1303                          */
1304                         if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1305                                               &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1306                                               nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1307                                 continue;
1308
1309                         NF_CT_STAT_INC_ATOMIC(net, found);
1310                         rcu_read_unlock();
1311                         return 1;
1312                 }
1313         }
1314
1315         if (get_nulls_value(n) != hash) {
1316                 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1317                 goto begin;
1318         }
1319
1320         rcu_read_unlock();
1321
1322         return 0;
1323 }
1324 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1325
1326 #define NF_CT_EVICTION_RANGE    8
1327
1328 /* There's a small race here where we may free a just-assured
1329    connection.  Too bad: we're in trouble anyway. */
1330 static unsigned int early_drop_list(struct net *net,
1331                                     struct hlist_nulls_head *head)
1332 {
1333         struct nf_conntrack_tuple_hash *h;
1334         struct hlist_nulls_node *n;
1335         unsigned int drops = 0;
1336         struct nf_conn *tmp;
1337
1338         hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1339                 tmp = nf_ct_tuplehash_to_ctrack(h);
1340
1341                 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1342                         continue;
1343
1344                 if (nf_ct_is_expired(tmp)) {
1345                         nf_ct_gc_expired(tmp);
1346                         continue;
1347                 }
1348
1349                 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1350                     !net_eq(nf_ct_net(tmp), net) ||
1351                     nf_ct_is_dying(tmp))
1352                         continue;
1353
1354                 if (!atomic_inc_not_zero(&tmp->ct_general.use))
1355                         continue;
1356
1357                 /* kill only if still in same netns -- might have moved due to
1358                  * SLAB_TYPESAFE_BY_RCU rules.
1359                  *
1360                  * We steal the timer reference.  If that fails timer has
1361                  * already fired or someone else deleted it. Just drop ref
1362                  * and move to next entry.
1363                  */
1364                 if (net_eq(nf_ct_net(tmp), net) &&
1365                     nf_ct_is_confirmed(tmp) &&
1366                     nf_ct_delete(tmp, 0, 0))
1367                         drops++;
1368
1369                 nf_ct_put(tmp);
1370         }
1371
1372         return drops;
1373 }
1374
1375 static noinline int early_drop(struct net *net, unsigned int hash)
1376 {
1377         unsigned int i, bucket;
1378
1379         for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1380                 struct hlist_nulls_head *ct_hash;
1381                 unsigned int hsize, drops;
1382
1383                 rcu_read_lock();
1384                 nf_conntrack_get_ht(&ct_hash, &hsize);
1385                 if (!i)
1386                         bucket = reciprocal_scale(hash, hsize);
1387                 else
1388                         bucket = (bucket + 1) % hsize;
1389
1390                 drops = early_drop_list(net, &ct_hash[bucket]);
1391                 rcu_read_unlock();
1392
1393                 if (drops) {
1394                         NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1395                         return true;
1396                 }
1397         }
1398
1399         return false;
1400 }
1401
1402 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1403 {
1404         return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1405 }
1406
1407 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1408 {
1409         const struct nf_conntrack_l4proto *l4proto;
1410
1411         if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1412                 return true;
1413
1414         l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1415         if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1416                 return true;
1417
1418         return false;
1419 }
1420
1421 static void gc_worker(struct work_struct *work)
1422 {
1423         unsigned long end_time = jiffies + GC_SCAN_MAX_DURATION;
1424         unsigned int i, hashsz, nf_conntrack_max95 = 0;
1425         unsigned long next_run = GC_SCAN_INTERVAL;
1426         struct conntrack_gc_work *gc_work;
1427         gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1428
1429         i = gc_work->next_bucket;
1430         if (gc_work->early_drop)
1431                 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1432
1433         do {
1434                 struct nf_conntrack_tuple_hash *h;
1435                 struct hlist_nulls_head *ct_hash;
1436                 struct hlist_nulls_node *n;
1437                 struct nf_conn *tmp;
1438
1439                 rcu_read_lock();
1440
1441                 nf_conntrack_get_ht(&ct_hash, &hashsz);
1442                 if (i >= hashsz) {
1443                         rcu_read_unlock();
1444                         break;
1445                 }
1446
1447                 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1448                         struct nf_conntrack_net *cnet;
1449                         struct net *net;
1450
1451                         tmp = nf_ct_tuplehash_to_ctrack(h);
1452
1453                         if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1454                                 nf_ct_offload_timeout(tmp);
1455                                 continue;
1456                         }
1457
1458                         if (nf_ct_is_expired(tmp)) {
1459                                 nf_ct_gc_expired(tmp);
1460                                 continue;
1461                         }
1462
1463                         if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1464                                 continue;
1465
1466                         net = nf_ct_net(tmp);
1467                         cnet = nf_ct_pernet(net);
1468                         if (atomic_read(&cnet->count) < nf_conntrack_max95)
1469                                 continue;
1470
1471                         /* need to take reference to avoid possible races */
1472                         if (!atomic_inc_not_zero(&tmp->ct_general.use))
1473                                 continue;
1474
1475                         if (gc_worker_skip_ct(tmp)) {
1476                                 nf_ct_put(tmp);
1477                                 continue;
1478                         }
1479
1480                         if (gc_worker_can_early_drop(tmp))
1481                                 nf_ct_kill(tmp);
1482
1483                         nf_ct_put(tmp);
1484                 }
1485
1486                 /* could check get_nulls_value() here and restart if ct
1487                  * was moved to another chain.  But given gc is best-effort
1488                  * we will just continue with next hash slot.
1489                  */
1490                 rcu_read_unlock();
1491                 cond_resched();
1492                 i++;
1493
1494                 if (time_after(jiffies, end_time) && i < hashsz) {
1495                         gc_work->next_bucket = i;
1496                         next_run = 0;
1497                         break;
1498                 }
1499         } while (i < hashsz);
1500
1501         if (gc_work->exiting)
1502                 return;
1503
1504         /*
1505          * Eviction will normally happen from the packet path, and not
1506          * from this gc worker.
1507          *
1508          * This worker is only here to reap expired entries when system went
1509          * idle after a busy period.
1510          */
1511         if (next_run) {
1512                 gc_work->early_drop = false;
1513                 gc_work->next_bucket = 0;
1514         }
1515         queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1516 }
1517
1518 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1519 {
1520         INIT_DEFERRABLE_WORK(&gc_work->dwork, gc_worker);
1521         gc_work->exiting = false;
1522 }
1523
1524 static struct nf_conn *
1525 __nf_conntrack_alloc(struct net *net,
1526                      const struct nf_conntrack_zone *zone,
1527                      const struct nf_conntrack_tuple *orig,
1528                      const struct nf_conntrack_tuple *repl,
1529                      gfp_t gfp, u32 hash)
1530 {
1531         struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1532         unsigned int ct_count;
1533         struct nf_conn *ct;
1534
1535         /* We don't want any race condition at early drop stage */
1536         ct_count = atomic_inc_return(&cnet->count);
1537
1538         if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1539                 if (!early_drop(net, hash)) {
1540                         if (!conntrack_gc_work.early_drop)
1541                                 conntrack_gc_work.early_drop = true;
1542                         atomic_dec(&cnet->count);
1543                         net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1544                         return ERR_PTR(-ENOMEM);
1545                 }
1546         }
1547
1548         /*
1549          * Do not use kmem_cache_zalloc(), as this cache uses
1550          * SLAB_TYPESAFE_BY_RCU.
1551          */
1552         ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1553         if (ct == NULL)
1554                 goto out;
1555
1556         spin_lock_init(&ct->lock);
1557         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1558         ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1559         ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1560         /* save hash for reusing when confirming */
1561         *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1562         ct->status = 0;
1563         ct->timeout = 0;
1564         write_pnet(&ct->ct_net, net);
1565         memset(&ct->__nfct_init_offset, 0,
1566                offsetof(struct nf_conn, proto) -
1567                offsetof(struct nf_conn, __nfct_init_offset));
1568
1569         nf_ct_zone_add(ct, zone);
1570
1571         /* Because we use RCU lookups, we set ct_general.use to zero before
1572          * this is inserted in any list.
1573          */
1574         atomic_set(&ct->ct_general.use, 0);
1575         return ct;
1576 out:
1577         atomic_dec(&cnet->count);
1578         return ERR_PTR(-ENOMEM);
1579 }
1580
1581 struct nf_conn *nf_conntrack_alloc(struct net *net,
1582                                    const struct nf_conntrack_zone *zone,
1583                                    const struct nf_conntrack_tuple *orig,
1584                                    const struct nf_conntrack_tuple *repl,
1585                                    gfp_t gfp)
1586 {
1587         return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1588 }
1589 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1590
1591 void nf_conntrack_free(struct nf_conn *ct)
1592 {
1593         struct net *net = nf_ct_net(ct);
1594         struct nf_conntrack_net *cnet;
1595
1596         /* A freed object has refcnt == 0, that's
1597          * the golden rule for SLAB_TYPESAFE_BY_RCU
1598          */
1599         WARN_ON(atomic_read(&ct->ct_general.use) != 0);
1600
1601         nf_ct_ext_destroy(ct);
1602         kmem_cache_free(nf_conntrack_cachep, ct);
1603         cnet = nf_ct_pernet(net);
1604
1605         smp_mb__before_atomic();
1606         atomic_dec(&cnet->count);
1607 }
1608 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1609
1610
1611 /* Allocate a new conntrack: we return -ENOMEM if classification
1612    failed due to stress.  Otherwise it really is unclassifiable. */
1613 static noinline struct nf_conntrack_tuple_hash *
1614 init_conntrack(struct net *net, struct nf_conn *tmpl,
1615                const struct nf_conntrack_tuple *tuple,
1616                struct sk_buff *skb,
1617                unsigned int dataoff, u32 hash)
1618 {
1619         struct nf_conn *ct;
1620         struct nf_conn_help *help;
1621         struct nf_conntrack_tuple repl_tuple;
1622         struct nf_conntrack_ecache *ecache;
1623         struct nf_conntrack_expect *exp = NULL;
1624         const struct nf_conntrack_zone *zone;
1625         struct nf_conn_timeout *timeout_ext;
1626         struct nf_conntrack_zone tmp;
1627         struct nf_conntrack_net *cnet;
1628
1629         if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1630                 pr_debug("Can't invert tuple.\n");
1631                 return NULL;
1632         }
1633
1634         zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1635         ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1636                                   hash);
1637         if (IS_ERR(ct))
1638                 return (struct nf_conntrack_tuple_hash *)ct;
1639
1640         if (!nf_ct_add_synproxy(ct, tmpl)) {
1641                 nf_conntrack_free(ct);
1642                 return ERR_PTR(-ENOMEM);
1643         }
1644
1645         timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1646
1647         if (timeout_ext)
1648                 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1649                                       GFP_ATOMIC);
1650
1651         nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1652         nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1653         nf_ct_labels_ext_add(ct);
1654
1655         ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1656         nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1657                                  ecache ? ecache->expmask : 0,
1658                              GFP_ATOMIC);
1659
1660         local_bh_disable();
1661         cnet = nf_ct_pernet(net);
1662         if (cnet->expect_count) {
1663                 spin_lock(&nf_conntrack_expect_lock);
1664                 exp = nf_ct_find_expectation(net, zone, tuple);
1665                 if (exp) {
1666                         pr_debug("expectation arrives ct=%p exp=%p\n",
1667                                  ct, exp);
1668                         /* Welcome, Mr. Bond.  We've been expecting you... */
1669                         __set_bit(IPS_EXPECTED_BIT, &ct->status);
1670                         /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1671                         ct->master = exp->master;
1672                         if (exp->helper) {
1673                                 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1674                                 if (help)
1675                                         rcu_assign_pointer(help->helper, exp->helper);
1676                         }
1677
1678 #ifdef CONFIG_NF_CONNTRACK_MARK
1679                         ct->mark = exp->master->mark;
1680 #endif
1681 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1682                         ct->secmark = exp->master->secmark;
1683 #endif
1684                         NF_CT_STAT_INC(net, expect_new);
1685                 }
1686                 spin_unlock(&nf_conntrack_expect_lock);
1687         }
1688         if (!exp)
1689                 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1690
1691         /* Now it is inserted into the unconfirmed list, bump refcount */
1692         nf_conntrack_get(&ct->ct_general);
1693         nf_ct_add_to_unconfirmed_list(ct);
1694
1695         local_bh_enable();
1696
1697         if (exp) {
1698                 if (exp->expectfn)
1699                         exp->expectfn(ct, exp);
1700                 nf_ct_expect_put(exp);
1701         }
1702
1703         return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1704 }
1705
1706 /* On success, returns 0, sets skb->_nfct | ctinfo */
1707 static int
1708 resolve_normal_ct(struct nf_conn *tmpl,
1709                   struct sk_buff *skb,
1710                   unsigned int dataoff,
1711                   u_int8_t protonum,
1712                   const struct nf_hook_state *state)
1713 {
1714         const struct nf_conntrack_zone *zone;
1715         struct nf_conntrack_tuple tuple;
1716         struct nf_conntrack_tuple_hash *h;
1717         enum ip_conntrack_info ctinfo;
1718         struct nf_conntrack_zone tmp;
1719         u32 hash, zone_id, rid;
1720         struct nf_conn *ct;
1721
1722         if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1723                              dataoff, state->pf, protonum, state->net,
1724                              &tuple)) {
1725                 pr_debug("Can't get tuple\n");
1726                 return 0;
1727         }
1728
1729         /* look for tuple match */
1730         zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1731
1732         zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1733         hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1734         h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1735
1736         if (!h) {
1737                 rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1738                 if (zone_id != rid) {
1739                         u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1740
1741                         h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1742                 }
1743         }
1744
1745         if (!h) {
1746                 h = init_conntrack(state->net, tmpl, &tuple,
1747                                    skb, dataoff, hash);
1748                 if (!h)
1749                         return 0;
1750                 if (IS_ERR(h))
1751                         return PTR_ERR(h);
1752         }
1753         ct = nf_ct_tuplehash_to_ctrack(h);
1754
1755         /* It exists; we have (non-exclusive) reference. */
1756         if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1757                 ctinfo = IP_CT_ESTABLISHED_REPLY;
1758         } else {
1759                 /* Once we've had two way comms, always ESTABLISHED. */
1760                 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1761                         pr_debug("normal packet for %p\n", ct);
1762                         ctinfo = IP_CT_ESTABLISHED;
1763                 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1764                         pr_debug("related packet for %p\n", ct);
1765                         ctinfo = IP_CT_RELATED;
1766                 } else {
1767                         pr_debug("new packet for %p\n", ct);
1768                         ctinfo = IP_CT_NEW;
1769                 }
1770         }
1771         nf_ct_set(skb, ct, ctinfo);
1772         return 0;
1773 }
1774
1775 /*
1776  * icmp packets need special treatment to handle error messages that are
1777  * related to a connection.
1778  *
1779  * Callers need to check if skb has a conntrack assigned when this
1780  * helper returns; in such case skb belongs to an already known connection.
1781  */
1782 static unsigned int __cold
1783 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1784                          struct sk_buff *skb,
1785                          unsigned int dataoff,
1786                          u8 protonum,
1787                          const struct nf_hook_state *state)
1788 {
1789         int ret;
1790
1791         if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1792                 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1793 #if IS_ENABLED(CONFIG_IPV6)
1794         else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1795                 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1796 #endif
1797         else
1798                 return NF_ACCEPT;
1799
1800         if (ret <= 0)
1801                 NF_CT_STAT_INC_ATOMIC(state->net, error);
1802
1803         return ret;
1804 }
1805
1806 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1807                           enum ip_conntrack_info ctinfo)
1808 {
1809         const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1810
1811         if (!timeout)
1812                 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1813
1814         nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1815         return NF_ACCEPT;
1816 }
1817
1818 /* Returns verdict for packet, or -1 for invalid. */
1819 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1820                                       struct sk_buff *skb,
1821                                       unsigned int dataoff,
1822                                       enum ip_conntrack_info ctinfo,
1823                                       const struct nf_hook_state *state)
1824 {
1825         switch (nf_ct_protonum(ct)) {
1826         case IPPROTO_TCP:
1827                 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1828                                                ctinfo, state);
1829         case IPPROTO_UDP:
1830                 return nf_conntrack_udp_packet(ct, skb, dataoff,
1831                                                ctinfo, state);
1832         case IPPROTO_ICMP:
1833                 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1834 #if IS_ENABLED(CONFIG_IPV6)
1835         case IPPROTO_ICMPV6:
1836                 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1837 #endif
1838 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1839         case IPPROTO_UDPLITE:
1840                 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1841                                                    ctinfo, state);
1842 #endif
1843 #ifdef CONFIG_NF_CT_PROTO_SCTP
1844         case IPPROTO_SCTP:
1845                 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1846                                                 ctinfo, state);
1847 #endif
1848 #ifdef CONFIG_NF_CT_PROTO_DCCP
1849         case IPPROTO_DCCP:
1850                 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1851                                                 ctinfo, state);
1852 #endif
1853 #ifdef CONFIG_NF_CT_PROTO_GRE
1854         case IPPROTO_GRE:
1855                 return nf_conntrack_gre_packet(ct, skb, dataoff,
1856                                                ctinfo, state);
1857 #endif
1858         }
1859
1860         return generic_packet(ct, skb, ctinfo);
1861 }
1862
1863 unsigned int
1864 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1865 {
1866         enum ip_conntrack_info ctinfo;
1867         struct nf_conn *ct, *tmpl;
1868         u_int8_t protonum;
1869         int dataoff, ret;
1870
1871         tmpl = nf_ct_get(skb, &ctinfo);
1872         if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1873                 /* Previously seen (loopback or untracked)?  Ignore. */
1874                 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1875                      ctinfo == IP_CT_UNTRACKED)
1876                         return NF_ACCEPT;
1877                 skb->_nfct = 0;
1878         }
1879
1880         /* rcu_read_lock()ed by nf_hook_thresh */
1881         dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1882         if (dataoff <= 0) {
1883                 pr_debug("not prepared to track yet or error occurred\n");
1884                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1885                 ret = NF_ACCEPT;
1886                 goto out;
1887         }
1888
1889         if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1890                 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1891                                                protonum, state);
1892                 if (ret <= 0) {
1893                         ret = -ret;
1894                         goto out;
1895                 }
1896                 /* ICMP[v6] protocol trackers may assign one conntrack. */
1897                 if (skb->_nfct)
1898                         goto out;
1899         }
1900 repeat:
1901         ret = resolve_normal_ct(tmpl, skb, dataoff,
1902                                 protonum, state);
1903         if (ret < 0) {
1904                 /* Too stressed to deal. */
1905                 NF_CT_STAT_INC_ATOMIC(state->net, drop);
1906                 ret = NF_DROP;
1907                 goto out;
1908         }
1909
1910         ct = nf_ct_get(skb, &ctinfo);
1911         if (!ct) {
1912                 /* Not valid part of a connection */
1913                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1914                 ret = NF_ACCEPT;
1915                 goto out;
1916         }
1917
1918         ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
1919         if (ret <= 0) {
1920                 /* Invalid: inverse of the return code tells
1921                  * the netfilter core what to do */
1922                 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1923                 nf_conntrack_put(&ct->ct_general);
1924                 skb->_nfct = 0;
1925                 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1926                 if (ret == -NF_DROP)
1927                         NF_CT_STAT_INC_ATOMIC(state->net, drop);
1928                 /* Special case: TCP tracker reports an attempt to reopen a
1929                  * closed/aborted connection. We have to go back and create a
1930                  * fresh conntrack.
1931                  */
1932                 if (ret == -NF_REPEAT)
1933                         goto repeat;
1934                 ret = -ret;
1935                 goto out;
1936         }
1937
1938         if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
1939             !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1940                 nf_conntrack_event_cache(IPCT_REPLY, ct);
1941 out:
1942         if (tmpl)
1943                 nf_ct_put(tmpl);
1944
1945         return ret;
1946 }
1947 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1948
1949 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
1950    implicitly racy: see __nf_conntrack_confirm */
1951 void nf_conntrack_alter_reply(struct nf_conn *ct,
1952                               const struct nf_conntrack_tuple *newreply)
1953 {
1954         struct nf_conn_help *help = nfct_help(ct);
1955
1956         /* Should be unconfirmed, so not in hash table yet */
1957         WARN_ON(nf_ct_is_confirmed(ct));
1958
1959         pr_debug("Altering reply tuple of %p to ", ct);
1960         nf_ct_dump_tuple(newreply);
1961
1962         ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1963         if (ct->master || (help && !hlist_empty(&help->expectations)))
1964                 return;
1965
1966         rcu_read_lock();
1967         __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1968         rcu_read_unlock();
1969 }
1970 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1971
1972 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
1973 void __nf_ct_refresh_acct(struct nf_conn *ct,
1974                           enum ip_conntrack_info ctinfo,
1975                           const struct sk_buff *skb,
1976                           u32 extra_jiffies,
1977                           bool do_acct)
1978 {
1979         /* Only update if this is not a fixed timeout */
1980         if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1981                 goto acct;
1982
1983         /* If not in hash table, timer will not be active yet */
1984         if (nf_ct_is_confirmed(ct))
1985                 extra_jiffies += nfct_time_stamp;
1986
1987         if (READ_ONCE(ct->timeout) != extra_jiffies)
1988                 WRITE_ONCE(ct->timeout, extra_jiffies);
1989 acct:
1990         if (do_acct)
1991                 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
1992 }
1993 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1994
1995 bool nf_ct_kill_acct(struct nf_conn *ct,
1996                      enum ip_conntrack_info ctinfo,
1997                      const struct sk_buff *skb)
1998 {
1999         nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2000
2001         return nf_ct_delete(ct, 0, 0);
2002 }
2003 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2004
2005 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2006
2007 #include <linux/netfilter/nfnetlink.h>
2008 #include <linux/netfilter/nfnetlink_conntrack.h>
2009 #include <linux/mutex.h>
2010
2011 /* Generic function for tcp/udp/sctp/dccp and alike. */
2012 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2013                                const struct nf_conntrack_tuple *tuple)
2014 {
2015         if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2016             nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2017                 goto nla_put_failure;
2018         return 0;
2019
2020 nla_put_failure:
2021         return -1;
2022 }
2023 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2024
2025 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2026         [CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
2027         [CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
2028 };
2029 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2030
2031 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2032                                struct nf_conntrack_tuple *t,
2033                                u_int32_t flags)
2034 {
2035         if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2036                 if (!tb[CTA_PROTO_SRC_PORT])
2037                         return -EINVAL;
2038
2039                 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2040         }
2041
2042         if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2043                 if (!tb[CTA_PROTO_DST_PORT])
2044                         return -EINVAL;
2045
2046                 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2047         }
2048
2049         return 0;
2050 }
2051 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2052
2053 unsigned int nf_ct_port_nlattr_tuple_size(void)
2054 {
2055         static unsigned int size __read_mostly;
2056
2057         if (!size)
2058                 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2059
2060         return size;
2061 }
2062 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2063 #endif
2064
2065 /* Used by ipt_REJECT and ip6t_REJECT. */
2066 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2067 {
2068         struct nf_conn *ct;
2069         enum ip_conntrack_info ctinfo;
2070
2071         /* This ICMP is in reverse direction to the packet which caused it */
2072         ct = nf_ct_get(skb, &ctinfo);
2073         if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2074                 ctinfo = IP_CT_RELATED_REPLY;
2075         else
2076                 ctinfo = IP_CT_RELATED;
2077
2078         /* Attach to new skbuff, and increment count */
2079         nf_ct_set(nskb, ct, ctinfo);
2080         nf_conntrack_get(skb_nfct(nskb));
2081 }
2082
2083 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2084                                  struct nf_conn *ct,
2085                                  enum ip_conntrack_info ctinfo)
2086 {
2087         struct nf_conntrack_tuple_hash *h;
2088         struct nf_conntrack_tuple tuple;
2089         struct nf_nat_hook *nat_hook;
2090         unsigned int status;
2091         int dataoff;
2092         u16 l3num;
2093         u8 l4num;
2094
2095         l3num = nf_ct_l3num(ct);
2096
2097         dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2098         if (dataoff <= 0)
2099                 return -1;
2100
2101         if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2102                              l4num, net, &tuple))
2103                 return -1;
2104
2105         if (ct->status & IPS_SRC_NAT) {
2106                 memcpy(tuple.src.u3.all,
2107                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2108                        sizeof(tuple.src.u3.all));
2109                 tuple.src.u.all =
2110                         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2111         }
2112
2113         if (ct->status & IPS_DST_NAT) {
2114                 memcpy(tuple.dst.u3.all,
2115                        ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2116                        sizeof(tuple.dst.u3.all));
2117                 tuple.dst.u.all =
2118                         ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2119         }
2120
2121         h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2122         if (!h)
2123                 return 0;
2124
2125         /* Store status bits of the conntrack that is clashing to re-do NAT
2126          * mangling according to what it has been done already to this packet.
2127          */
2128         status = ct->status;
2129
2130         nf_ct_put(ct);
2131         ct = nf_ct_tuplehash_to_ctrack(h);
2132         nf_ct_set(skb, ct, ctinfo);
2133
2134         nat_hook = rcu_dereference(nf_nat_hook);
2135         if (!nat_hook)
2136                 return 0;
2137
2138         if (status & IPS_SRC_NAT &&
2139             nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2140                                 IP_CT_DIR_ORIGINAL) == NF_DROP)
2141                 return -1;
2142
2143         if (status & IPS_DST_NAT &&
2144             nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2145                                 IP_CT_DIR_ORIGINAL) == NF_DROP)
2146                 return -1;
2147
2148         return 0;
2149 }
2150
2151 /* This packet is coming from userspace via nf_queue, complete the packet
2152  * processing after the helper invocation in nf_confirm().
2153  */
2154 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2155                                enum ip_conntrack_info ctinfo)
2156 {
2157         const struct nf_conntrack_helper *helper;
2158         const struct nf_conn_help *help;
2159         int protoff;
2160
2161         help = nfct_help(ct);
2162         if (!help)
2163                 return 0;
2164
2165         helper = rcu_dereference(help->helper);
2166         if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2167                 return 0;
2168
2169         switch (nf_ct_l3num(ct)) {
2170         case NFPROTO_IPV4:
2171                 protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2172                 break;
2173 #if IS_ENABLED(CONFIG_IPV6)
2174         case NFPROTO_IPV6: {
2175                 __be16 frag_off;
2176                 u8 pnum;
2177
2178                 pnum = ipv6_hdr(skb)->nexthdr;
2179                 protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2180                                            &frag_off);
2181                 if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2182                         return 0;
2183                 break;
2184         }
2185 #endif
2186         default:
2187                 return 0;
2188         }
2189
2190         if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2191             !nf_is_loopback_packet(skb)) {
2192                 if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2193                         NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2194                         return -1;
2195                 }
2196         }
2197
2198         /* We've seen it coming out the other side: confirm it */
2199         return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2200 }
2201
2202 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2203 {
2204         enum ip_conntrack_info ctinfo;
2205         struct nf_conn *ct;
2206         int err;
2207
2208         ct = nf_ct_get(skb, &ctinfo);
2209         if (!ct)
2210                 return 0;
2211
2212         if (!nf_ct_is_confirmed(ct)) {
2213                 err = __nf_conntrack_update(net, skb, ct, ctinfo);
2214                 if (err < 0)
2215                         return err;
2216
2217                 ct = nf_ct_get(skb, &ctinfo);
2218         }
2219
2220         return nf_confirm_cthelper(skb, ct, ctinfo);
2221 }
2222
2223 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2224                                        const struct sk_buff *skb)
2225 {
2226         const struct nf_conntrack_tuple *src_tuple;
2227         const struct nf_conntrack_tuple_hash *hash;
2228         struct nf_conntrack_tuple srctuple;
2229         enum ip_conntrack_info ctinfo;
2230         struct nf_conn *ct;
2231
2232         ct = nf_ct_get(skb, &ctinfo);
2233         if (ct) {
2234                 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2235                 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2236                 return true;
2237         }
2238
2239         if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2240                                NFPROTO_IPV4, dev_net(skb->dev),
2241                                &srctuple))
2242                 return false;
2243
2244         hash = nf_conntrack_find_get(dev_net(skb->dev),
2245                                      &nf_ct_zone_dflt,
2246                                      &srctuple);
2247         if (!hash)
2248                 return false;
2249
2250         ct = nf_ct_tuplehash_to_ctrack(hash);
2251         src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2252         memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2253         nf_ct_put(ct);
2254
2255         return true;
2256 }
2257
2258 /* Bring out ya dead! */
2259 static struct nf_conn *
2260 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2261                 void *data, unsigned int *bucket)
2262 {
2263         struct nf_conntrack_tuple_hash *h;
2264         struct nf_conn *ct;
2265         struct hlist_nulls_node *n;
2266         spinlock_t *lockp;
2267
2268         for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2269                 struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2270
2271                 if (hlist_nulls_empty(hslot))
2272                         continue;
2273
2274                 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2275                 local_bh_disable();
2276                 nf_conntrack_lock(lockp);
2277                 hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2278                         if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2279                                 continue;
2280                         /* All nf_conn objects are added to hash table twice, one
2281                          * for original direction tuple, once for the reply tuple.
2282                          *
2283                          * Exception: In the IPS_NAT_CLASH case, only the reply
2284                          * tuple is added (the original tuple already existed for
2285                          * a different object).
2286                          *
2287                          * We only need to call the iterator once for each
2288                          * conntrack, so we just use the 'reply' direction
2289                          * tuple while iterating.
2290                          */
2291                         ct = nf_ct_tuplehash_to_ctrack(h);
2292                         if (iter(ct, data))
2293                                 goto found;
2294                 }
2295                 spin_unlock(lockp);
2296                 local_bh_enable();
2297                 cond_resched();
2298         }
2299
2300         return NULL;
2301 found:
2302         atomic_inc(&ct->ct_general.use);
2303         spin_unlock(lockp);
2304         local_bh_enable();
2305         return ct;
2306 }
2307
2308 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2309                                   void *data, u32 portid, int report)
2310 {
2311         unsigned int bucket = 0;
2312         struct nf_conn *ct;
2313
2314         might_sleep();
2315
2316         mutex_lock(&nf_conntrack_mutex);
2317         while ((ct = get_next_corpse(iter, data, &bucket)) != NULL) {
2318                 /* Time to push up daises... */
2319
2320                 nf_ct_delete(ct, portid, report);
2321                 nf_ct_put(ct);
2322                 cond_resched();
2323         }
2324         mutex_unlock(&nf_conntrack_mutex);
2325 }
2326
2327 struct iter_data {
2328         int (*iter)(struct nf_conn *i, void *data);
2329         void *data;
2330         struct net *net;
2331 };
2332
2333 static int iter_net_only(struct nf_conn *i, void *data)
2334 {
2335         struct iter_data *d = data;
2336
2337         if (!net_eq(d->net, nf_ct_net(i)))
2338                 return 0;
2339
2340         return d->iter(i, d->data);
2341 }
2342
2343 static void
2344 __nf_ct_unconfirmed_destroy(struct net *net)
2345 {
2346         int cpu;
2347
2348         for_each_possible_cpu(cpu) {
2349                 struct nf_conntrack_tuple_hash *h;
2350                 struct hlist_nulls_node *n;
2351                 struct ct_pcpu *pcpu;
2352
2353                 pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2354
2355                 spin_lock_bh(&pcpu->lock);
2356                 hlist_nulls_for_each_entry(h, n, &pcpu->unconfirmed, hnnode) {
2357                         struct nf_conn *ct;
2358
2359                         ct = nf_ct_tuplehash_to_ctrack(h);
2360
2361                         /* we cannot call iter() on unconfirmed list, the
2362                          * owning cpu can reallocate ct->ext at any time.
2363                          */
2364                         set_bit(IPS_DYING_BIT, &ct->status);
2365                 }
2366                 spin_unlock_bh(&pcpu->lock);
2367                 cond_resched();
2368         }
2369 }
2370
2371 void nf_ct_unconfirmed_destroy(struct net *net)
2372 {
2373         struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2374
2375         might_sleep();
2376
2377         if (atomic_read(&cnet->count) > 0) {
2378                 __nf_ct_unconfirmed_destroy(net);
2379                 nf_queue_nf_hook_drop(net);
2380                 synchronize_net();
2381         }
2382 }
2383 EXPORT_SYMBOL_GPL(nf_ct_unconfirmed_destroy);
2384
2385 void nf_ct_iterate_cleanup_net(struct net *net,
2386                                int (*iter)(struct nf_conn *i, void *data),
2387                                void *data, u32 portid, int report)
2388 {
2389         struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2390         struct iter_data d;
2391
2392         might_sleep();
2393
2394         if (atomic_read(&cnet->count) == 0)
2395                 return;
2396
2397         d.iter = iter;
2398         d.data = data;
2399         d.net = net;
2400
2401         nf_ct_iterate_cleanup(iter_net_only, &d, portid, report);
2402 }
2403 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2404
2405 /**
2406  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2407  * @iter: callback to invoke for each conntrack
2408  * @data: data to pass to @iter
2409  *
2410  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2411  * unconfirmed list as dying (so they will not be inserted into
2412  * main table).
2413  *
2414  * Can only be called in module exit path.
2415  */
2416 void
2417 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2418 {
2419         struct net *net;
2420
2421         down_read(&net_rwsem);
2422         for_each_net(net) {
2423                 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2424
2425                 if (atomic_read(&cnet->count) == 0)
2426                         continue;
2427                 __nf_ct_unconfirmed_destroy(net);
2428                 nf_queue_nf_hook_drop(net);
2429         }
2430         up_read(&net_rwsem);
2431
2432         /* Need to wait for netns cleanup worker to finish, if its
2433          * running -- it might have deleted a net namespace from
2434          * the global list, so our __nf_ct_unconfirmed_destroy() might
2435          * not have affected all namespaces.
2436          */
2437         net_ns_barrier();
2438
2439         /* a conntrack could have been unlinked from unconfirmed list
2440          * before we grabbed pcpu lock in __nf_ct_unconfirmed_destroy().
2441          * This makes sure its inserted into conntrack table.
2442          */
2443         synchronize_net();
2444
2445         nf_ct_iterate_cleanup(iter, data, 0, 0);
2446 }
2447 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2448
2449 static int kill_all(struct nf_conn *i, void *data)
2450 {
2451         return net_eq(nf_ct_net(i), data);
2452 }
2453
2454 void nf_conntrack_cleanup_start(void)
2455 {
2456         conntrack_gc_work.exiting = true;
2457         RCU_INIT_POINTER(ip_ct_attach, NULL);
2458 }
2459
2460 void nf_conntrack_cleanup_end(void)
2461 {
2462         RCU_INIT_POINTER(nf_ct_hook, NULL);
2463         cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2464         kvfree(nf_conntrack_hash);
2465
2466         nf_conntrack_proto_fini();
2467         nf_conntrack_seqadj_fini();
2468         nf_conntrack_labels_fini();
2469         nf_conntrack_helper_fini();
2470         nf_conntrack_timeout_fini();
2471         nf_conntrack_ecache_fini();
2472         nf_conntrack_tstamp_fini();
2473         nf_conntrack_acct_fini();
2474         nf_conntrack_expect_fini();
2475
2476         kmem_cache_destroy(nf_conntrack_cachep);
2477 }
2478
2479 /*
2480  * Mishearing the voices in his head, our hero wonders how he's
2481  * supposed to kill the mall.
2482  */
2483 void nf_conntrack_cleanup_net(struct net *net)
2484 {
2485         LIST_HEAD(single);
2486
2487         list_add(&net->exit_list, &single);
2488         nf_conntrack_cleanup_net_list(&single);
2489 }
2490
2491 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2492 {
2493         int busy;
2494         struct net *net;
2495
2496         /*
2497          * This makes sure all current packets have passed through
2498          *  netfilter framework.  Roll on, two-stage module
2499          *  delete...
2500          */
2501         synchronize_net();
2502 i_see_dead_people:
2503         busy = 0;
2504         list_for_each_entry(net, net_exit_list, exit_list) {
2505                 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2506
2507                 nf_ct_iterate_cleanup(kill_all, net, 0, 0);
2508                 if (atomic_read(&cnet->count) != 0)
2509                         busy = 1;
2510         }
2511         if (busy) {
2512                 schedule();
2513                 goto i_see_dead_people;
2514         }
2515
2516         list_for_each_entry(net, net_exit_list, exit_list) {
2517                 nf_conntrack_ecache_pernet_fini(net);
2518                 nf_conntrack_expect_pernet_fini(net);
2519                 free_percpu(net->ct.stat);
2520                 free_percpu(net->ct.pcpu_lists);
2521         }
2522 }
2523
2524 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2525 {
2526         struct hlist_nulls_head *hash;
2527         unsigned int nr_slots, i;
2528
2529         if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2530                 return NULL;
2531
2532         BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2533         nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2534
2535         hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2536
2537         if (hash && nulls)
2538                 for (i = 0; i < nr_slots; i++)
2539                         INIT_HLIST_NULLS_HEAD(&hash[i], i);
2540
2541         return hash;
2542 }
2543 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2544
2545 int nf_conntrack_hash_resize(unsigned int hashsize)
2546 {
2547         int i, bucket;
2548         unsigned int old_size;
2549         struct hlist_nulls_head *hash, *old_hash;
2550         struct nf_conntrack_tuple_hash *h;
2551         struct nf_conn *ct;
2552
2553         if (!hashsize)
2554                 return -EINVAL;
2555
2556         hash = nf_ct_alloc_hashtable(&hashsize, 1);
2557         if (!hash)
2558                 return -ENOMEM;
2559
2560         mutex_lock(&nf_conntrack_mutex);
2561         old_size = nf_conntrack_htable_size;
2562         if (old_size == hashsize) {
2563                 mutex_unlock(&nf_conntrack_mutex);
2564                 kvfree(hash);
2565                 return 0;
2566         }
2567
2568         local_bh_disable();
2569         nf_conntrack_all_lock();
2570         write_seqcount_begin(&nf_conntrack_generation);
2571
2572         /* Lookups in the old hash might happen in parallel, which means we
2573          * might get false negatives during connection lookup. New connections
2574          * created because of a false negative won't make it into the hash
2575          * though since that required taking the locks.
2576          */
2577
2578         for (i = 0; i < nf_conntrack_htable_size; i++) {
2579                 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2580                         unsigned int zone_id;
2581
2582                         h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2583                                               struct nf_conntrack_tuple_hash, hnnode);
2584                         ct = nf_ct_tuplehash_to_ctrack(h);
2585                         hlist_nulls_del_rcu(&h->hnnode);
2586
2587                         zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2588                         bucket = __hash_conntrack(nf_ct_net(ct),
2589                                                   &h->tuple, zone_id, hashsize);
2590                         hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2591                 }
2592         }
2593         old_size = nf_conntrack_htable_size;
2594         old_hash = nf_conntrack_hash;
2595
2596         nf_conntrack_hash = hash;
2597         nf_conntrack_htable_size = hashsize;
2598
2599         write_seqcount_end(&nf_conntrack_generation);
2600         nf_conntrack_all_unlock();
2601         local_bh_enable();
2602
2603         mutex_unlock(&nf_conntrack_mutex);
2604
2605         synchronize_net();
2606         kvfree(old_hash);
2607         return 0;
2608 }
2609
2610 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2611 {
2612         unsigned int hashsize;
2613         int rc;
2614
2615         if (current->nsproxy->net_ns != &init_net)
2616                 return -EOPNOTSUPP;
2617
2618         /* On boot, we can set this without any fancy locking. */
2619         if (!nf_conntrack_hash)
2620                 return param_set_uint(val, kp);
2621
2622         rc = kstrtouint(val, 0, &hashsize);
2623         if (rc)
2624                 return rc;
2625
2626         return nf_conntrack_hash_resize(hashsize);
2627 }
2628
2629 static __always_inline unsigned int total_extension_size(void)
2630 {
2631         /* remember to add new extensions below */
2632         BUILD_BUG_ON(NF_CT_EXT_NUM > 9);
2633
2634         return sizeof(struct nf_ct_ext) +
2635                sizeof(struct nf_conn_help)
2636 #if IS_ENABLED(CONFIG_NF_NAT)
2637                 + sizeof(struct nf_conn_nat)
2638 #endif
2639                 + sizeof(struct nf_conn_seqadj)
2640                 + sizeof(struct nf_conn_acct)
2641 #ifdef CONFIG_NF_CONNTRACK_EVENTS
2642                 + sizeof(struct nf_conntrack_ecache)
2643 #endif
2644 #ifdef CONFIG_NF_CONNTRACK_TIMESTAMP
2645                 + sizeof(struct nf_conn_tstamp)
2646 #endif
2647 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
2648                 + sizeof(struct nf_conn_timeout)
2649 #endif
2650 #ifdef CONFIG_NF_CONNTRACK_LABELS
2651                 + sizeof(struct nf_conn_labels)
2652 #endif
2653 #if IS_ENABLED(CONFIG_NETFILTER_SYNPROXY)
2654                 + sizeof(struct nf_conn_synproxy)
2655 #endif
2656         ;
2657 };
2658
2659 int nf_conntrack_init_start(void)
2660 {
2661         unsigned long nr_pages = totalram_pages();
2662         int max_factor = 8;
2663         int ret = -ENOMEM;
2664         int i;
2665
2666         /* struct nf_ct_ext uses u8 to store offsets/size */
2667         BUILD_BUG_ON(total_extension_size() > 255u);
2668
2669         seqcount_spinlock_init(&nf_conntrack_generation,
2670                                &nf_conntrack_locks_all_lock);
2671
2672         for (i = 0; i < CONNTRACK_LOCKS; i++)
2673                 spin_lock_init(&nf_conntrack_locks[i]);
2674
2675         if (!nf_conntrack_htable_size) {
2676                 nf_conntrack_htable_size
2677                         = (((nr_pages << PAGE_SHIFT) / 16384)
2678                            / sizeof(struct hlist_head));
2679                 if (BITS_PER_LONG >= 64 &&
2680                     nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2681                         nf_conntrack_htable_size = 262144;
2682                 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2683                         nf_conntrack_htable_size = 65536;
2684
2685                 if (nf_conntrack_htable_size < 1024)
2686                         nf_conntrack_htable_size = 1024;
2687                 /* Use a max. factor of one by default to keep the average
2688                  * hash chain length at 2 entries.  Each entry has to be added
2689                  * twice (once for original direction, once for reply).
2690                  * When a table size is given we use the old value of 8 to
2691                  * avoid implicit reduction of the max entries setting.
2692                  */
2693                 max_factor = 1;
2694         }
2695
2696         nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2697         if (!nf_conntrack_hash)
2698                 return -ENOMEM;
2699
2700         nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2701
2702         nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2703                                                 sizeof(struct nf_conn),
2704                                                 NFCT_INFOMASK + 1,
2705                                                 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2706         if (!nf_conntrack_cachep)
2707                 goto err_cachep;
2708
2709         ret = nf_conntrack_expect_init();
2710         if (ret < 0)
2711                 goto err_expect;
2712
2713         ret = nf_conntrack_acct_init();
2714         if (ret < 0)
2715                 goto err_acct;
2716
2717         ret = nf_conntrack_tstamp_init();
2718         if (ret < 0)
2719                 goto err_tstamp;
2720
2721         ret = nf_conntrack_ecache_init();
2722         if (ret < 0)
2723                 goto err_ecache;
2724
2725         ret = nf_conntrack_timeout_init();
2726         if (ret < 0)
2727                 goto err_timeout;
2728
2729         ret = nf_conntrack_helper_init();
2730         if (ret < 0)
2731                 goto err_helper;
2732
2733         ret = nf_conntrack_labels_init();
2734         if (ret < 0)
2735                 goto err_labels;
2736
2737         ret = nf_conntrack_seqadj_init();
2738         if (ret < 0)
2739                 goto err_seqadj;
2740
2741         ret = nf_conntrack_proto_init();
2742         if (ret < 0)
2743                 goto err_proto;
2744
2745         conntrack_gc_work_init(&conntrack_gc_work);
2746         queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2747
2748         return 0;
2749
2750 err_proto:
2751         nf_conntrack_seqadj_fini();
2752 err_seqadj:
2753         nf_conntrack_labels_fini();
2754 err_labels:
2755         nf_conntrack_helper_fini();
2756 err_helper:
2757         nf_conntrack_timeout_fini();
2758 err_timeout:
2759         nf_conntrack_ecache_fini();
2760 err_ecache:
2761         nf_conntrack_tstamp_fini();
2762 err_tstamp:
2763         nf_conntrack_acct_fini();
2764 err_acct:
2765         nf_conntrack_expect_fini();
2766 err_expect:
2767         kmem_cache_destroy(nf_conntrack_cachep);
2768 err_cachep:
2769         kvfree(nf_conntrack_hash);
2770         return ret;
2771 }
2772
2773 static struct nf_ct_hook nf_conntrack_hook = {
2774         .update         = nf_conntrack_update,
2775         .destroy        = destroy_conntrack,
2776         .get_tuple_skb  = nf_conntrack_get_tuple_skb,
2777 };
2778
2779 void nf_conntrack_init_end(void)
2780 {
2781         /* For use by REJECT target */
2782         RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
2783         RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2784 }
2785
2786 /*
2787  * We need to use special "null" values, not used in hash table
2788  */
2789 #define UNCONFIRMED_NULLS_VAL   ((1<<30)+0)
2790 #define DYING_NULLS_VAL         ((1<<30)+1)
2791
2792 int nf_conntrack_init_net(struct net *net)
2793 {
2794         struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2795         int ret = -ENOMEM;
2796         int cpu;
2797
2798         BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2799         BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2800         atomic_set(&cnet->count, 0);
2801
2802         net->ct.pcpu_lists = alloc_percpu(struct ct_pcpu);
2803         if (!net->ct.pcpu_lists)
2804                 goto err_stat;
2805
2806         for_each_possible_cpu(cpu) {
2807                 struct ct_pcpu *pcpu = per_cpu_ptr(net->ct.pcpu_lists, cpu);
2808
2809                 spin_lock_init(&pcpu->lock);
2810                 INIT_HLIST_NULLS_HEAD(&pcpu->unconfirmed, UNCONFIRMED_NULLS_VAL);
2811                 INIT_HLIST_NULLS_HEAD(&pcpu->dying, DYING_NULLS_VAL);
2812         }
2813
2814         net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2815         if (!net->ct.stat)
2816                 goto err_pcpu_lists;
2817
2818         ret = nf_conntrack_expect_pernet_init(net);
2819         if (ret < 0)
2820                 goto err_expect;
2821
2822         nf_conntrack_acct_pernet_init(net);
2823         nf_conntrack_tstamp_pernet_init(net);
2824         nf_conntrack_ecache_pernet_init(net);
2825         nf_conntrack_helper_pernet_init(net);
2826         nf_conntrack_proto_pernet_init(net);
2827
2828         return 0;
2829
2830 err_expect:
2831         free_percpu(net->ct.stat);
2832 err_pcpu_lists:
2833         free_percpu(net->ct.pcpu_lists);
2834 err_stat:
2835         return ret;
2836 }