Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[platform/kernel/linux-starfive.git] / net / mac80211 / rc80211_minstrel_ht.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
4  * Copyright (C) 2019-2021 Intel Corporation
5  */
6 #include <linux/netdevice.h>
7 #include <linux/types.h>
8 #include <linux/skbuff.h>
9 #include <linux/debugfs.h>
10 #include <linux/random.h>
11 #include <linux/moduleparam.h>
12 #include <linux/ieee80211.h>
13 #include <net/mac80211.h>
14 #include "rate.h"
15 #include "sta_info.h"
16 #include "rc80211_minstrel_ht.h"
17
18 #define AVG_AMPDU_SIZE  16
19 #define AVG_PKT_SIZE    1200
20
21 /* Number of bits for an average sized packet */
22 #define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
23
24 /* Number of symbols for a packet with (bps) bits per symbol */
25 #define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
26
27 /* Transmission time (nanoseconds) for a packet containing (syms) symbols */
28 #define MCS_SYMBOL_TIME(sgi, syms)                                      \
29         (sgi ?                                                          \
30           ((syms) * 18000 + 4000) / 5 : /* syms * 3.6 us */             \
31           ((syms) * 1000) << 2          /* syms * 4 us */               \
32         )
33
34 /* Transmit duration for the raw data part of an average sized packet */
35 #define MCS_DURATION(streams, sgi, bps) \
36         (MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
37
38 #define BW_20                   0
39 #define BW_40                   1
40 #define BW_80                   2
41
42 /*
43  * Define group sort order: HT40 -> SGI -> #streams
44  */
45 #define GROUP_IDX(_streams, _sgi, _ht40)        \
46         MINSTREL_HT_GROUP_0 +                   \
47         MINSTREL_MAX_STREAMS * 2 * _ht40 +      \
48         MINSTREL_MAX_STREAMS * _sgi +   \
49         _streams - 1
50
51 #define _MAX(a, b) (((a)>(b))?(a):(b))
52
53 #define GROUP_SHIFT(duration)                                           \
54         _MAX(0, 16 - __builtin_clz(duration))
55
56 /* MCS rate information for an MCS group */
57 #define __MCS_GROUP(_streams, _sgi, _ht40, _s)                          \
58         [GROUP_IDX(_streams, _sgi, _ht40)] = {                          \
59         .streams = _streams,                                            \
60         .shift = _s,                                                    \
61         .bw = _ht40,                                                    \
62         .flags =                                                        \
63                 IEEE80211_TX_RC_MCS |                                   \
64                 (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |                 \
65                 (_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),             \
66         .duration = {                                                   \
67                 MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26) >> _s,    \
68                 MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52) >> _s,   \
69                 MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78) >> _s,   \
70                 MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104) >> _s,  \
71                 MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156) >> _s,  \
72                 MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208) >> _s,  \
73                 MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234) >> _s,  \
74                 MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260) >> _s   \
75         }                                                               \
76 }
77
78 #define MCS_GROUP_SHIFT(_streams, _sgi, _ht40)                          \
79         GROUP_SHIFT(MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26))
80
81 #define MCS_GROUP(_streams, _sgi, _ht40)                                \
82         __MCS_GROUP(_streams, _sgi, _ht40,                              \
83                     MCS_GROUP_SHIFT(_streams, _sgi, _ht40))
84
85 #define VHT_GROUP_IDX(_streams, _sgi, _bw)                              \
86         (MINSTREL_VHT_GROUP_0 +                                         \
87          MINSTREL_MAX_STREAMS * 2 * (_bw) +                             \
88          MINSTREL_MAX_STREAMS * (_sgi) +                                \
89          (_streams) - 1)
90
91 #define BW2VBPS(_bw, r3, r2, r1)                                        \
92         (_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)
93
94 #define __VHT_GROUP(_streams, _sgi, _bw, _s)                            \
95         [VHT_GROUP_IDX(_streams, _sgi, _bw)] = {                        \
96         .streams = _streams,                                            \
97         .shift = _s,                                                    \
98         .bw = _bw,                                                      \
99         .flags =                                                        \
100                 IEEE80211_TX_RC_VHT_MCS |                               \
101                 (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) |                 \
102                 (_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH :          \
103                  _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0),      \
104         .duration = {                                                   \
105                 MCS_DURATION(_streams, _sgi,                            \
106                              BW2VBPS(_bw,  117,  54,  26)) >> _s,       \
107                 MCS_DURATION(_streams, _sgi,                            \
108                              BW2VBPS(_bw,  234, 108,  52)) >> _s,       \
109                 MCS_DURATION(_streams, _sgi,                            \
110                              BW2VBPS(_bw,  351, 162,  78)) >> _s,       \
111                 MCS_DURATION(_streams, _sgi,                            \
112                              BW2VBPS(_bw,  468, 216, 104)) >> _s,       \
113                 MCS_DURATION(_streams, _sgi,                            \
114                              BW2VBPS(_bw,  702, 324, 156)) >> _s,       \
115                 MCS_DURATION(_streams, _sgi,                            \
116                              BW2VBPS(_bw,  936, 432, 208)) >> _s,       \
117                 MCS_DURATION(_streams, _sgi,                            \
118                              BW2VBPS(_bw, 1053, 486, 234)) >> _s,       \
119                 MCS_DURATION(_streams, _sgi,                            \
120                              BW2VBPS(_bw, 1170, 540, 260)) >> _s,       \
121                 MCS_DURATION(_streams, _sgi,                            \
122                              BW2VBPS(_bw, 1404, 648, 312)) >> _s,       \
123                 MCS_DURATION(_streams, _sgi,                            \
124                              BW2VBPS(_bw, 1560, 720, 346)) >> _s        \
125         }                                                               \
126 }
127
128 #define VHT_GROUP_SHIFT(_streams, _sgi, _bw)                            \
129         GROUP_SHIFT(MCS_DURATION(_streams, _sgi,                        \
130                                  BW2VBPS(_bw,  117,  54,  26)))
131
132 #define VHT_GROUP(_streams, _sgi, _bw)                                  \
133         __VHT_GROUP(_streams, _sgi, _bw,                                \
134                     VHT_GROUP_SHIFT(_streams, _sgi, _bw))
135
136 #define CCK_DURATION(_bitrate, _short)                  \
137         (1000 * (10 /* SIFS */ +                        \
138          (_short ? 72 + 24 : 144 + 48) +                \
139          (8 * (AVG_PKT_SIZE + 4) * 10) / (_bitrate)))
140
141 #define CCK_DURATION_LIST(_short, _s)                   \
142         CCK_DURATION(10, _short) >> _s,                 \
143         CCK_DURATION(20, _short) >> _s,                 \
144         CCK_DURATION(55, _short) >> _s,                 \
145         CCK_DURATION(110, _short) >> _s
146
147 #define __CCK_GROUP(_s)                                 \
148         [MINSTREL_CCK_GROUP] = {                        \
149                 .streams = 1,                           \
150                 .flags = 0,                             \
151                 .shift = _s,                            \
152                 .duration = {                           \
153                         CCK_DURATION_LIST(false, _s),   \
154                         CCK_DURATION_LIST(true, _s)     \
155                 }                                       \
156         }
157
158 #define CCK_GROUP_SHIFT                                 \
159         GROUP_SHIFT(CCK_DURATION(10, false))
160
161 #define CCK_GROUP __CCK_GROUP(CCK_GROUP_SHIFT)
162
163 #define OFDM_DURATION(_bitrate)                         \
164         (1000 * (16 /* SIFS + signal ext */ +           \
165          16 /* T_PREAMBLE */ +                          \
166          4 /* T_SIGNAL */ +                             \
167          4 * (((16 + 80 * (AVG_PKT_SIZE + 4) + 6) /     \
168               ((_bitrate) * 4)))))
169
170 #define OFDM_DURATION_LIST(_s)                          \
171         OFDM_DURATION(60) >> _s,                        \
172         OFDM_DURATION(90) >> _s,                        \
173         OFDM_DURATION(120) >> _s,                       \
174         OFDM_DURATION(180) >> _s,                       \
175         OFDM_DURATION(240) >> _s,                       \
176         OFDM_DURATION(360) >> _s,                       \
177         OFDM_DURATION(480) >> _s,                       \
178         OFDM_DURATION(540) >> _s
179
180 #define __OFDM_GROUP(_s)                                \
181         [MINSTREL_OFDM_GROUP] = {                       \
182                 .streams = 1,                           \
183                 .flags = 0,                             \
184                 .shift = _s,                            \
185                 .duration = {                           \
186                         OFDM_DURATION_LIST(_s),         \
187                 }                                       \
188         }
189
190 #define OFDM_GROUP_SHIFT                                \
191         GROUP_SHIFT(OFDM_DURATION(60))
192
193 #define OFDM_GROUP __OFDM_GROUP(OFDM_GROUP_SHIFT)
194
195
196 static bool minstrel_vht_only = true;
197 module_param(minstrel_vht_only, bool, 0644);
198 MODULE_PARM_DESC(minstrel_vht_only,
199                  "Use only VHT rates when VHT is supported by sta.");
200
201 /*
202  * To enable sufficiently targeted rate sampling, MCS rates are divided into
203  * groups, based on the number of streams and flags (HT40, SGI) that they
204  * use.
205  *
206  * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
207  * BW -> SGI -> #streams
208  */
209 const struct mcs_group minstrel_mcs_groups[] = {
210         MCS_GROUP(1, 0, BW_20),
211         MCS_GROUP(2, 0, BW_20),
212         MCS_GROUP(3, 0, BW_20),
213         MCS_GROUP(4, 0, BW_20),
214
215         MCS_GROUP(1, 1, BW_20),
216         MCS_GROUP(2, 1, BW_20),
217         MCS_GROUP(3, 1, BW_20),
218         MCS_GROUP(4, 1, BW_20),
219
220         MCS_GROUP(1, 0, BW_40),
221         MCS_GROUP(2, 0, BW_40),
222         MCS_GROUP(3, 0, BW_40),
223         MCS_GROUP(4, 0, BW_40),
224
225         MCS_GROUP(1, 1, BW_40),
226         MCS_GROUP(2, 1, BW_40),
227         MCS_GROUP(3, 1, BW_40),
228         MCS_GROUP(4, 1, BW_40),
229
230         CCK_GROUP,
231         OFDM_GROUP,
232
233         VHT_GROUP(1, 0, BW_20),
234         VHT_GROUP(2, 0, BW_20),
235         VHT_GROUP(3, 0, BW_20),
236         VHT_GROUP(4, 0, BW_20),
237
238         VHT_GROUP(1, 1, BW_20),
239         VHT_GROUP(2, 1, BW_20),
240         VHT_GROUP(3, 1, BW_20),
241         VHT_GROUP(4, 1, BW_20),
242
243         VHT_GROUP(1, 0, BW_40),
244         VHT_GROUP(2, 0, BW_40),
245         VHT_GROUP(3, 0, BW_40),
246         VHT_GROUP(4, 0, BW_40),
247
248         VHT_GROUP(1, 1, BW_40),
249         VHT_GROUP(2, 1, BW_40),
250         VHT_GROUP(3, 1, BW_40),
251         VHT_GROUP(4, 1, BW_40),
252
253         VHT_GROUP(1, 0, BW_80),
254         VHT_GROUP(2, 0, BW_80),
255         VHT_GROUP(3, 0, BW_80),
256         VHT_GROUP(4, 0, BW_80),
257
258         VHT_GROUP(1, 1, BW_80),
259         VHT_GROUP(2, 1, BW_80),
260         VHT_GROUP(3, 1, BW_80),
261         VHT_GROUP(4, 1, BW_80),
262 };
263
264 const s16 minstrel_cck_bitrates[4] = { 10, 20, 55, 110 };
265 const s16 minstrel_ofdm_bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 };
266 static u8 sample_table[SAMPLE_COLUMNS][MCS_GROUP_RATES] __read_mostly;
267 static const u8 minstrel_sample_seq[] = {
268         MINSTREL_SAMPLE_TYPE_INC,
269         MINSTREL_SAMPLE_TYPE_JUMP,
270         MINSTREL_SAMPLE_TYPE_INC,
271         MINSTREL_SAMPLE_TYPE_JUMP,
272         MINSTREL_SAMPLE_TYPE_INC,
273         MINSTREL_SAMPLE_TYPE_SLOW,
274 };
275
276 static void
277 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi);
278
279 /*
280  * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
281  * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
282  *
283  * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
284  */
285 static u16
286 minstrel_get_valid_vht_rates(int bw, int nss, __le16 mcs_map)
287 {
288         u16 mask = 0;
289
290         if (bw == BW_20) {
291                 if (nss != 3 && nss != 6)
292                         mask = BIT(9);
293         } else if (bw == BW_80) {
294                 if (nss == 3 || nss == 7)
295                         mask = BIT(6);
296                 else if (nss == 6)
297                         mask = BIT(9);
298         } else {
299                 WARN_ON(bw != BW_40);
300         }
301
302         switch ((le16_to_cpu(mcs_map) >> (2 * (nss - 1))) & 3) {
303         case IEEE80211_VHT_MCS_SUPPORT_0_7:
304                 mask |= 0x300;
305                 break;
306         case IEEE80211_VHT_MCS_SUPPORT_0_8:
307                 mask |= 0x200;
308                 break;
309         case IEEE80211_VHT_MCS_SUPPORT_0_9:
310                 break;
311         default:
312                 mask = 0x3ff;
313         }
314
315         return 0x3ff & ~mask;
316 }
317
318 static bool
319 minstrel_ht_is_legacy_group(int group)
320 {
321         return group == MINSTREL_CCK_GROUP ||
322                group == MINSTREL_OFDM_GROUP;
323 }
324
325 /*
326  * Look up an MCS group index based on mac80211 rate information
327  */
328 static int
329 minstrel_ht_get_group_idx(struct ieee80211_tx_rate *rate)
330 {
331         return GROUP_IDX((rate->idx / 8) + 1,
332                          !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
333                          !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH));
334 }
335
336 /*
337  * Look up an MCS group index based on new cfg80211 rate_info.
338  */
339 static int
340 minstrel_ht_ri_get_group_idx(struct rate_info *rate)
341 {
342         return GROUP_IDX((rate->mcs / 8) + 1,
343                          !!(rate->flags & RATE_INFO_FLAGS_SHORT_GI),
344                          !!(rate->bw & RATE_INFO_BW_40));
345 }
346
347 static int
348 minstrel_vht_get_group_idx(struct ieee80211_tx_rate *rate)
349 {
350         return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate),
351                              !!(rate->flags & IEEE80211_TX_RC_SHORT_GI),
352                              !!(rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) +
353                              2*!!(rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH));
354 }
355
356 /*
357  * Look up an MCS group index based on new cfg80211 rate_info.
358  */
359 static int
360 minstrel_vht_ri_get_group_idx(struct rate_info *rate)
361 {
362         return VHT_GROUP_IDX(rate->nss,
363                              !!(rate->flags & RATE_INFO_FLAGS_SHORT_GI),
364                              !!(rate->bw & RATE_INFO_BW_40) +
365                              2*!!(rate->bw & RATE_INFO_BW_80));
366 }
367
368 static struct minstrel_rate_stats *
369 minstrel_ht_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
370                       struct ieee80211_tx_rate *rate)
371 {
372         int group, idx;
373
374         if (rate->flags & IEEE80211_TX_RC_MCS) {
375                 group = minstrel_ht_get_group_idx(rate);
376                 idx = rate->idx % 8;
377                 goto out;
378         }
379
380         if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
381                 group = minstrel_vht_get_group_idx(rate);
382                 idx = ieee80211_rate_get_vht_mcs(rate);
383                 goto out;
384         }
385
386         group = MINSTREL_CCK_GROUP;
387         for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++) {
388                 if (!(mi->supported[group] & BIT(idx)))
389                         continue;
390
391                 if (rate->idx != mp->cck_rates[idx])
392                         continue;
393
394                 /* short preamble */
395                 if ((mi->supported[group] & BIT(idx + 4)) &&
396                     (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE))
397                         idx += 4;
398                 goto out;
399         }
400
401         group = MINSTREL_OFDM_GROUP;
402         for (idx = 0; idx < ARRAY_SIZE(mp->ofdm_rates[0]); idx++)
403                 if (rate->idx == mp->ofdm_rates[mi->band][idx])
404                         goto out;
405
406         idx = 0;
407 out:
408         return &mi->groups[group].rates[idx];
409 }
410
411 /*
412  * Get the minstrel rate statistics for specified STA and rate info.
413  */
414 static struct minstrel_rate_stats *
415 minstrel_ht_ri_get_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
416                           struct ieee80211_rate_status *rate_status)
417 {
418         int group, idx;
419         struct rate_info *rate = &rate_status->rate_idx;
420
421         if (rate->flags & RATE_INFO_FLAGS_MCS) {
422                 group = minstrel_ht_ri_get_group_idx(rate);
423                 idx = rate->mcs % 8;
424                 goto out;
425         }
426
427         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS) {
428                 group = minstrel_vht_ri_get_group_idx(rate);
429                 idx = rate->mcs;
430                 goto out;
431         }
432
433         group = MINSTREL_CCK_GROUP;
434         for (idx = 0; idx < ARRAY_SIZE(mp->cck_rates); idx++) {
435                 if (rate->legacy != minstrel_cck_bitrates[ mp->cck_rates[idx] ])
436                         continue;
437
438                 /* short preamble */
439                 if ((mi->supported[group] & BIT(idx + 4)) &&
440                                                         mi->use_short_preamble)
441                         idx += 4;
442                 goto out;
443         }
444
445         group = MINSTREL_OFDM_GROUP;
446         for (idx = 0; idx < ARRAY_SIZE(mp->ofdm_rates[0]); idx++)
447                 if (rate->legacy == minstrel_ofdm_bitrates[ mp->ofdm_rates[mi->band][idx] ])
448                         goto out;
449
450         idx = 0;
451 out:
452         return &mi->groups[group].rates[idx];
453 }
454
455 static inline struct minstrel_rate_stats *
456 minstrel_get_ratestats(struct minstrel_ht_sta *mi, int index)
457 {
458         return &mi->groups[MI_RATE_GROUP(index)].rates[MI_RATE_IDX(index)];
459 }
460
461 static inline int minstrel_get_duration(int index)
462 {
463         const struct mcs_group *group = &minstrel_mcs_groups[MI_RATE_GROUP(index)];
464         unsigned int duration = group->duration[MI_RATE_IDX(index)];
465
466         return duration << group->shift;
467 }
468
469 static unsigned int
470 minstrel_ht_avg_ampdu_len(struct minstrel_ht_sta *mi)
471 {
472         int duration;
473
474         if (mi->avg_ampdu_len)
475                 return MINSTREL_TRUNC(mi->avg_ampdu_len);
476
477         if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(mi->max_tp_rate[0])))
478                 return 1;
479
480         duration = minstrel_get_duration(mi->max_tp_rate[0]);
481
482         if (duration > 400 * 1000)
483                 return 2;
484
485         if (duration > 250 * 1000)
486                 return 4;
487
488         if (duration > 150 * 1000)
489                 return 8;
490
491         return 16;
492 }
493
494 /*
495  * Return current throughput based on the average A-MPDU length, taking into
496  * account the expected number of retransmissions and their expected length
497  */
498 int
499 minstrel_ht_get_tp_avg(struct minstrel_ht_sta *mi, int group, int rate,
500                        int prob_avg)
501 {
502         unsigned int nsecs = 0, overhead = mi->overhead;
503         unsigned int ampdu_len = 1;
504
505         /* do not account throughput if success prob is below 10% */
506         if (prob_avg < MINSTREL_FRAC(10, 100))
507                 return 0;
508
509         if (minstrel_ht_is_legacy_group(group))
510                 overhead = mi->overhead_legacy;
511         else
512                 ampdu_len = minstrel_ht_avg_ampdu_len(mi);
513
514         nsecs = 1000 * overhead / ampdu_len;
515         nsecs += minstrel_mcs_groups[group].duration[rate] <<
516                  minstrel_mcs_groups[group].shift;
517
518         /*
519          * For the throughput calculation, limit the probability value to 90% to
520          * account for collision related packet error rate fluctuation
521          * (prob is scaled - see MINSTREL_FRAC above)
522          */
523         if (prob_avg > MINSTREL_FRAC(90, 100))
524                 prob_avg = MINSTREL_FRAC(90, 100);
525
526         return MINSTREL_TRUNC(100 * ((prob_avg * 1000000) / nsecs));
527 }
528
529 /*
530  * Find & sort topmost throughput rates
531  *
532  * If multiple rates provide equal throughput the sorting is based on their
533  * current success probability. Higher success probability is preferred among
534  * MCS groups, CCK rates do not provide aggregation and are therefore at last.
535  */
536 static void
537 minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta *mi, u16 index,
538                                u16 *tp_list)
539 {
540         int cur_group, cur_idx, cur_tp_avg, cur_prob;
541         int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
542         int j = MAX_THR_RATES;
543
544         cur_group = MI_RATE_GROUP(index);
545         cur_idx = MI_RATE_IDX(index);
546         cur_prob = mi->groups[cur_group].rates[cur_idx].prob_avg;
547         cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx, cur_prob);
548
549         do {
550                 tmp_group = MI_RATE_GROUP(tp_list[j - 1]);
551                 tmp_idx = MI_RATE_IDX(tp_list[j - 1]);
552                 tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
553                 tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx,
554                                                     tmp_prob);
555                 if (cur_tp_avg < tmp_tp_avg ||
556                     (cur_tp_avg == tmp_tp_avg && cur_prob <= tmp_prob))
557                         break;
558                 j--;
559         } while (j > 0);
560
561         if (j < MAX_THR_RATES - 1) {
562                 memmove(&tp_list[j + 1], &tp_list[j], (sizeof(*tp_list) *
563                        (MAX_THR_RATES - (j + 1))));
564         }
565         if (j < MAX_THR_RATES)
566                 tp_list[j] = index;
567 }
568
569 /*
570  * Find and set the topmost probability rate per sta and per group
571  */
572 static void
573 minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta *mi, u16 *dest, u16 index)
574 {
575         struct minstrel_mcs_group_data *mg;
576         struct minstrel_rate_stats *mrs;
577         int tmp_group, tmp_idx, tmp_tp_avg, tmp_prob;
578         int max_tp_group, max_tp_idx, max_tp_prob;
579         int cur_tp_avg, cur_group, cur_idx;
580         int max_gpr_group, max_gpr_idx;
581         int max_gpr_tp_avg, max_gpr_prob;
582
583         cur_group = MI_RATE_GROUP(index);
584         cur_idx = MI_RATE_IDX(index);
585         mg = &mi->groups[cur_group];
586         mrs = &mg->rates[cur_idx];
587
588         tmp_group = MI_RATE_GROUP(*dest);
589         tmp_idx = MI_RATE_IDX(*dest);
590         tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
591         tmp_tp_avg = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
592
593         /* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
594          * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
595         max_tp_group = MI_RATE_GROUP(mi->max_tp_rate[0]);
596         max_tp_idx = MI_RATE_IDX(mi->max_tp_rate[0]);
597         max_tp_prob = mi->groups[max_tp_group].rates[max_tp_idx].prob_avg;
598
599         if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index)) &&
600             !minstrel_ht_is_legacy_group(max_tp_group))
601                 return;
602
603         /* skip rates faster than max tp rate with lower prob */
604         if (minstrel_get_duration(mi->max_tp_rate[0]) > minstrel_get_duration(index) &&
605             mrs->prob_avg < max_tp_prob)
606                 return;
607
608         max_gpr_group = MI_RATE_GROUP(mg->max_group_prob_rate);
609         max_gpr_idx = MI_RATE_IDX(mg->max_group_prob_rate);
610         max_gpr_prob = mi->groups[max_gpr_group].rates[max_gpr_idx].prob_avg;
611
612         if (mrs->prob_avg > MINSTREL_FRAC(75, 100)) {
613                 cur_tp_avg = minstrel_ht_get_tp_avg(mi, cur_group, cur_idx,
614                                                     mrs->prob_avg);
615                 if (cur_tp_avg > tmp_tp_avg)
616                         *dest = index;
617
618                 max_gpr_tp_avg = minstrel_ht_get_tp_avg(mi, max_gpr_group,
619                                                         max_gpr_idx,
620                                                         max_gpr_prob);
621                 if (cur_tp_avg > max_gpr_tp_avg)
622                         mg->max_group_prob_rate = index;
623         } else {
624                 if (mrs->prob_avg > tmp_prob)
625                         *dest = index;
626                 if (mrs->prob_avg > max_gpr_prob)
627                         mg->max_group_prob_rate = index;
628         }
629 }
630
631
632 /*
633  * Assign new rate set per sta and use CCK rates only if the fastest
634  * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
635  * rate sets where MCS and CCK rates are mixed, because CCK rates can
636  * not use aggregation.
637  */
638 static void
639 minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta *mi,
640                                  u16 tmp_mcs_tp_rate[MAX_THR_RATES],
641                                  u16 tmp_legacy_tp_rate[MAX_THR_RATES])
642 {
643         unsigned int tmp_group, tmp_idx, tmp_cck_tp, tmp_mcs_tp, tmp_prob;
644         int i;
645
646         tmp_group = MI_RATE_GROUP(tmp_legacy_tp_rate[0]);
647         tmp_idx = MI_RATE_IDX(tmp_legacy_tp_rate[0]);
648         tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
649         tmp_cck_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
650
651         tmp_group = MI_RATE_GROUP(tmp_mcs_tp_rate[0]);
652         tmp_idx = MI_RATE_IDX(tmp_mcs_tp_rate[0]);
653         tmp_prob = mi->groups[tmp_group].rates[tmp_idx].prob_avg;
654         tmp_mcs_tp = minstrel_ht_get_tp_avg(mi, tmp_group, tmp_idx, tmp_prob);
655
656         if (tmp_cck_tp > tmp_mcs_tp) {
657                 for(i = 0; i < MAX_THR_RATES; i++) {
658                         minstrel_ht_sort_best_tp_rates(mi, tmp_legacy_tp_rate[i],
659                                                        tmp_mcs_tp_rate);
660                 }
661         }
662
663 }
664
665 /*
666  * Try to increase robustness of max_prob rate by decrease number of
667  * streams if possible.
668  */
669 static inline void
670 minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta *mi)
671 {
672         struct minstrel_mcs_group_data *mg;
673         int tmp_max_streams, group, tmp_idx, tmp_prob;
674         int tmp_tp = 0;
675
676         if (!mi->sta->deflink.ht_cap.ht_supported)
677                 return;
678
679         group = MI_RATE_GROUP(mi->max_tp_rate[0]);
680         tmp_max_streams = minstrel_mcs_groups[group].streams;
681         for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
682                 mg = &mi->groups[group];
683                 if (!mi->supported[group] || group == MINSTREL_CCK_GROUP)
684                         continue;
685
686                 tmp_idx = MI_RATE_IDX(mg->max_group_prob_rate);
687                 tmp_prob = mi->groups[group].rates[tmp_idx].prob_avg;
688
689                 if (tmp_tp < minstrel_ht_get_tp_avg(mi, group, tmp_idx, tmp_prob) &&
690                    (minstrel_mcs_groups[group].streams < tmp_max_streams)) {
691                                 mi->max_prob_rate = mg->max_group_prob_rate;
692                                 tmp_tp = minstrel_ht_get_tp_avg(mi, group,
693                                                                 tmp_idx,
694                                                                 tmp_prob);
695                 }
696         }
697 }
698
699 static u16
700 __minstrel_ht_get_sample_rate(struct minstrel_ht_sta *mi,
701                               enum minstrel_sample_type type)
702 {
703         u16 *rates = mi->sample[type].sample_rates;
704         u16 cur;
705         int i;
706
707         for (i = 0; i < MINSTREL_SAMPLE_RATES; i++) {
708                 if (!rates[i])
709                         continue;
710
711                 cur = rates[i];
712                 rates[i] = 0;
713                 return cur;
714         }
715
716         return 0;
717 }
718
719 static inline int
720 minstrel_ewma(int old, int new, int weight)
721 {
722         int diff, incr;
723
724         diff = new - old;
725         incr = (EWMA_DIV - weight) * diff / EWMA_DIV;
726
727         return old + incr;
728 }
729
730 static inline int minstrel_filter_avg_add(u16 *prev_1, u16 *prev_2, s32 in)
731 {
732         s32 out_1 = *prev_1;
733         s32 out_2 = *prev_2;
734         s32 val;
735
736         if (!in)
737                 in += 1;
738
739         if (!out_1) {
740                 val = out_1 = in;
741                 goto out;
742         }
743
744         val = MINSTREL_AVG_COEFF1 * in;
745         val += MINSTREL_AVG_COEFF2 * out_1;
746         val += MINSTREL_AVG_COEFF3 * out_2;
747         val >>= MINSTREL_SCALE;
748
749         if (val > 1 << MINSTREL_SCALE)
750                 val = 1 << MINSTREL_SCALE;
751         if (val < 0)
752                 val = 1;
753
754 out:
755         *prev_2 = out_1;
756         *prev_1 = val;
757
758         return val;
759 }
760
761 /*
762 * Recalculate statistics and counters of a given rate
763 */
764 static void
765 minstrel_ht_calc_rate_stats(struct minstrel_priv *mp,
766                             struct minstrel_rate_stats *mrs)
767 {
768         unsigned int cur_prob;
769
770         if (unlikely(mrs->attempts > 0)) {
771                 cur_prob = MINSTREL_FRAC(mrs->success, mrs->attempts);
772                 minstrel_filter_avg_add(&mrs->prob_avg,
773                                         &mrs->prob_avg_1, cur_prob);
774                 mrs->att_hist += mrs->attempts;
775                 mrs->succ_hist += mrs->success;
776         }
777
778         mrs->last_success = mrs->success;
779         mrs->last_attempts = mrs->attempts;
780         mrs->success = 0;
781         mrs->attempts = 0;
782 }
783
784 static bool
785 minstrel_ht_find_sample_rate(struct minstrel_ht_sta *mi, int type, int idx)
786 {
787         int i;
788
789         for (i = 0; i < MINSTREL_SAMPLE_RATES; i++) {
790                 u16 cur = mi->sample[type].sample_rates[i];
791
792                 if (cur == idx)
793                         return true;
794
795                 if (!cur)
796                         break;
797         }
798
799         return false;
800 }
801
802 static int
803 minstrel_ht_move_sample_rates(struct minstrel_ht_sta *mi, int type,
804                               u32 fast_rate_dur, u32 slow_rate_dur)
805 {
806         u16 *rates = mi->sample[type].sample_rates;
807         int i, j;
808
809         for (i = 0, j = 0; i < MINSTREL_SAMPLE_RATES; i++) {
810                 u32 duration;
811                 bool valid = false;
812                 u16 cur;
813
814                 cur = rates[i];
815                 if (!cur)
816                         continue;
817
818                 duration = minstrel_get_duration(cur);
819                 switch (type) {
820                 case MINSTREL_SAMPLE_TYPE_SLOW:
821                         valid = duration > fast_rate_dur &&
822                                 duration < slow_rate_dur;
823                         break;
824                 case MINSTREL_SAMPLE_TYPE_INC:
825                 case MINSTREL_SAMPLE_TYPE_JUMP:
826                         valid = duration < fast_rate_dur;
827                         break;
828                 default:
829                         valid = false;
830                         break;
831                 }
832
833                 if (!valid) {
834                         rates[i] = 0;
835                         continue;
836                 }
837
838                 if (i == j)
839                         continue;
840
841                 rates[j++] = cur;
842                 rates[i] = 0;
843         }
844
845         return j;
846 }
847
848 static int
849 minstrel_ht_group_min_rate_offset(struct minstrel_ht_sta *mi, int group,
850                                   u32 max_duration)
851 {
852         u16 supported = mi->supported[group];
853         int i;
854
855         for (i = 0; i < MCS_GROUP_RATES && supported; i++, supported >>= 1) {
856                 if (!(supported & BIT(0)))
857                         continue;
858
859                 if (minstrel_get_duration(MI_RATE(group, i)) >= max_duration)
860                         continue;
861
862                 return i;
863         }
864
865         return -1;
866 }
867
868 /*
869  * Incremental update rates:
870  * Flip through groups and pick the first group rate that is faster than the
871  * highest currently selected rate
872  */
873 static u16
874 minstrel_ht_next_inc_rate(struct minstrel_ht_sta *mi, u32 fast_rate_dur)
875 {
876         u8 type = MINSTREL_SAMPLE_TYPE_INC;
877         int i, index = 0;
878         u8 group;
879
880         group = mi->sample[type].sample_group;
881         for (i = 0; i < ARRAY_SIZE(minstrel_mcs_groups); i++) {
882                 group = (group + 1) % ARRAY_SIZE(minstrel_mcs_groups);
883
884                 index = minstrel_ht_group_min_rate_offset(mi, group,
885                                                           fast_rate_dur);
886                 if (index < 0)
887                         continue;
888
889                 index = MI_RATE(group, index & 0xf);
890                 if (!minstrel_ht_find_sample_rate(mi, type, index))
891                         goto out;
892         }
893         index = 0;
894
895 out:
896         mi->sample[type].sample_group = group;
897
898         return index;
899 }
900
901 static int
902 minstrel_ht_next_group_sample_rate(struct minstrel_ht_sta *mi, int group,
903                                    u16 supported, int offset)
904 {
905         struct minstrel_mcs_group_data *mg = &mi->groups[group];
906         u16 idx;
907         int i;
908
909         for (i = 0; i < MCS_GROUP_RATES; i++) {
910                 idx = sample_table[mg->column][mg->index];
911                 if (++mg->index >= MCS_GROUP_RATES) {
912                         mg->index = 0;
913                         if (++mg->column >= ARRAY_SIZE(sample_table))
914                                 mg->column = 0;
915                 }
916
917                 if (idx < offset)
918                         continue;
919
920                 if (!(supported & BIT(idx)))
921                         continue;
922
923                 return MI_RATE(group, idx);
924         }
925
926         return -1;
927 }
928
929 /*
930  * Jump rates:
931  * Sample random rates, use those that are faster than the highest
932  * currently selected rate. Rates between the fastest and the slowest
933  * get sorted into the slow sample bucket, but only if it has room
934  */
935 static u16
936 minstrel_ht_next_jump_rate(struct minstrel_ht_sta *mi, u32 fast_rate_dur,
937                            u32 slow_rate_dur, int *slow_rate_ofs)
938 {
939         struct minstrel_rate_stats *mrs;
940         u32 max_duration = slow_rate_dur;
941         int i, index, offset;
942         u16 *slow_rates;
943         u16 supported;
944         u32 duration;
945         u8 group;
946
947         if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES)
948                 max_duration = fast_rate_dur;
949
950         slow_rates = mi->sample[MINSTREL_SAMPLE_TYPE_SLOW].sample_rates;
951         group = mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_group;
952         for (i = 0; i < ARRAY_SIZE(minstrel_mcs_groups); i++) {
953                 u8 type;
954
955                 group = (group + 1) % ARRAY_SIZE(minstrel_mcs_groups);
956
957                 supported = mi->supported[group];
958                 if (!supported)
959                         continue;
960
961                 offset = minstrel_ht_group_min_rate_offset(mi, group,
962                                                            max_duration);
963                 if (offset < 0)
964                         continue;
965
966                 index = minstrel_ht_next_group_sample_rate(mi, group, supported,
967                                                            offset);
968                 if (index < 0)
969                         continue;
970
971                 duration = minstrel_get_duration(index);
972                 if (duration < fast_rate_dur)
973                         type = MINSTREL_SAMPLE_TYPE_JUMP;
974                 else
975                         type = MINSTREL_SAMPLE_TYPE_SLOW;
976
977                 if (minstrel_ht_find_sample_rate(mi, type, index))
978                         continue;
979
980                 if (type == MINSTREL_SAMPLE_TYPE_JUMP)
981                         goto found;
982
983                 if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES)
984                         continue;
985
986                 if (duration >= slow_rate_dur)
987                         continue;
988
989                 /* skip slow rates with high success probability */
990                 mrs = minstrel_get_ratestats(mi, index);
991                 if (mrs->prob_avg > MINSTREL_FRAC(95, 100))
992                         continue;
993
994                 slow_rates[(*slow_rate_ofs)++] = index;
995                 if (*slow_rate_ofs >= MINSTREL_SAMPLE_RATES)
996                         max_duration = fast_rate_dur;
997         }
998         index = 0;
999
1000 found:
1001         mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_group = group;
1002
1003         return index;
1004 }
1005
1006 static void
1007 minstrel_ht_refill_sample_rates(struct minstrel_ht_sta *mi)
1008 {
1009         u32 prob_dur = minstrel_get_duration(mi->max_prob_rate);
1010         u32 tp_dur = minstrel_get_duration(mi->max_tp_rate[0]);
1011         u32 tp2_dur = minstrel_get_duration(mi->max_tp_rate[1]);
1012         u32 fast_rate_dur = min(min(tp_dur, tp2_dur), prob_dur);
1013         u32 slow_rate_dur = max(max(tp_dur, tp2_dur), prob_dur);
1014         u16 *rates;
1015         int i, j;
1016
1017         rates = mi->sample[MINSTREL_SAMPLE_TYPE_INC].sample_rates;
1018         i = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_INC,
1019                                           fast_rate_dur, slow_rate_dur);
1020         while (i < MINSTREL_SAMPLE_RATES) {
1021                 rates[i] = minstrel_ht_next_inc_rate(mi, tp_dur);
1022                 if (!rates[i])
1023                         break;
1024
1025                 i++;
1026         }
1027
1028         rates = mi->sample[MINSTREL_SAMPLE_TYPE_JUMP].sample_rates;
1029         i = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_JUMP,
1030                                           fast_rate_dur, slow_rate_dur);
1031         j = minstrel_ht_move_sample_rates(mi, MINSTREL_SAMPLE_TYPE_SLOW,
1032                                           fast_rate_dur, slow_rate_dur);
1033         while (i < MINSTREL_SAMPLE_RATES) {
1034                 rates[i] = minstrel_ht_next_jump_rate(mi, fast_rate_dur,
1035                                                       slow_rate_dur, &j);
1036                 if (!rates[i])
1037                         break;
1038
1039                 i++;
1040         }
1041
1042         for (i = 0; i < ARRAY_SIZE(mi->sample); i++)
1043                 memcpy(mi->sample[i].cur_sample_rates, mi->sample[i].sample_rates,
1044                        sizeof(mi->sample[i].cur_sample_rates));
1045 }
1046
1047
1048 /*
1049  * Update rate statistics and select new primary rates
1050  *
1051  * Rules for rate selection:
1052  *  - max_prob_rate must use only one stream, as a tradeoff between delivery
1053  *    probability and throughput during strong fluctuations
1054  *  - as long as the max prob rate has a probability of more than 75%, pick
1055  *    higher throughput rates, even if the probablity is a bit lower
1056  */
1057 static void
1058 minstrel_ht_update_stats(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1059 {
1060         struct minstrel_mcs_group_data *mg;
1061         struct minstrel_rate_stats *mrs;
1062         int group, i, j, cur_prob;
1063         u16 tmp_mcs_tp_rate[MAX_THR_RATES], tmp_group_tp_rate[MAX_THR_RATES];
1064         u16 tmp_legacy_tp_rate[MAX_THR_RATES], tmp_max_prob_rate;
1065         u16 index;
1066         bool ht_supported = mi->sta->deflink.ht_cap.ht_supported;
1067
1068         if (mi->ampdu_packets > 0) {
1069                 if (!ieee80211_hw_check(mp->hw, TX_STATUS_NO_AMPDU_LEN))
1070                         mi->avg_ampdu_len = minstrel_ewma(mi->avg_ampdu_len,
1071                                 MINSTREL_FRAC(mi->ampdu_len, mi->ampdu_packets),
1072                                               EWMA_LEVEL);
1073                 else
1074                         mi->avg_ampdu_len = 0;
1075                 mi->ampdu_len = 0;
1076                 mi->ampdu_packets = 0;
1077         }
1078
1079         if (mi->supported[MINSTREL_CCK_GROUP])
1080                 group = MINSTREL_CCK_GROUP;
1081         else if (mi->supported[MINSTREL_OFDM_GROUP])
1082                 group = MINSTREL_OFDM_GROUP;
1083         else
1084                 group = 0;
1085
1086         index = MI_RATE(group, 0);
1087         for (j = 0; j < ARRAY_SIZE(tmp_legacy_tp_rate); j++)
1088                 tmp_legacy_tp_rate[j] = index;
1089
1090         if (mi->supported[MINSTREL_VHT_GROUP_0])
1091                 group = MINSTREL_VHT_GROUP_0;
1092         else if (ht_supported)
1093                 group = MINSTREL_HT_GROUP_0;
1094         else if (mi->supported[MINSTREL_CCK_GROUP])
1095                 group = MINSTREL_CCK_GROUP;
1096         else
1097                 group = MINSTREL_OFDM_GROUP;
1098
1099         index = MI_RATE(group, 0);
1100         tmp_max_prob_rate = index;
1101         for (j = 0; j < ARRAY_SIZE(tmp_mcs_tp_rate); j++)
1102                 tmp_mcs_tp_rate[j] = index;
1103
1104         /* Find best rate sets within all MCS groups*/
1105         for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
1106                 u16 *tp_rate = tmp_mcs_tp_rate;
1107                 u16 last_prob = 0;
1108
1109                 mg = &mi->groups[group];
1110                 if (!mi->supported[group])
1111                         continue;
1112
1113                 /* (re)Initialize group rate indexes */
1114                 for(j = 0; j < MAX_THR_RATES; j++)
1115                         tmp_group_tp_rate[j] = MI_RATE(group, 0);
1116
1117                 if (group == MINSTREL_CCK_GROUP && ht_supported)
1118                         tp_rate = tmp_legacy_tp_rate;
1119
1120                 for (i = MCS_GROUP_RATES - 1; i >= 0; i--) {
1121                         if (!(mi->supported[group] & BIT(i)))
1122                                 continue;
1123
1124                         index = MI_RATE(group, i);
1125
1126                         mrs = &mg->rates[i];
1127                         mrs->retry_updated = false;
1128                         minstrel_ht_calc_rate_stats(mp, mrs);
1129
1130                         if (mrs->att_hist)
1131                                 last_prob = max(last_prob, mrs->prob_avg);
1132                         else
1133                                 mrs->prob_avg = max(last_prob, mrs->prob_avg);
1134                         cur_prob = mrs->prob_avg;
1135
1136                         if (minstrel_ht_get_tp_avg(mi, group, i, cur_prob) == 0)
1137                                 continue;
1138
1139                         /* Find max throughput rate set */
1140                         minstrel_ht_sort_best_tp_rates(mi, index, tp_rate);
1141
1142                         /* Find max throughput rate set within a group */
1143                         minstrel_ht_sort_best_tp_rates(mi, index,
1144                                                        tmp_group_tp_rate);
1145                 }
1146
1147                 memcpy(mg->max_group_tp_rate, tmp_group_tp_rate,
1148                        sizeof(mg->max_group_tp_rate));
1149         }
1150
1151         /* Assign new rate set per sta */
1152         minstrel_ht_assign_best_tp_rates(mi, tmp_mcs_tp_rate,
1153                                          tmp_legacy_tp_rate);
1154         memcpy(mi->max_tp_rate, tmp_mcs_tp_rate, sizeof(mi->max_tp_rate));
1155
1156         for (group = 0; group < ARRAY_SIZE(minstrel_mcs_groups); group++) {
1157                 if (!mi->supported[group])
1158                         continue;
1159
1160                 mg = &mi->groups[group];
1161                 mg->max_group_prob_rate = MI_RATE(group, 0);
1162
1163                 for (i = 0; i < MCS_GROUP_RATES; i++) {
1164                         if (!(mi->supported[group] & BIT(i)))
1165                                 continue;
1166
1167                         index = MI_RATE(group, i);
1168
1169                         /* Find max probability rate per group and global */
1170                         minstrel_ht_set_best_prob_rate(mi, &tmp_max_prob_rate,
1171                                                        index);
1172                 }
1173         }
1174
1175         mi->max_prob_rate = tmp_max_prob_rate;
1176
1177         /* Try to increase robustness of max_prob_rate*/
1178         minstrel_ht_prob_rate_reduce_streams(mi);
1179         minstrel_ht_refill_sample_rates(mi);
1180
1181 #ifdef CONFIG_MAC80211_DEBUGFS
1182         /* use fixed index if set */
1183         if (mp->fixed_rate_idx != -1) {
1184                 for (i = 0; i < 4; i++)
1185                         mi->max_tp_rate[i] = mp->fixed_rate_idx;
1186                 mi->max_prob_rate = mp->fixed_rate_idx;
1187         }
1188 #endif
1189
1190         /* Reset update timer */
1191         mi->last_stats_update = jiffies;
1192         mi->sample_time = jiffies;
1193 }
1194
1195 static bool
1196 minstrel_ht_txstat_valid(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1197                          struct ieee80211_tx_rate *rate)
1198 {
1199         int i;
1200
1201         if (rate->idx < 0)
1202                 return false;
1203
1204         if (!rate->count)
1205                 return false;
1206
1207         if (rate->flags & IEEE80211_TX_RC_MCS ||
1208             rate->flags & IEEE80211_TX_RC_VHT_MCS)
1209                 return true;
1210
1211         for (i = 0; i < ARRAY_SIZE(mp->cck_rates); i++)
1212                 if (rate->idx == mp->cck_rates[i])
1213                         return true;
1214
1215         for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++)
1216                 if (rate->idx == mp->ofdm_rates[mi->band][i])
1217                         return true;
1218
1219         return false;
1220 }
1221
1222 /*
1223  * Check whether rate_status contains valid information.
1224  */
1225 static bool
1226 minstrel_ht_ri_txstat_valid(struct minstrel_priv *mp,
1227                             struct minstrel_ht_sta *mi,
1228                             struct ieee80211_rate_status *rate_status)
1229 {
1230         int i;
1231
1232         if (!rate_status)
1233                 return false;
1234         if (!rate_status->try_count)
1235                 return false;
1236
1237         if (rate_status->rate_idx.flags & RATE_INFO_FLAGS_MCS ||
1238             rate_status->rate_idx.flags & RATE_INFO_FLAGS_VHT_MCS)
1239                 return true;
1240
1241         for (i = 0; i < ARRAY_SIZE(mp->cck_rates); i++) {
1242                 if (rate_status->rate_idx.legacy ==
1243                     minstrel_cck_bitrates[ mp->cck_rates[i] ])
1244                         return true;
1245         }
1246
1247         for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates); i++) {
1248                 if (rate_status->rate_idx.legacy ==
1249                     minstrel_ofdm_bitrates[ mp->ofdm_rates[mi->band][i] ])
1250                         return true;
1251         }
1252
1253         return false;
1254 }
1255
1256 static void
1257 minstrel_downgrade_rate(struct minstrel_ht_sta *mi, u16 *idx, bool primary)
1258 {
1259         int group, orig_group;
1260
1261         orig_group = group = MI_RATE_GROUP(*idx);
1262         while (group > 0) {
1263                 group--;
1264
1265                 if (!mi->supported[group])
1266                         continue;
1267
1268                 if (minstrel_mcs_groups[group].streams >
1269                     minstrel_mcs_groups[orig_group].streams)
1270                         continue;
1271
1272                 if (primary)
1273                         *idx = mi->groups[group].max_group_tp_rate[0];
1274                 else
1275                         *idx = mi->groups[group].max_group_tp_rate[1];
1276                 break;
1277         }
1278 }
1279
1280 static void
1281 minstrel_ht_tx_status(void *priv, struct ieee80211_supported_band *sband,
1282                       void *priv_sta, struct ieee80211_tx_status *st)
1283 {
1284         struct ieee80211_tx_info *info = st->info;
1285         struct minstrel_ht_sta *mi = priv_sta;
1286         struct ieee80211_tx_rate *ar = info->status.rates;
1287         struct minstrel_rate_stats *rate, *rate2;
1288         struct minstrel_priv *mp = priv;
1289         u32 update_interval = mp->update_interval;
1290         bool last, update = false;
1291         int i;
1292
1293         /* Ignore packet that was sent with noAck flag */
1294         if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1295                 return;
1296
1297         /* This packet was aggregated but doesn't carry status info */
1298         if ((info->flags & IEEE80211_TX_CTL_AMPDU) &&
1299             !(info->flags & IEEE80211_TX_STAT_AMPDU))
1300                 return;
1301
1302         if (!(info->flags & IEEE80211_TX_STAT_AMPDU)) {
1303                 info->status.ampdu_ack_len =
1304                         (info->flags & IEEE80211_TX_STAT_ACK ? 1 : 0);
1305                 info->status.ampdu_len = 1;
1306         }
1307
1308         /* wraparound */
1309         if (mi->total_packets >= ~0 - info->status.ampdu_len) {
1310                 mi->total_packets = 0;
1311                 mi->sample_packets = 0;
1312         }
1313
1314         mi->total_packets += info->status.ampdu_len;
1315         if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
1316                 mi->sample_packets += info->status.ampdu_len;
1317
1318         mi->ampdu_packets++;
1319         mi->ampdu_len += info->status.ampdu_len;
1320
1321         if (st->rates && st->n_rates) {
1322                 last = !minstrel_ht_ri_txstat_valid(mp, mi, &(st->rates[0]));
1323                 for (i = 0; !last; i++) {
1324                         last = (i == st->n_rates - 1) ||
1325                                 !minstrel_ht_ri_txstat_valid(mp, mi,
1326                                                         &(st->rates[i + 1]));
1327
1328                         rate = minstrel_ht_ri_get_stats(mp, mi,
1329                                                         &(st->rates[i]));
1330
1331                         if (last)
1332                                 rate->success += info->status.ampdu_ack_len;
1333
1334                         rate->attempts += st->rates[i].try_count *
1335                                           info->status.ampdu_len;
1336                 }
1337         } else {
1338                 last = !minstrel_ht_txstat_valid(mp, mi, &ar[0]);
1339                 for (i = 0; !last; i++) {
1340                         last = (i == IEEE80211_TX_MAX_RATES - 1) ||
1341                                 !minstrel_ht_txstat_valid(mp, mi, &ar[i + 1]);
1342
1343                         rate = minstrel_ht_get_stats(mp, mi, &ar[i]);
1344                         if (last)
1345                                 rate->success += info->status.ampdu_ack_len;
1346
1347                         rate->attempts += ar[i].count * info->status.ampdu_len;
1348                 }
1349         }
1350
1351         if (mp->hw->max_rates > 1) {
1352                 /*
1353                  * check for sudden death of spatial multiplexing,
1354                  * downgrade to a lower number of streams if necessary.
1355                  */
1356                 rate = minstrel_get_ratestats(mi, mi->max_tp_rate[0]);
1357                 if (rate->attempts > 30 &&
1358                     rate->success < rate->attempts / 4) {
1359                         minstrel_downgrade_rate(mi, &mi->max_tp_rate[0], true);
1360                         update = true;
1361                 }
1362
1363                 rate2 = minstrel_get_ratestats(mi, mi->max_tp_rate[1]);
1364                 if (rate2->attempts > 30 &&
1365                     rate2->success < rate2->attempts / 4) {
1366                         minstrel_downgrade_rate(mi, &mi->max_tp_rate[1], false);
1367                         update = true;
1368                 }
1369         }
1370
1371         if (time_after(jiffies, mi->last_stats_update + update_interval)) {
1372                 update = true;
1373                 minstrel_ht_update_stats(mp, mi);
1374         }
1375
1376         if (update)
1377                 minstrel_ht_update_rates(mp, mi);
1378 }
1379
1380 static void
1381 minstrel_calc_retransmit(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1382                          int index)
1383 {
1384         struct minstrel_rate_stats *mrs;
1385         unsigned int tx_time, tx_time_rtscts, tx_time_data;
1386         unsigned int cw = mp->cw_min;
1387         unsigned int ctime = 0;
1388         unsigned int t_slot = 9; /* FIXME */
1389         unsigned int ampdu_len = minstrel_ht_avg_ampdu_len(mi);
1390         unsigned int overhead = 0, overhead_rtscts = 0;
1391
1392         mrs = minstrel_get_ratestats(mi, index);
1393         if (mrs->prob_avg < MINSTREL_FRAC(1, 10)) {
1394                 mrs->retry_count = 1;
1395                 mrs->retry_count_rtscts = 1;
1396                 return;
1397         }
1398
1399         mrs->retry_count = 2;
1400         mrs->retry_count_rtscts = 2;
1401         mrs->retry_updated = true;
1402
1403         tx_time_data = minstrel_get_duration(index) * ampdu_len / 1000;
1404
1405         /* Contention time for first 2 tries */
1406         ctime = (t_slot * cw) >> 1;
1407         cw = min((cw << 1) | 1, mp->cw_max);
1408         ctime += (t_slot * cw) >> 1;
1409         cw = min((cw << 1) | 1, mp->cw_max);
1410
1411         if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index))) {
1412                 overhead = mi->overhead_legacy;
1413                 overhead_rtscts = mi->overhead_legacy_rtscts;
1414         } else {
1415                 overhead = mi->overhead;
1416                 overhead_rtscts = mi->overhead_rtscts;
1417         }
1418
1419         /* Total TX time for data and Contention after first 2 tries */
1420         tx_time = ctime + 2 * (overhead + tx_time_data);
1421         tx_time_rtscts = ctime + 2 * (overhead_rtscts + tx_time_data);
1422
1423         /* See how many more tries we can fit inside segment size */
1424         do {
1425                 /* Contention time for this try */
1426                 ctime = (t_slot * cw) >> 1;
1427                 cw = min((cw << 1) | 1, mp->cw_max);
1428
1429                 /* Total TX time after this try */
1430                 tx_time += ctime + overhead + tx_time_data;
1431                 tx_time_rtscts += ctime + overhead_rtscts + tx_time_data;
1432
1433                 if (tx_time_rtscts < mp->segment_size)
1434                         mrs->retry_count_rtscts++;
1435         } while ((tx_time < mp->segment_size) &&
1436                  (++mrs->retry_count < mp->max_retry));
1437 }
1438
1439
1440 static void
1441 minstrel_ht_set_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1442                      struct ieee80211_sta_rates *ratetbl, int offset, int index)
1443 {
1444         int group_idx = MI_RATE_GROUP(index);
1445         const struct mcs_group *group = &minstrel_mcs_groups[group_idx];
1446         struct minstrel_rate_stats *mrs;
1447         u8 idx;
1448         u16 flags = group->flags;
1449
1450         mrs = minstrel_get_ratestats(mi, index);
1451         if (!mrs->retry_updated)
1452                 minstrel_calc_retransmit(mp, mi, index);
1453
1454         if (mrs->prob_avg < MINSTREL_FRAC(20, 100) || !mrs->retry_count) {
1455                 ratetbl->rate[offset].count = 2;
1456                 ratetbl->rate[offset].count_rts = 2;
1457                 ratetbl->rate[offset].count_cts = 2;
1458         } else {
1459                 ratetbl->rate[offset].count = mrs->retry_count;
1460                 ratetbl->rate[offset].count_cts = mrs->retry_count;
1461                 ratetbl->rate[offset].count_rts = mrs->retry_count_rtscts;
1462         }
1463
1464         index = MI_RATE_IDX(index);
1465         if (group_idx == MINSTREL_CCK_GROUP)
1466                 idx = mp->cck_rates[index % ARRAY_SIZE(mp->cck_rates)];
1467         else if (group_idx == MINSTREL_OFDM_GROUP)
1468                 idx = mp->ofdm_rates[mi->band][index %
1469                                                ARRAY_SIZE(mp->ofdm_rates[0])];
1470         else if (flags & IEEE80211_TX_RC_VHT_MCS)
1471                 idx = ((group->streams - 1) << 4) |
1472                       (index & 0xF);
1473         else
1474                 idx = index + (group->streams - 1) * 8;
1475
1476         /* enable RTS/CTS if needed:
1477          *  - if station is in dynamic SMPS (and streams > 1)
1478          *  - for fallback rates, to increase chances of getting through
1479          */
1480         if (offset > 0 ||
1481             (mi->sta->smps_mode == IEEE80211_SMPS_DYNAMIC &&
1482              group->streams > 1)) {
1483                 ratetbl->rate[offset].count = ratetbl->rate[offset].count_rts;
1484                 flags |= IEEE80211_TX_RC_USE_RTS_CTS;
1485         }
1486
1487         ratetbl->rate[offset].idx = idx;
1488         ratetbl->rate[offset].flags = flags;
1489 }
1490
1491 static inline int
1492 minstrel_ht_get_prob_avg(struct minstrel_ht_sta *mi, int rate)
1493 {
1494         int group = MI_RATE_GROUP(rate);
1495         rate = MI_RATE_IDX(rate);
1496         return mi->groups[group].rates[rate].prob_avg;
1497 }
1498
1499 static int
1500 minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta *mi)
1501 {
1502         int group = MI_RATE_GROUP(mi->max_prob_rate);
1503         const struct mcs_group *g = &minstrel_mcs_groups[group];
1504         int rate = MI_RATE_IDX(mi->max_prob_rate);
1505         unsigned int duration;
1506
1507         /* Disable A-MSDU if max_prob_rate is bad */
1508         if (mi->groups[group].rates[rate].prob_avg < MINSTREL_FRAC(50, 100))
1509                 return 1;
1510
1511         duration = g->duration[rate];
1512         duration <<= g->shift;
1513
1514         /* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
1515         if (duration > MCS_DURATION(1, 0, 52))
1516                 return 500;
1517
1518         /*
1519          * If the rate is slower than single-stream MCS4, limit A-MSDU to usual
1520          * data packet size
1521          */
1522         if (duration > MCS_DURATION(1, 0, 104))
1523                 return 1600;
1524
1525         /*
1526          * If the rate is slower than single-stream MCS7, or if the max throughput
1527          * rate success probability is less than 75%, limit A-MSDU to twice the usual
1528          * data packet size
1529          */
1530         if (duration > MCS_DURATION(1, 0, 260) ||
1531             (minstrel_ht_get_prob_avg(mi, mi->max_tp_rate[0]) <
1532              MINSTREL_FRAC(75, 100)))
1533                 return 3200;
1534
1535         /*
1536          * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
1537          * Since aggregation sessions are started/stopped without txq flush, use
1538          * the limit here to avoid the complexity of having to de-aggregate
1539          * packets in the queue.
1540          */
1541         if (!mi->sta->deflink.vht_cap.vht_supported)
1542                 return IEEE80211_MAX_MPDU_LEN_HT_BA;
1543
1544         /* unlimited */
1545         return 0;
1546 }
1547
1548 static void
1549 minstrel_ht_update_rates(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1550 {
1551         struct ieee80211_sta_rates *rates;
1552         int i = 0;
1553
1554         rates = kzalloc(sizeof(*rates), GFP_ATOMIC);
1555         if (!rates)
1556                 return;
1557
1558         /* Start with max_tp_rate[0] */
1559         minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_tp_rate[0]);
1560
1561         /* Fill up remaining, keep one entry for max_probe_rate */
1562         for (; i < (mp->hw->max_rates - 1); i++)
1563                 minstrel_ht_set_rate(mp, mi, rates, i, mi->max_tp_rate[i]);
1564
1565         if (i < mp->hw->max_rates)
1566                 minstrel_ht_set_rate(mp, mi, rates, i++, mi->max_prob_rate);
1567
1568         if (i < IEEE80211_TX_RATE_TABLE_SIZE)
1569                 rates->rate[i].idx = -1;
1570
1571         mi->sta->max_rc_amsdu_len = minstrel_ht_get_max_amsdu_len(mi);
1572         rate_control_set_rates(mp->hw, mi->sta, rates);
1573 }
1574
1575 static u16
1576 minstrel_ht_get_sample_rate(struct minstrel_priv *mp, struct minstrel_ht_sta *mi)
1577 {
1578         u8 seq;
1579
1580         if (mp->hw->max_rates > 1) {
1581                 seq = mi->sample_seq;
1582                 mi->sample_seq = (seq + 1) % ARRAY_SIZE(minstrel_sample_seq);
1583                 seq = minstrel_sample_seq[seq];
1584         } else {
1585                 seq = MINSTREL_SAMPLE_TYPE_INC;
1586         }
1587
1588         return __minstrel_ht_get_sample_rate(mi, seq);
1589 }
1590
1591 static void
1592 minstrel_ht_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1593                      struct ieee80211_tx_rate_control *txrc)
1594 {
1595         const struct mcs_group *sample_group;
1596         struct ieee80211_tx_info *info = IEEE80211_SKB_CB(txrc->skb);
1597         struct ieee80211_tx_rate *rate = &info->status.rates[0];
1598         struct minstrel_ht_sta *mi = priv_sta;
1599         struct minstrel_priv *mp = priv;
1600         u16 sample_idx;
1601
1602         info->flags |= mi->tx_flags;
1603
1604 #ifdef CONFIG_MAC80211_DEBUGFS
1605         if (mp->fixed_rate_idx != -1)
1606                 return;
1607 #endif
1608
1609         /* Don't use EAPOL frames for sampling on non-mrr hw */
1610         if (mp->hw->max_rates == 1 &&
1611             (info->control.flags & IEEE80211_TX_CTRL_PORT_CTRL_PROTO))
1612                 return;
1613
1614         if (time_is_after_jiffies(mi->sample_time))
1615                 return;
1616
1617         mi->sample_time = jiffies + MINSTREL_SAMPLE_INTERVAL;
1618         sample_idx = minstrel_ht_get_sample_rate(mp, mi);
1619         if (!sample_idx)
1620                 return;
1621
1622         sample_group = &minstrel_mcs_groups[MI_RATE_GROUP(sample_idx)];
1623         sample_idx = MI_RATE_IDX(sample_idx);
1624
1625         if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP] &&
1626             (sample_idx >= 4) != txrc->short_preamble)
1627                 return;
1628
1629         info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
1630         rate->count = 1;
1631
1632         if (sample_group == &minstrel_mcs_groups[MINSTREL_CCK_GROUP]) {
1633                 int idx = sample_idx % ARRAY_SIZE(mp->cck_rates);
1634                 rate->idx = mp->cck_rates[idx];
1635         } else if (sample_group == &minstrel_mcs_groups[MINSTREL_OFDM_GROUP]) {
1636                 int idx = sample_idx % ARRAY_SIZE(mp->ofdm_rates[0]);
1637                 rate->idx = mp->ofdm_rates[mi->band][idx];
1638         } else if (sample_group->flags & IEEE80211_TX_RC_VHT_MCS) {
1639                 ieee80211_rate_set_vht(rate, MI_RATE_IDX(sample_idx),
1640                                        sample_group->streams);
1641         } else {
1642                 rate->idx = sample_idx + (sample_group->streams - 1) * 8;
1643         }
1644
1645         rate->flags = sample_group->flags;
1646 }
1647
1648 static void
1649 minstrel_ht_update_cck(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1650                        struct ieee80211_supported_band *sband,
1651                        struct ieee80211_sta *sta)
1652 {
1653         int i;
1654
1655         if (sband->band != NL80211_BAND_2GHZ)
1656                 return;
1657
1658         if (sta->deflink.ht_cap.ht_supported &&
1659             !ieee80211_hw_check(mp->hw, SUPPORTS_HT_CCK_RATES))
1660                 return;
1661
1662         for (i = 0; i < 4; i++) {
1663                 if (mp->cck_rates[i] == 0xff ||
1664                     !rate_supported(sta, sband->band, mp->cck_rates[i]))
1665                         continue;
1666
1667                 mi->supported[MINSTREL_CCK_GROUP] |= BIT(i);
1668                 if (sband->bitrates[i].flags & IEEE80211_RATE_SHORT_PREAMBLE)
1669                         mi->supported[MINSTREL_CCK_GROUP] |= BIT(i + 4);
1670         }
1671 }
1672
1673 static void
1674 minstrel_ht_update_ofdm(struct minstrel_priv *mp, struct minstrel_ht_sta *mi,
1675                         struct ieee80211_supported_band *sband,
1676                         struct ieee80211_sta *sta)
1677 {
1678         const u8 *rates;
1679         int i;
1680
1681         if (sta->deflink.ht_cap.ht_supported)
1682                 return;
1683
1684         rates = mp->ofdm_rates[sband->band];
1685         for (i = 0; i < ARRAY_SIZE(mp->ofdm_rates[0]); i++) {
1686                 if (rates[i] == 0xff ||
1687                     !rate_supported(sta, sband->band, rates[i]))
1688                         continue;
1689
1690                 mi->supported[MINSTREL_OFDM_GROUP] |= BIT(i);
1691         }
1692 }
1693
1694 static void
1695 minstrel_ht_update_caps(void *priv, struct ieee80211_supported_band *sband,
1696                         struct cfg80211_chan_def *chandef,
1697                         struct ieee80211_sta *sta, void *priv_sta)
1698 {
1699         struct minstrel_priv *mp = priv;
1700         struct minstrel_ht_sta *mi = priv_sta;
1701         struct ieee80211_mcs_info *mcs = &sta->deflink.ht_cap.mcs;
1702         u16 ht_cap = sta->deflink.ht_cap.cap;
1703         struct ieee80211_sta_vht_cap *vht_cap = &sta->deflink.vht_cap;
1704         const struct ieee80211_rate *ctl_rate;
1705         struct sta_info *sta_info;
1706         bool ldpc, erp;
1707         int use_vht;
1708         int n_supported = 0;
1709         int ack_dur;
1710         int stbc;
1711         int i;
1712
1713         BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups) != MINSTREL_GROUPS_NB);
1714
1715         if (vht_cap->vht_supported)
1716                 use_vht = vht_cap->vht_mcs.tx_mcs_map != cpu_to_le16(~0);
1717         else
1718                 use_vht = 0;
1719
1720         memset(mi, 0, sizeof(*mi));
1721
1722         mi->sta = sta;
1723         mi->band = sband->band;
1724         mi->last_stats_update = jiffies;
1725
1726         ack_dur = ieee80211_frame_duration(sband->band, 10, 60, 1, 1, 0);
1727         mi->overhead = ieee80211_frame_duration(sband->band, 0, 60, 1, 1, 0);
1728         mi->overhead += ack_dur;
1729         mi->overhead_rtscts = mi->overhead + 2 * ack_dur;
1730
1731         ctl_rate = &sband->bitrates[rate_lowest_index(sband, sta)];
1732         erp = ctl_rate->flags & IEEE80211_RATE_ERP_G;
1733         ack_dur = ieee80211_frame_duration(sband->band, 10,
1734                                            ctl_rate->bitrate, erp, 1,
1735                                            ieee80211_chandef_get_shift(chandef));
1736         mi->overhead_legacy = ack_dur;
1737         mi->overhead_legacy_rtscts = mi->overhead_legacy + 2 * ack_dur;
1738
1739         mi->avg_ampdu_len = MINSTREL_FRAC(1, 1);
1740
1741         if (!use_vht) {
1742                 stbc = (ht_cap & IEEE80211_HT_CAP_RX_STBC) >>
1743                         IEEE80211_HT_CAP_RX_STBC_SHIFT;
1744
1745                 ldpc = ht_cap & IEEE80211_HT_CAP_LDPC_CODING;
1746         } else {
1747                 stbc = (vht_cap->cap & IEEE80211_VHT_CAP_RXSTBC_MASK) >>
1748                         IEEE80211_VHT_CAP_RXSTBC_SHIFT;
1749
1750                 ldpc = vht_cap->cap & IEEE80211_VHT_CAP_RXLDPC;
1751         }
1752
1753         mi->tx_flags |= stbc << IEEE80211_TX_CTL_STBC_SHIFT;
1754         if (ldpc)
1755                 mi->tx_flags |= IEEE80211_TX_CTL_LDPC;
1756
1757         for (i = 0; i < ARRAY_SIZE(mi->groups); i++) {
1758                 u32 gflags = minstrel_mcs_groups[i].flags;
1759                 int bw, nss;
1760
1761                 mi->supported[i] = 0;
1762                 if (minstrel_ht_is_legacy_group(i))
1763                         continue;
1764
1765                 if (gflags & IEEE80211_TX_RC_SHORT_GI) {
1766                         if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH) {
1767                                 if (!(ht_cap & IEEE80211_HT_CAP_SGI_40))
1768                                         continue;
1769                         } else {
1770                                 if (!(ht_cap & IEEE80211_HT_CAP_SGI_20))
1771                                         continue;
1772                         }
1773                 }
1774
1775                 if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH &&
1776                     sta->deflink.bandwidth < IEEE80211_STA_RX_BW_40)
1777                         continue;
1778
1779                 nss = minstrel_mcs_groups[i].streams;
1780
1781                 /* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1782                 if (sta->smps_mode == IEEE80211_SMPS_STATIC && nss > 1)
1783                         continue;
1784
1785                 /* HT rate */
1786                 if (gflags & IEEE80211_TX_RC_MCS) {
1787                         if (use_vht && minstrel_vht_only)
1788                                 continue;
1789
1790                         mi->supported[i] = mcs->rx_mask[nss - 1];
1791                         if (mi->supported[i])
1792                                 n_supported++;
1793                         continue;
1794                 }
1795
1796                 /* VHT rate */
1797                 if (!vht_cap->vht_supported ||
1798                     WARN_ON(!(gflags & IEEE80211_TX_RC_VHT_MCS)) ||
1799                     WARN_ON(gflags & IEEE80211_TX_RC_160_MHZ_WIDTH))
1800                         continue;
1801
1802                 if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH) {
1803                         if (sta->deflink.bandwidth < IEEE80211_STA_RX_BW_80 ||
1804                             ((gflags & IEEE80211_TX_RC_SHORT_GI) &&
1805                              !(vht_cap->cap & IEEE80211_VHT_CAP_SHORT_GI_80))) {
1806                                 continue;
1807                         }
1808                 }
1809
1810                 if (gflags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1811                         bw = BW_40;
1812                 else if (gflags & IEEE80211_TX_RC_80_MHZ_WIDTH)
1813                         bw = BW_80;
1814                 else
1815                         bw = BW_20;
1816
1817                 mi->supported[i] = minstrel_get_valid_vht_rates(bw, nss,
1818                                 vht_cap->vht_mcs.tx_mcs_map);
1819
1820                 if (mi->supported[i])
1821                         n_supported++;
1822         }
1823
1824         sta_info = container_of(sta, struct sta_info, sta);
1825         mi->use_short_preamble = test_sta_flag(sta_info, WLAN_STA_SHORT_PREAMBLE) &&
1826                                  sta_info->sdata->vif.bss_conf.use_short_preamble;
1827
1828         minstrel_ht_update_cck(mp, mi, sband, sta);
1829         minstrel_ht_update_ofdm(mp, mi, sband, sta);
1830
1831         /* create an initial rate table with the lowest supported rates */
1832         minstrel_ht_update_stats(mp, mi);
1833         minstrel_ht_update_rates(mp, mi);
1834 }
1835
1836 static void
1837 minstrel_ht_rate_init(void *priv, struct ieee80211_supported_band *sband,
1838                       struct cfg80211_chan_def *chandef,
1839                       struct ieee80211_sta *sta, void *priv_sta)
1840 {
1841         minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1842 }
1843
1844 static void
1845 minstrel_ht_rate_update(void *priv, struct ieee80211_supported_band *sband,
1846                         struct cfg80211_chan_def *chandef,
1847                         struct ieee80211_sta *sta, void *priv_sta,
1848                         u32 changed)
1849 {
1850         minstrel_ht_update_caps(priv, sband, chandef, sta, priv_sta);
1851 }
1852
1853 static void *
1854 minstrel_ht_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1855 {
1856         struct ieee80211_supported_band *sband;
1857         struct minstrel_ht_sta *mi;
1858         struct minstrel_priv *mp = priv;
1859         struct ieee80211_hw *hw = mp->hw;
1860         int max_rates = 0;
1861         int i;
1862
1863         for (i = 0; i < NUM_NL80211_BANDS; i++) {
1864                 sband = hw->wiphy->bands[i];
1865                 if (sband && sband->n_bitrates > max_rates)
1866                         max_rates = sband->n_bitrates;
1867         }
1868
1869         return kzalloc(sizeof(*mi), gfp);
1870 }
1871
1872 static void
1873 minstrel_ht_free_sta(void *priv, struct ieee80211_sta *sta, void *priv_sta)
1874 {
1875         kfree(priv_sta);
1876 }
1877
1878 static void
1879 minstrel_ht_fill_rate_array(u8 *dest, struct ieee80211_supported_band *sband,
1880                             const s16 *bitrates, int n_rates, u32 rate_flags)
1881 {
1882         int i, j;
1883
1884         for (i = 0; i < sband->n_bitrates; i++) {
1885                 struct ieee80211_rate *rate = &sband->bitrates[i];
1886
1887                 if ((rate_flags & sband->bitrates[i].flags) != rate_flags)
1888                         continue;
1889
1890                 for (j = 0; j < n_rates; j++) {
1891                         if (rate->bitrate != bitrates[j])
1892                                 continue;
1893
1894                         dest[j] = i;
1895                         break;
1896                 }
1897         }
1898 }
1899
1900 static void
1901 minstrel_ht_init_cck_rates(struct minstrel_priv *mp)
1902 {
1903         static const s16 bitrates[4] = { 10, 20, 55, 110 };
1904         struct ieee80211_supported_band *sband;
1905         u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef);
1906
1907         memset(mp->cck_rates, 0xff, sizeof(mp->cck_rates));
1908         sband = mp->hw->wiphy->bands[NL80211_BAND_2GHZ];
1909         if (!sband)
1910                 return;
1911
1912         BUILD_BUG_ON(ARRAY_SIZE(mp->cck_rates) != ARRAY_SIZE(bitrates));
1913         minstrel_ht_fill_rate_array(mp->cck_rates, sband,
1914                                     minstrel_cck_bitrates,
1915                                     ARRAY_SIZE(minstrel_cck_bitrates),
1916                                     rate_flags);
1917 }
1918
1919 static void
1920 minstrel_ht_init_ofdm_rates(struct minstrel_priv *mp, enum nl80211_band band)
1921 {
1922         static const s16 bitrates[8] = { 60, 90, 120, 180, 240, 360, 480, 540 };
1923         struct ieee80211_supported_band *sband;
1924         u32 rate_flags = ieee80211_chandef_rate_flags(&mp->hw->conf.chandef);
1925
1926         memset(mp->ofdm_rates[band], 0xff, sizeof(mp->ofdm_rates[band]));
1927         sband = mp->hw->wiphy->bands[band];
1928         if (!sband)
1929                 return;
1930
1931         BUILD_BUG_ON(ARRAY_SIZE(mp->ofdm_rates[band]) != ARRAY_SIZE(bitrates));
1932         minstrel_ht_fill_rate_array(mp->ofdm_rates[band], sband,
1933                                     minstrel_ofdm_bitrates,
1934                                     ARRAY_SIZE(minstrel_ofdm_bitrates),
1935                                     rate_flags);
1936 }
1937
1938 static void *
1939 minstrel_ht_alloc(struct ieee80211_hw *hw)
1940 {
1941         struct minstrel_priv *mp;
1942         int i;
1943
1944         mp = kzalloc(sizeof(struct minstrel_priv), GFP_ATOMIC);
1945         if (!mp)
1946                 return NULL;
1947
1948         /* contention window settings
1949          * Just an approximation. Using the per-queue values would complicate
1950          * the calculations and is probably unnecessary */
1951         mp->cw_min = 15;
1952         mp->cw_max = 1023;
1953
1954         /* maximum time that the hw is allowed to stay in one MRR segment */
1955         mp->segment_size = 6000;
1956
1957         if (hw->max_rate_tries > 0)
1958                 mp->max_retry = hw->max_rate_tries;
1959         else
1960                 /* safe default, does not necessarily have to match hw properties */
1961                 mp->max_retry = 7;
1962
1963         if (hw->max_rates >= 4)
1964                 mp->has_mrr = true;
1965
1966         mp->hw = hw;
1967         mp->update_interval = HZ / 20;
1968
1969         minstrel_ht_init_cck_rates(mp);
1970         for (i = 0; i < ARRAY_SIZE(mp->hw->wiphy->bands); i++)
1971             minstrel_ht_init_ofdm_rates(mp, i);
1972
1973         return mp;
1974 }
1975
1976 #ifdef CONFIG_MAC80211_DEBUGFS
1977 static void minstrel_ht_add_debugfs(struct ieee80211_hw *hw, void *priv,
1978                                     struct dentry *debugfsdir)
1979 {
1980         struct minstrel_priv *mp = priv;
1981
1982         mp->fixed_rate_idx = (u32) -1;
1983         debugfs_create_u32("fixed_rate_idx", S_IRUGO | S_IWUGO, debugfsdir,
1984                            &mp->fixed_rate_idx);
1985 }
1986 #endif
1987
1988 static void
1989 minstrel_ht_free(void *priv)
1990 {
1991         kfree(priv);
1992 }
1993
1994 static u32 minstrel_ht_get_expected_throughput(void *priv_sta)
1995 {
1996         struct minstrel_ht_sta *mi = priv_sta;
1997         int i, j, prob, tp_avg;
1998
1999         i = MI_RATE_GROUP(mi->max_tp_rate[0]);
2000         j = MI_RATE_IDX(mi->max_tp_rate[0]);
2001         prob = mi->groups[i].rates[j].prob_avg;
2002
2003         /* convert tp_avg from pkt per second in kbps */
2004         tp_avg = minstrel_ht_get_tp_avg(mi, i, j, prob) * 10;
2005         tp_avg = tp_avg * AVG_PKT_SIZE * 8 / 1024;
2006
2007         return tp_avg;
2008 }
2009
2010 static const struct rate_control_ops mac80211_minstrel_ht = {
2011         .name = "minstrel_ht",
2012         .capa = RATE_CTRL_CAPA_AMPDU_TRIGGER,
2013         .tx_status_ext = minstrel_ht_tx_status,
2014         .get_rate = minstrel_ht_get_rate,
2015         .rate_init = minstrel_ht_rate_init,
2016         .rate_update = minstrel_ht_rate_update,
2017         .alloc_sta = minstrel_ht_alloc_sta,
2018         .free_sta = minstrel_ht_free_sta,
2019         .alloc = minstrel_ht_alloc,
2020         .free = minstrel_ht_free,
2021 #ifdef CONFIG_MAC80211_DEBUGFS
2022         .add_debugfs = minstrel_ht_add_debugfs,
2023         .add_sta_debugfs = minstrel_ht_add_sta_debugfs,
2024 #endif
2025         .get_expected_throughput = minstrel_ht_get_expected_throughput,
2026 };
2027
2028
2029 static void __init init_sample_table(void)
2030 {
2031         int col, i, new_idx;
2032         u8 rnd[MCS_GROUP_RATES];
2033
2034         memset(sample_table, 0xff, sizeof(sample_table));
2035         for (col = 0; col < SAMPLE_COLUMNS; col++) {
2036                 prandom_bytes(rnd, sizeof(rnd));
2037                 for (i = 0; i < MCS_GROUP_RATES; i++) {
2038                         new_idx = (i + rnd[i]) % MCS_GROUP_RATES;
2039                         while (sample_table[col][new_idx] != 0xff)
2040                                 new_idx = (new_idx + 1) % MCS_GROUP_RATES;
2041
2042                         sample_table[col][new_idx] = i;
2043                 }
2044         }
2045 }
2046
2047 int __init
2048 rc80211_minstrel_init(void)
2049 {
2050         init_sample_table();
2051         return ieee80211_rate_control_register(&mac80211_minstrel_ht);
2052 }
2053
2054 void
2055 rc80211_minstrel_exit(void)
2056 {
2057         ieee80211_rate_control_unregister(&mac80211_minstrel_ht);
2058 }