2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/if_ether.h>
13 #include <linux/etherdevice.h>
14 #include <linux/list.h>
15 #include <linux/rcupdate.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <net/mac80211.h>
20 #include <asm/unaligned.h>
21 #include "ieee80211_i.h"
22 #include "driver-ops.h"
23 #include "debugfs_key.h"
29 * DOC: Key handling basics
31 * Key handling in mac80211 is done based on per-interface (sub_if_data)
32 * keys and per-station keys. Since each station belongs to an interface,
33 * each station key also belongs to that interface.
35 * Hardware acceleration is done on a best-effort basis for algorithms
36 * that are implemented in software, for each key the hardware is asked
37 * to enable that key for offloading but if it cannot do that the key is
38 * simply kept for software encryption (unless it is for an algorithm
39 * that isn't implemented in software).
40 * There is currently no way of knowing whether a key is handled in SW
41 * or HW except by looking into debugfs.
43 * All key management is internally protected by a mutex. Within all
44 * other parts of mac80211, key references are, just as STA structure
45 * references, protected by RCU. Note, however, that some things are
46 * unprotected, namely the key->sta dereferences within the hardware
47 * acceleration functions. This means that sta_info_destroy() must
48 * remove the key which waits for an RCU grace period.
51 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
53 static void assert_key_lock(struct ieee80211_local *local)
55 lockdep_assert_held(&local->key_mtx);
58 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
61 * When this count is zero, SKB resizing for allocating tailroom
62 * for IV or MMIC is skipped. But, this check has created two race
63 * cases in xmit path while transiting from zero count to one:
65 * 1. SKB resize was skipped because no key was added but just before
66 * the xmit key is added and SW encryption kicks off.
68 * 2. SKB resize was skipped because all the keys were hw planted but
69 * just before xmit one of the key is deleted and SW encryption kicks
72 * In both the above case SW encryption will find not enough space for
73 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
75 * Solution has been explained at
76 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
79 if (!sdata->crypto_tx_tailroom_needed_cnt++) {
81 * Flush all XMIT packets currently using HW encryption or no
82 * encryption at all if the count transition is from 0 -> 1.
88 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
90 struct ieee80211_sub_if_data *sdata;
96 if (key->flags & KEY_FLAG_TAINTED)
99 if (!key->local->ops->set_key)
100 goto out_unsupported;
102 assert_key_lock(key->local);
107 * If this is a per-STA GTK, check if it
108 * is supported; if not, return.
110 if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
111 !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
112 goto out_unsupported;
114 if (sta && !sta->uploaded)
115 goto out_unsupported;
118 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
120 * The driver doesn't know anything about VLAN interfaces.
121 * Hence, don't send GTKs for VLAN interfaces to the driver.
123 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
124 goto out_unsupported;
127 ret = drv_set_key(key->local, SET_KEY, sdata,
128 sta ? &sta->sta : NULL, &key->conf);
131 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
133 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
134 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
135 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
136 sdata->crypto_tx_tailroom_needed_cnt--;
138 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
139 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
144 if (ret != -ENOSPC && ret != -EOPNOTSUPP)
146 "failed to set key (%d, %pM) to hardware (%d)\n",
148 sta ? sta->sta.addr : bcast_addr, ret);
151 switch (key->conf.cipher) {
152 case WLAN_CIPHER_SUITE_WEP40:
153 case WLAN_CIPHER_SUITE_WEP104:
154 case WLAN_CIPHER_SUITE_TKIP:
155 case WLAN_CIPHER_SUITE_CCMP:
156 case WLAN_CIPHER_SUITE_AES_CMAC:
157 /* all of these we can do in software */
164 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
166 struct ieee80211_sub_if_data *sdata;
167 struct sta_info *sta;
172 if (!key || !key->local->ops->set_key)
175 assert_key_lock(key->local);
177 if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
183 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
184 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
185 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
186 increment_tailroom_need_count(sdata);
188 ret = drv_set_key(key->local, DISABLE_KEY, sdata,
189 sta ? &sta->sta : NULL, &key->conf);
193 "failed to remove key (%d, %pM) from hardware (%d)\n",
195 sta ? sta->sta.addr : bcast_addr, ret);
197 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
200 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
201 int idx, bool uni, bool multi)
203 struct ieee80211_key *key = NULL;
205 assert_key_lock(sdata->local);
207 if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
208 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
211 rcu_assign_pointer(sdata->default_unicast_key, key);
212 drv_set_default_unicast_key(sdata->local, sdata, idx);
216 rcu_assign_pointer(sdata->default_multicast_key, key);
218 ieee80211_debugfs_key_update_default(sdata);
221 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
222 bool uni, bool multi)
224 mutex_lock(&sdata->local->key_mtx);
225 __ieee80211_set_default_key(sdata, idx, uni, multi);
226 mutex_unlock(&sdata->local->key_mtx);
230 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
232 struct ieee80211_key *key = NULL;
234 assert_key_lock(sdata->local);
236 if (idx >= NUM_DEFAULT_KEYS &&
237 idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
238 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
240 rcu_assign_pointer(sdata->default_mgmt_key, key);
242 ieee80211_debugfs_key_update_default(sdata);
245 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
248 mutex_lock(&sdata->local->key_mtx);
249 __ieee80211_set_default_mgmt_key(sdata, idx);
250 mutex_unlock(&sdata->local->key_mtx);
254 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
255 struct sta_info *sta,
257 struct ieee80211_key *old,
258 struct ieee80211_key *new)
261 bool defunikey, defmultikey, defmgmtkey;
264 list_add_tail(&new->list, &sdata->key_list);
266 if (sta && pairwise) {
267 rcu_assign_pointer(sta->ptk, new);
270 idx = old->conf.keyidx;
272 idx = new->conf.keyidx;
273 rcu_assign_pointer(sta->gtk[idx], new);
275 WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
278 idx = old->conf.keyidx;
280 idx = new->conf.keyidx;
283 old == key_mtx_dereference(sdata->local,
284 sdata->default_unicast_key);
286 old == key_mtx_dereference(sdata->local,
287 sdata->default_multicast_key);
289 old == key_mtx_dereference(sdata->local,
290 sdata->default_mgmt_key);
292 if (defunikey && !new)
293 __ieee80211_set_default_key(sdata, -1, true, false);
294 if (defmultikey && !new)
295 __ieee80211_set_default_key(sdata, -1, false, true);
296 if (defmgmtkey && !new)
297 __ieee80211_set_default_mgmt_key(sdata, -1);
299 rcu_assign_pointer(sdata->keys[idx], new);
300 if (defunikey && new)
301 __ieee80211_set_default_key(sdata, new->conf.keyidx,
303 if (defmultikey && new)
304 __ieee80211_set_default_key(sdata, new->conf.keyidx,
306 if (defmgmtkey && new)
307 __ieee80211_set_default_mgmt_key(sdata,
312 list_del(&old->list);
315 struct ieee80211_key *ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
317 size_t seq_len, const u8 *seq)
319 struct ieee80211_key *key;
322 BUG_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS);
324 key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
326 return ERR_PTR(-ENOMEM);
329 * Default to software encryption; we'll later upload the
330 * key to the hardware if possible.
335 key->conf.cipher = cipher;
336 key->conf.keyidx = idx;
337 key->conf.keylen = key_len;
339 case WLAN_CIPHER_SUITE_WEP40:
340 case WLAN_CIPHER_SUITE_WEP104:
341 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
342 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
344 case WLAN_CIPHER_SUITE_TKIP:
345 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
346 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
348 for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
349 key->u.tkip.rx[i].iv32 =
350 get_unaligned_le32(&seq[2]);
351 key->u.tkip.rx[i].iv16 =
352 get_unaligned_le16(seq);
355 spin_lock_init(&key->u.tkip.txlock);
357 case WLAN_CIPHER_SUITE_CCMP:
358 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
359 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
361 for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
362 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
363 key->u.ccmp.rx_pn[i][j] =
364 seq[IEEE80211_CCMP_PN_LEN - j - 1];
367 * Initialize AES key state here as an optimization so that
368 * it does not need to be initialized for every packet.
370 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(key_data);
371 if (IS_ERR(key->u.ccmp.tfm)) {
372 err = PTR_ERR(key->u.ccmp.tfm);
377 case WLAN_CIPHER_SUITE_AES_CMAC:
378 key->conf.iv_len = 0;
379 key->conf.icv_len = sizeof(struct ieee80211_mmie);
381 for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
382 key->u.aes_cmac.rx_pn[j] =
383 seq[IEEE80211_CMAC_PN_LEN - j - 1];
385 * Initialize AES key state here as an optimization so that
386 * it does not need to be initialized for every packet.
388 key->u.aes_cmac.tfm =
389 ieee80211_aes_cmac_key_setup(key_data);
390 if (IS_ERR(key->u.aes_cmac.tfm)) {
391 err = PTR_ERR(key->u.aes_cmac.tfm);
397 memcpy(key->conf.key, key_data, key_len);
398 INIT_LIST_HEAD(&key->list);
403 static void ieee80211_key_free_common(struct ieee80211_key *key)
405 if (key->conf.cipher == WLAN_CIPHER_SUITE_CCMP)
406 ieee80211_aes_key_free(key->u.ccmp.tfm);
407 if (key->conf.cipher == WLAN_CIPHER_SUITE_AES_CMAC)
408 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
412 static void __ieee80211_key_destroy(struct ieee80211_key *key,
416 ieee80211_key_disable_hw_accel(key);
419 struct ieee80211_sub_if_data *sdata = key->sdata;
421 ieee80211_debugfs_key_remove(key);
423 if (delay_tailroom) {
424 /* see ieee80211_delayed_tailroom_dec */
425 sdata->crypto_tx_tailroom_pending_dec++;
426 schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
429 sdata->crypto_tx_tailroom_needed_cnt--;
433 ieee80211_key_free_common(key);
436 static void ieee80211_key_destroy(struct ieee80211_key *key,
443 * Synchronize so the TX path can no longer be using
444 * this key before we free/remove it.
448 __ieee80211_key_destroy(key, delay_tailroom);
451 void ieee80211_key_free_unused(struct ieee80211_key *key)
453 WARN_ON(key->sdata || key->local);
454 ieee80211_key_free_common(key);
457 int ieee80211_key_link(struct ieee80211_key *key,
458 struct ieee80211_sub_if_data *sdata,
459 struct sta_info *sta)
461 struct ieee80211_local *local = sdata->local;
462 struct ieee80211_key *old_key;
469 pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
470 idx = key->conf.keyidx;
471 key->local = sdata->local;
475 mutex_lock(&sdata->local->key_mtx);
478 old_key = key_mtx_dereference(sdata->local, sta->ptk);
480 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
482 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
484 increment_tailroom_need_count(sdata);
486 ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
487 ieee80211_key_destroy(old_key, true);
489 ieee80211_debugfs_key_add(key);
491 if (!local->wowlan) {
492 ret = ieee80211_key_enable_hw_accel(key);
494 ieee80211_key_free(key, true);
499 mutex_unlock(&sdata->local->key_mtx);
504 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
510 * Replace key with nothingness if it was ever used.
513 ieee80211_key_replace(key->sdata, key->sta,
514 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
516 ieee80211_key_destroy(key, delay_tailroom);
519 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
521 struct ieee80211_key *key;
525 if (WARN_ON(!ieee80211_sdata_running(sdata)))
528 mutex_lock(&sdata->local->key_mtx);
530 sdata->crypto_tx_tailroom_needed_cnt = 0;
532 list_for_each_entry(key, &sdata->key_list, list) {
533 increment_tailroom_need_count(sdata);
534 ieee80211_key_enable_hw_accel(key);
537 mutex_unlock(&sdata->local->key_mtx);
540 void ieee80211_iter_keys(struct ieee80211_hw *hw,
541 struct ieee80211_vif *vif,
542 void (*iter)(struct ieee80211_hw *hw,
543 struct ieee80211_vif *vif,
544 struct ieee80211_sta *sta,
545 struct ieee80211_key_conf *key,
549 struct ieee80211_local *local = hw_to_local(hw);
550 struct ieee80211_key *key, *tmp;
551 struct ieee80211_sub_if_data *sdata;
555 mutex_lock(&local->key_mtx);
557 sdata = vif_to_sdata(vif);
558 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
559 iter(hw, &sdata->vif,
560 key->sta ? &key->sta->sta : NULL,
561 &key->conf, iter_data);
563 list_for_each_entry(sdata, &local->interfaces, list)
564 list_for_each_entry_safe(key, tmp,
565 &sdata->key_list, list)
566 iter(hw, &sdata->vif,
567 key->sta ? &key->sta->sta : NULL,
568 &key->conf, iter_data);
570 mutex_unlock(&local->key_mtx);
572 EXPORT_SYMBOL(ieee80211_iter_keys);
574 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata)
576 struct ieee80211_key *key, *tmp;
579 cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
581 mutex_lock(&sdata->local->key_mtx);
583 sdata->crypto_tx_tailroom_needed_cnt -=
584 sdata->crypto_tx_tailroom_pending_dec;
585 sdata->crypto_tx_tailroom_pending_dec = 0;
587 ieee80211_debugfs_key_remove_mgmt_default(sdata);
589 list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
590 ieee80211_key_replace(key->sdata, key->sta,
591 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
593 list_add_tail(&key->list, &keys);
596 ieee80211_debugfs_key_update_default(sdata);
598 if (!list_empty(&keys)) {
600 list_for_each_entry_safe(key, tmp, &keys, list)
601 __ieee80211_key_destroy(key, false);
604 WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
605 sdata->crypto_tx_tailroom_pending_dec);
607 mutex_unlock(&sdata->local->key_mtx);
610 void ieee80211_free_sta_keys(struct ieee80211_local *local,
611 struct sta_info *sta)
613 struct ieee80211_key *key, *tmp;
617 mutex_lock(&local->key_mtx);
618 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
619 key = key_mtx_dereference(local, sta->gtk[i]);
622 ieee80211_key_replace(key->sdata, key->sta,
623 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
625 list_add(&key->list, &keys);
628 key = key_mtx_dereference(local, sta->ptk);
630 ieee80211_key_replace(key->sdata, key->sta,
631 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
633 list_add(&key->list, &keys);
637 * NB: the station code relies on this being
638 * done even if there aren't any keys
642 list_for_each_entry_safe(key, tmp, &keys, list)
643 __ieee80211_key_destroy(key, true);
645 mutex_unlock(&local->key_mtx);
648 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
650 struct ieee80211_sub_if_data *sdata;
652 sdata = container_of(wk, struct ieee80211_sub_if_data,
653 dec_tailroom_needed_wk.work);
656 * The reason for the delayed tailroom needed decrementing is to
657 * make roaming faster: during roaming, all keys are first deleted
658 * and then new keys are installed. The first new key causes the
659 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
660 * the cost of synchronize_net() (which can be slow). Avoid this
661 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
662 * key removal for a while, so if we roam the value is larger than
663 * zero and no 0->1 transition happens.
665 * The cost is that if the AP switching was from an AP with keys
666 * to one without, we still allocate tailroom while it would no
667 * longer be needed. However, in the typical (fast) roaming case
668 * within an ESS this usually won't happen.
671 mutex_lock(&sdata->local->key_mtx);
672 sdata->crypto_tx_tailroom_needed_cnt -=
673 sdata->crypto_tx_tailroom_pending_dec;
674 sdata->crypto_tx_tailroom_pending_dec = 0;
675 mutex_unlock(&sdata->local->key_mtx);
678 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
679 const u8 *replay_ctr, gfp_t gfp)
681 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
683 trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
685 cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
687 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
689 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
690 struct ieee80211_key_seq *seq)
692 struct ieee80211_key *key;
695 if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
698 key = container_of(keyconf, struct ieee80211_key, conf);
700 switch (key->conf.cipher) {
701 case WLAN_CIPHER_SUITE_TKIP:
702 seq->tkip.iv32 = key->u.tkip.tx.iv32;
703 seq->tkip.iv16 = key->u.tkip.tx.iv16;
705 case WLAN_CIPHER_SUITE_CCMP:
706 pn64 = atomic64_read(&key->u.ccmp.tx_pn);
707 seq->ccmp.pn[5] = pn64;
708 seq->ccmp.pn[4] = pn64 >> 8;
709 seq->ccmp.pn[3] = pn64 >> 16;
710 seq->ccmp.pn[2] = pn64 >> 24;
711 seq->ccmp.pn[1] = pn64 >> 32;
712 seq->ccmp.pn[0] = pn64 >> 40;
714 case WLAN_CIPHER_SUITE_AES_CMAC:
715 pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
716 seq->ccmp.pn[5] = pn64;
717 seq->ccmp.pn[4] = pn64 >> 8;
718 seq->ccmp.pn[3] = pn64 >> 16;
719 seq->ccmp.pn[2] = pn64 >> 24;
720 seq->ccmp.pn[1] = pn64 >> 32;
721 seq->ccmp.pn[0] = pn64 >> 40;
727 EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
729 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
730 int tid, struct ieee80211_key_seq *seq)
732 struct ieee80211_key *key;
735 key = container_of(keyconf, struct ieee80211_key, conf);
737 switch (key->conf.cipher) {
738 case WLAN_CIPHER_SUITE_TKIP:
739 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
741 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
742 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
744 case WLAN_CIPHER_SUITE_CCMP:
745 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
748 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
750 pn = key->u.ccmp.rx_pn[tid];
751 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
753 case WLAN_CIPHER_SUITE_AES_CMAC:
754 if (WARN_ON(tid != 0))
756 pn = key->u.aes_cmac.rx_pn;
757 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
761 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
763 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
764 struct ieee80211_key_seq *seq)
766 struct ieee80211_key *key;
769 key = container_of(keyconf, struct ieee80211_key, conf);
771 switch (key->conf.cipher) {
772 case WLAN_CIPHER_SUITE_TKIP:
773 key->u.tkip.tx.iv32 = seq->tkip.iv32;
774 key->u.tkip.tx.iv16 = seq->tkip.iv16;
776 case WLAN_CIPHER_SUITE_CCMP:
777 pn64 = (u64)seq->ccmp.pn[5] |
778 ((u64)seq->ccmp.pn[4] << 8) |
779 ((u64)seq->ccmp.pn[3] << 16) |
780 ((u64)seq->ccmp.pn[2] << 24) |
781 ((u64)seq->ccmp.pn[1] << 32) |
782 ((u64)seq->ccmp.pn[0] << 40);
783 atomic64_set(&key->u.ccmp.tx_pn, pn64);
785 case WLAN_CIPHER_SUITE_AES_CMAC:
786 pn64 = (u64)seq->aes_cmac.pn[5] |
787 ((u64)seq->aes_cmac.pn[4] << 8) |
788 ((u64)seq->aes_cmac.pn[3] << 16) |
789 ((u64)seq->aes_cmac.pn[2] << 24) |
790 ((u64)seq->aes_cmac.pn[1] << 32) |
791 ((u64)seq->aes_cmac.pn[0] << 40);
792 atomic64_set(&key->u.aes_cmac.tx_pn, pn64);
799 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
801 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
802 int tid, struct ieee80211_key_seq *seq)
804 struct ieee80211_key *key;
807 key = container_of(keyconf, struct ieee80211_key, conf);
809 switch (key->conf.cipher) {
810 case WLAN_CIPHER_SUITE_TKIP:
811 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
813 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
814 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
816 case WLAN_CIPHER_SUITE_CCMP:
817 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
820 pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
822 pn = key->u.ccmp.rx_pn[tid];
823 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
825 case WLAN_CIPHER_SUITE_AES_CMAC:
826 if (WARN_ON(tid != 0))
828 pn = key->u.aes_cmac.rx_pn;
829 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
836 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
838 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
840 struct ieee80211_key *key;
842 key = container_of(keyconf, struct ieee80211_key, conf);
844 assert_key_lock(key->local);
847 * if key was uploaded, we assume the driver will/has remove(d)
848 * it, so adjust bookkeeping accordingly
850 if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
851 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
853 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
854 (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
855 (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
856 increment_tailroom_need_count(key->sdata);
859 ieee80211_key_free(key, false);
861 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
863 struct ieee80211_key_conf *
864 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
865 struct ieee80211_key_conf *keyconf)
867 struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
868 struct ieee80211_local *local = sdata->local;
869 struct ieee80211_key *key;
872 if (WARN_ON(!local->wowlan))
873 return ERR_PTR(-EINVAL);
875 if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
876 return ERR_PTR(-EINVAL);
878 key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
879 keyconf->keylen, keyconf->key,
882 return ERR_CAST(key);
884 if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
885 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
887 err = ieee80211_key_link(key, sdata, NULL);
893 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);