net: sctp: rework multihoming retransmission path selection to rfc4960
[platform/adaptation/renesas_rcar/renesas_kernel.git] / net / mac80211 / key.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2006-2007  Jiri Benc <jbenc@suse.cz>
5  * Copyright 2007-2008  Johannes Berg <johannes@sipsolutions.net>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/if_ether.h>
13 #include <linux/etherdevice.h>
14 #include <linux/list.h>
15 #include <linux/rcupdate.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/slab.h>
18 #include <linux/export.h>
19 #include <net/mac80211.h>
20 #include <asm/unaligned.h>
21 #include "ieee80211_i.h"
22 #include "driver-ops.h"
23 #include "debugfs_key.h"
24 #include "aes_ccm.h"
25 #include "aes_cmac.h"
26
27
28 /**
29  * DOC: Key handling basics
30  *
31  * Key handling in mac80211 is done based on per-interface (sub_if_data)
32  * keys and per-station keys. Since each station belongs to an interface,
33  * each station key also belongs to that interface.
34  *
35  * Hardware acceleration is done on a best-effort basis for algorithms
36  * that are implemented in software,  for each key the hardware is asked
37  * to enable that key for offloading but if it cannot do that the key is
38  * simply kept for software encryption (unless it is for an algorithm
39  * that isn't implemented in software).
40  * There is currently no way of knowing whether a key is handled in SW
41  * or HW except by looking into debugfs.
42  *
43  * All key management is internally protected by a mutex. Within all
44  * other parts of mac80211, key references are, just as STA structure
45  * references, protected by RCU. Note, however, that some things are
46  * unprotected, namely the key->sta dereferences within the hardware
47  * acceleration functions. This means that sta_info_destroy() must
48  * remove the key which waits for an RCU grace period.
49  */
50
51 static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
52
53 static void assert_key_lock(struct ieee80211_local *local)
54 {
55         lockdep_assert_held(&local->key_mtx);
56 }
57
58 static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
59 {
60         /*
61          * When this count is zero, SKB resizing for allocating tailroom
62          * for IV or MMIC is skipped. But, this check has created two race
63          * cases in xmit path while transiting from zero count to one:
64          *
65          * 1. SKB resize was skipped because no key was added but just before
66          * the xmit key is added and SW encryption kicks off.
67          *
68          * 2. SKB resize was skipped because all the keys were hw planted but
69          * just before xmit one of the key is deleted and SW encryption kicks
70          * off.
71          *
72          * In both the above case SW encryption will find not enough space for
73          * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
74          *
75          * Solution has been explained at
76          * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
77          */
78
79         if (!sdata->crypto_tx_tailroom_needed_cnt++) {
80                 /*
81                  * Flush all XMIT packets currently using HW encryption or no
82                  * encryption at all if the count transition is from 0 -> 1.
83                  */
84                 synchronize_net();
85         }
86 }
87
88 static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
89 {
90         struct ieee80211_sub_if_data *sdata;
91         struct sta_info *sta;
92         int ret;
93
94         might_sleep();
95
96         if (key->flags & KEY_FLAG_TAINTED)
97                 return -EINVAL;
98
99         if (!key->local->ops->set_key)
100                 goto out_unsupported;
101
102         assert_key_lock(key->local);
103
104         sta = key->sta;
105
106         /*
107          * If this is a per-STA GTK, check if it
108          * is supported; if not, return.
109          */
110         if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
111             !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
112                 goto out_unsupported;
113
114         if (sta && !sta->uploaded)
115                 goto out_unsupported;
116
117         sdata = key->sdata;
118         if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
119                 /*
120                  * The driver doesn't know anything about VLAN interfaces.
121                  * Hence, don't send GTKs for VLAN interfaces to the driver.
122                  */
123                 if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
124                         goto out_unsupported;
125         }
126
127         ret = drv_set_key(key->local, SET_KEY, sdata,
128                           sta ? &sta->sta : NULL, &key->conf);
129
130         if (!ret) {
131                 key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
132
133                 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
134                       (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
135                       (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
136                         sdata->crypto_tx_tailroom_needed_cnt--;
137
138                 WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
139                         (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
140
141                 return 0;
142         }
143
144         if (ret != -ENOSPC && ret != -EOPNOTSUPP)
145                 sdata_err(sdata,
146                           "failed to set key (%d, %pM) to hardware (%d)\n",
147                           key->conf.keyidx,
148                           sta ? sta->sta.addr : bcast_addr, ret);
149
150  out_unsupported:
151         switch (key->conf.cipher) {
152         case WLAN_CIPHER_SUITE_WEP40:
153         case WLAN_CIPHER_SUITE_WEP104:
154         case WLAN_CIPHER_SUITE_TKIP:
155         case WLAN_CIPHER_SUITE_CCMP:
156         case WLAN_CIPHER_SUITE_AES_CMAC:
157                 /* all of these we can do in software */
158                 return 0;
159         default:
160                 return -EINVAL;
161         }
162 }
163
164 static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
165 {
166         struct ieee80211_sub_if_data *sdata;
167         struct sta_info *sta;
168         int ret;
169
170         might_sleep();
171
172         if (!key || !key->local->ops->set_key)
173                 return;
174
175         assert_key_lock(key->local);
176
177         if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
178                 return;
179
180         sta = key->sta;
181         sdata = key->sdata;
182
183         if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
184               (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
185               (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
186                 increment_tailroom_need_count(sdata);
187
188         ret = drv_set_key(key->local, DISABLE_KEY, sdata,
189                           sta ? &sta->sta : NULL, &key->conf);
190
191         if (ret)
192                 sdata_err(sdata,
193                           "failed to remove key (%d, %pM) from hardware (%d)\n",
194                           key->conf.keyidx,
195                           sta ? sta->sta.addr : bcast_addr, ret);
196
197         key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
198 }
199
200 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
201                                         int idx, bool uni, bool multi)
202 {
203         struct ieee80211_key *key = NULL;
204
205         assert_key_lock(sdata->local);
206
207         if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
208                 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
209
210         if (uni) {
211                 rcu_assign_pointer(sdata->default_unicast_key, key);
212                 drv_set_default_unicast_key(sdata->local, sdata, idx);
213         }
214
215         if (multi)
216                 rcu_assign_pointer(sdata->default_multicast_key, key);
217
218         ieee80211_debugfs_key_update_default(sdata);
219 }
220
221 void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
222                                bool uni, bool multi)
223 {
224         mutex_lock(&sdata->local->key_mtx);
225         __ieee80211_set_default_key(sdata, idx, uni, multi);
226         mutex_unlock(&sdata->local->key_mtx);
227 }
228
229 static void
230 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
231 {
232         struct ieee80211_key *key = NULL;
233
234         assert_key_lock(sdata->local);
235
236         if (idx >= NUM_DEFAULT_KEYS &&
237             idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
238                 key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
239
240         rcu_assign_pointer(sdata->default_mgmt_key, key);
241
242         ieee80211_debugfs_key_update_default(sdata);
243 }
244
245 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
246                                     int idx)
247 {
248         mutex_lock(&sdata->local->key_mtx);
249         __ieee80211_set_default_mgmt_key(sdata, idx);
250         mutex_unlock(&sdata->local->key_mtx);
251 }
252
253
254 static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
255                                   struct sta_info *sta,
256                                   bool pairwise,
257                                   struct ieee80211_key *old,
258                                   struct ieee80211_key *new)
259 {
260         int idx;
261         bool defunikey, defmultikey, defmgmtkey;
262
263         /* caller must provide at least one old/new */
264         if (WARN_ON(!new && !old))
265                 return;
266
267         if (new)
268                 list_add_tail(&new->list, &sdata->key_list);
269
270         WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
271
272         if (old)
273                 idx = old->conf.keyidx;
274         else
275                 idx = new->conf.keyidx;
276
277         if (sta) {
278                 if (pairwise) {
279                         rcu_assign_pointer(sta->ptk[idx], new);
280                         sta->ptk_idx = idx;
281                 } else {
282                         rcu_assign_pointer(sta->gtk[idx], new);
283                         sta->gtk_idx = idx;
284                 }
285         } else {
286                 defunikey = old &&
287                         old == key_mtx_dereference(sdata->local,
288                                                 sdata->default_unicast_key);
289                 defmultikey = old &&
290                         old == key_mtx_dereference(sdata->local,
291                                                 sdata->default_multicast_key);
292                 defmgmtkey = old &&
293                         old == key_mtx_dereference(sdata->local,
294                                                 sdata->default_mgmt_key);
295
296                 if (defunikey && !new)
297                         __ieee80211_set_default_key(sdata, -1, true, false);
298                 if (defmultikey && !new)
299                         __ieee80211_set_default_key(sdata, -1, false, true);
300                 if (defmgmtkey && !new)
301                         __ieee80211_set_default_mgmt_key(sdata, -1);
302
303                 rcu_assign_pointer(sdata->keys[idx], new);
304                 if (defunikey && new)
305                         __ieee80211_set_default_key(sdata, new->conf.keyidx,
306                                                     true, false);
307                 if (defmultikey && new)
308                         __ieee80211_set_default_key(sdata, new->conf.keyidx,
309                                                     false, true);
310                 if (defmgmtkey && new)
311                         __ieee80211_set_default_mgmt_key(sdata,
312                                                          new->conf.keyidx);
313         }
314
315         if (old)
316                 list_del(&old->list);
317 }
318
319 struct ieee80211_key *
320 ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
321                     const u8 *key_data,
322                     size_t seq_len, const u8 *seq,
323                     const struct ieee80211_cipher_scheme *cs)
324 {
325         struct ieee80211_key *key;
326         int i, j, err;
327
328         BUG_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS);
329
330         key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
331         if (!key)
332                 return ERR_PTR(-ENOMEM);
333
334         /*
335          * Default to software encryption; we'll later upload the
336          * key to the hardware if possible.
337          */
338         key->conf.flags = 0;
339         key->flags = 0;
340
341         key->conf.cipher = cipher;
342         key->conf.keyidx = idx;
343         key->conf.keylen = key_len;
344         switch (cipher) {
345         case WLAN_CIPHER_SUITE_WEP40:
346         case WLAN_CIPHER_SUITE_WEP104:
347                 key->conf.iv_len = IEEE80211_WEP_IV_LEN;
348                 key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
349                 break;
350         case WLAN_CIPHER_SUITE_TKIP:
351                 key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
352                 key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
353                 if (seq) {
354                         for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
355                                 key->u.tkip.rx[i].iv32 =
356                                         get_unaligned_le32(&seq[2]);
357                                 key->u.tkip.rx[i].iv16 =
358                                         get_unaligned_le16(seq);
359                         }
360                 }
361                 spin_lock_init(&key->u.tkip.txlock);
362                 break;
363         case WLAN_CIPHER_SUITE_CCMP:
364                 key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
365                 key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
366                 if (seq) {
367                         for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
368                                 for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
369                                         key->u.ccmp.rx_pn[i][j] =
370                                                 seq[IEEE80211_CCMP_PN_LEN - j - 1];
371                 }
372                 /*
373                  * Initialize AES key state here as an optimization so that
374                  * it does not need to be initialized for every packet.
375                  */
376                 key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(key_data);
377                 if (IS_ERR(key->u.ccmp.tfm)) {
378                         err = PTR_ERR(key->u.ccmp.tfm);
379                         kfree(key);
380                         return ERR_PTR(err);
381                 }
382                 break;
383         case WLAN_CIPHER_SUITE_AES_CMAC:
384                 key->conf.iv_len = 0;
385                 key->conf.icv_len = sizeof(struct ieee80211_mmie);
386                 if (seq)
387                         for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
388                                 key->u.aes_cmac.rx_pn[j] =
389                                         seq[IEEE80211_CMAC_PN_LEN - j - 1];
390                 /*
391                  * Initialize AES key state here as an optimization so that
392                  * it does not need to be initialized for every packet.
393                  */
394                 key->u.aes_cmac.tfm =
395                         ieee80211_aes_cmac_key_setup(key_data);
396                 if (IS_ERR(key->u.aes_cmac.tfm)) {
397                         err = PTR_ERR(key->u.aes_cmac.tfm);
398                         kfree(key);
399                         return ERR_PTR(err);
400                 }
401                 break;
402         default:
403                 if (cs) {
404                         size_t len = (seq_len > MAX_PN_LEN) ?
405                                                 MAX_PN_LEN : seq_len;
406
407                         key->conf.iv_len = cs->hdr_len;
408                         key->conf.icv_len = cs->mic_len;
409                         for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
410                                 for (j = 0; j < len; j++)
411                                         key->u.gen.rx_pn[i][j] =
412                                                         seq[len - j - 1];
413                 }
414         }
415         memcpy(key->conf.key, key_data, key_len);
416         INIT_LIST_HEAD(&key->list);
417
418         return key;
419 }
420
421 static void ieee80211_key_free_common(struct ieee80211_key *key)
422 {
423         if (key->conf.cipher == WLAN_CIPHER_SUITE_CCMP)
424                 ieee80211_aes_key_free(key->u.ccmp.tfm);
425         if (key->conf.cipher == WLAN_CIPHER_SUITE_AES_CMAC)
426                 ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
427         kfree(key);
428 }
429
430 static void __ieee80211_key_destroy(struct ieee80211_key *key,
431                                     bool delay_tailroom)
432 {
433         if (key->local)
434                 ieee80211_key_disable_hw_accel(key);
435
436         if (key->local) {
437                 struct ieee80211_sub_if_data *sdata = key->sdata;
438
439                 ieee80211_debugfs_key_remove(key);
440
441                 if (delay_tailroom) {
442                         /* see ieee80211_delayed_tailroom_dec */
443                         sdata->crypto_tx_tailroom_pending_dec++;
444                         schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
445                                               HZ/2);
446                 } else {
447                         sdata->crypto_tx_tailroom_needed_cnt--;
448                 }
449         }
450
451         ieee80211_key_free_common(key);
452 }
453
454 static void ieee80211_key_destroy(struct ieee80211_key *key,
455                                   bool delay_tailroom)
456 {
457         if (!key)
458                 return;
459
460         /*
461          * Synchronize so the TX path can no longer be using
462          * this key before we free/remove it.
463          */
464         synchronize_net();
465
466         __ieee80211_key_destroy(key, delay_tailroom);
467 }
468
469 void ieee80211_key_free_unused(struct ieee80211_key *key)
470 {
471         WARN_ON(key->sdata || key->local);
472         ieee80211_key_free_common(key);
473 }
474
475 int ieee80211_key_link(struct ieee80211_key *key,
476                        struct ieee80211_sub_if_data *sdata,
477                        struct sta_info *sta)
478 {
479         struct ieee80211_local *local = sdata->local;
480         struct ieee80211_key *old_key;
481         int idx, ret;
482         bool pairwise;
483
484         BUG_ON(!sdata);
485         BUG_ON(!key);
486
487         pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
488         idx = key->conf.keyidx;
489         key->local = sdata->local;
490         key->sdata = sdata;
491         key->sta = sta;
492
493         mutex_lock(&sdata->local->key_mtx);
494
495         if (sta && pairwise)
496                 old_key = key_mtx_dereference(sdata->local, sta->ptk[idx]);
497         else if (sta)
498                 old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
499         else
500                 old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
501
502         increment_tailroom_need_count(sdata);
503
504         ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
505         ieee80211_key_destroy(old_key, true);
506
507         ieee80211_debugfs_key_add(key);
508
509         if (!local->wowlan) {
510                 ret = ieee80211_key_enable_hw_accel(key);
511                 if (ret)
512                         ieee80211_key_free(key, true);
513         } else {
514                 ret = 0;
515         }
516
517         mutex_unlock(&sdata->local->key_mtx);
518
519         return ret;
520 }
521
522 void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
523 {
524         if (!key)
525                 return;
526
527         /*
528          * Replace key with nothingness if it was ever used.
529          */
530         if (key->sdata)
531                 ieee80211_key_replace(key->sdata, key->sta,
532                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
533                                 key, NULL);
534         ieee80211_key_destroy(key, delay_tailroom);
535 }
536
537 void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
538 {
539         struct ieee80211_key *key;
540
541         ASSERT_RTNL();
542
543         if (WARN_ON(!ieee80211_sdata_running(sdata)))
544                 return;
545
546         mutex_lock(&sdata->local->key_mtx);
547
548         sdata->crypto_tx_tailroom_needed_cnt = 0;
549
550         list_for_each_entry(key, &sdata->key_list, list) {
551                 increment_tailroom_need_count(sdata);
552                 ieee80211_key_enable_hw_accel(key);
553         }
554
555         mutex_unlock(&sdata->local->key_mtx);
556 }
557
558 void ieee80211_iter_keys(struct ieee80211_hw *hw,
559                          struct ieee80211_vif *vif,
560                          void (*iter)(struct ieee80211_hw *hw,
561                                       struct ieee80211_vif *vif,
562                                       struct ieee80211_sta *sta,
563                                       struct ieee80211_key_conf *key,
564                                       void *data),
565                          void *iter_data)
566 {
567         struct ieee80211_local *local = hw_to_local(hw);
568         struct ieee80211_key *key, *tmp;
569         struct ieee80211_sub_if_data *sdata;
570
571         ASSERT_RTNL();
572
573         mutex_lock(&local->key_mtx);
574         if (vif) {
575                 sdata = vif_to_sdata(vif);
576                 list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
577                         iter(hw, &sdata->vif,
578                              key->sta ? &key->sta->sta : NULL,
579                              &key->conf, iter_data);
580         } else {
581                 list_for_each_entry(sdata, &local->interfaces, list)
582                         list_for_each_entry_safe(key, tmp,
583                                                  &sdata->key_list, list)
584                                 iter(hw, &sdata->vif,
585                                      key->sta ? &key->sta->sta : NULL,
586                                      &key->conf, iter_data);
587         }
588         mutex_unlock(&local->key_mtx);
589 }
590 EXPORT_SYMBOL(ieee80211_iter_keys);
591
592 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data *sdata,
593                                       struct list_head *keys)
594 {
595         struct ieee80211_key *key, *tmp;
596
597         sdata->crypto_tx_tailroom_needed_cnt -=
598                 sdata->crypto_tx_tailroom_pending_dec;
599         sdata->crypto_tx_tailroom_pending_dec = 0;
600
601         ieee80211_debugfs_key_remove_mgmt_default(sdata);
602
603         list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
604                 ieee80211_key_replace(key->sdata, key->sta,
605                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
606                                 key, NULL);
607                 list_add_tail(&key->list, keys);
608         }
609
610         ieee80211_debugfs_key_update_default(sdata);
611 }
612
613 void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata,
614                          bool force_synchronize)
615 {
616         struct ieee80211_local *local = sdata->local;
617         struct ieee80211_sub_if_data *vlan;
618         struct ieee80211_key *key, *tmp;
619         LIST_HEAD(keys);
620
621         cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
622
623         mutex_lock(&local->key_mtx);
624
625         ieee80211_free_keys_iface(sdata, &keys);
626
627         if (sdata->vif.type == NL80211_IFTYPE_AP) {
628                 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
629                         ieee80211_free_keys_iface(vlan, &keys);
630         }
631
632         if (!list_empty(&keys) || force_synchronize)
633                 synchronize_net();
634         list_for_each_entry_safe(key, tmp, &keys, list)
635                 __ieee80211_key_destroy(key, false);
636
637         WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
638                      sdata->crypto_tx_tailroom_pending_dec);
639         if (sdata->vif.type == NL80211_IFTYPE_AP) {
640                 list_for_each_entry(vlan, &sdata->u.ap.vlans, u.vlan.list)
641                         WARN_ON_ONCE(vlan->crypto_tx_tailroom_needed_cnt ||
642                                      vlan->crypto_tx_tailroom_pending_dec);
643         }
644
645         mutex_unlock(&local->key_mtx);
646 }
647
648 void ieee80211_free_sta_keys(struct ieee80211_local *local,
649                              struct sta_info *sta)
650 {
651         struct ieee80211_key *key;
652         int i;
653
654         mutex_lock(&local->key_mtx);
655         for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
656                 key = key_mtx_dereference(local, sta->gtk[i]);
657                 if (!key)
658                         continue;
659                 ieee80211_key_replace(key->sdata, key->sta,
660                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
661                                 key, NULL);
662                 __ieee80211_key_destroy(key, true);
663         }
664
665         for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
666                 key = key_mtx_dereference(local, sta->ptk[i]);
667                 if (!key)
668                         continue;
669                 ieee80211_key_replace(key->sdata, key->sta,
670                                 key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
671                                 key, NULL);
672                 __ieee80211_key_destroy(key, true);
673         }
674
675         mutex_unlock(&local->key_mtx);
676 }
677
678 void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
679 {
680         struct ieee80211_sub_if_data *sdata;
681
682         sdata = container_of(wk, struct ieee80211_sub_if_data,
683                              dec_tailroom_needed_wk.work);
684
685         /*
686          * The reason for the delayed tailroom needed decrementing is to
687          * make roaming faster: during roaming, all keys are first deleted
688          * and then new keys are installed. The first new key causes the
689          * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
690          * the cost of synchronize_net() (which can be slow). Avoid this
691          * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
692          * key removal for a while, so if we roam the value is larger than
693          * zero and no 0->1 transition happens.
694          *
695          * The cost is that if the AP switching was from an AP with keys
696          * to one without, we still allocate tailroom while it would no
697          * longer be needed. However, in the typical (fast) roaming case
698          * within an ESS this usually won't happen.
699          */
700
701         mutex_lock(&sdata->local->key_mtx);
702         sdata->crypto_tx_tailroom_needed_cnt -=
703                 sdata->crypto_tx_tailroom_pending_dec;
704         sdata->crypto_tx_tailroom_pending_dec = 0;
705         mutex_unlock(&sdata->local->key_mtx);
706 }
707
708 void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
709                                 const u8 *replay_ctr, gfp_t gfp)
710 {
711         struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
712
713         trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
714
715         cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
716 }
717 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
718
719 void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
720                               struct ieee80211_key_seq *seq)
721 {
722         struct ieee80211_key *key;
723         u64 pn64;
724
725         if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
726                 return;
727
728         key = container_of(keyconf, struct ieee80211_key, conf);
729
730         switch (key->conf.cipher) {
731         case WLAN_CIPHER_SUITE_TKIP:
732                 seq->tkip.iv32 = key->u.tkip.tx.iv32;
733                 seq->tkip.iv16 = key->u.tkip.tx.iv16;
734                 break;
735         case WLAN_CIPHER_SUITE_CCMP:
736                 pn64 = atomic64_read(&key->u.ccmp.tx_pn);
737                 seq->ccmp.pn[5] = pn64;
738                 seq->ccmp.pn[4] = pn64 >> 8;
739                 seq->ccmp.pn[3] = pn64 >> 16;
740                 seq->ccmp.pn[2] = pn64 >> 24;
741                 seq->ccmp.pn[1] = pn64 >> 32;
742                 seq->ccmp.pn[0] = pn64 >> 40;
743                 break;
744         case WLAN_CIPHER_SUITE_AES_CMAC:
745                 pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
746                 seq->ccmp.pn[5] = pn64;
747                 seq->ccmp.pn[4] = pn64 >> 8;
748                 seq->ccmp.pn[3] = pn64 >> 16;
749                 seq->ccmp.pn[2] = pn64 >> 24;
750                 seq->ccmp.pn[1] = pn64 >> 32;
751                 seq->ccmp.pn[0] = pn64 >> 40;
752                 break;
753         default:
754                 WARN_ON(1);
755         }
756 }
757 EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
758
759 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
760                               int tid, struct ieee80211_key_seq *seq)
761 {
762         struct ieee80211_key *key;
763         const u8 *pn;
764
765         key = container_of(keyconf, struct ieee80211_key, conf);
766
767         switch (key->conf.cipher) {
768         case WLAN_CIPHER_SUITE_TKIP:
769                 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
770                         return;
771                 seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
772                 seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
773                 break;
774         case WLAN_CIPHER_SUITE_CCMP:
775                 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
776                         return;
777                 if (tid < 0)
778                         pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
779                 else
780                         pn = key->u.ccmp.rx_pn[tid];
781                 memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
782                 break;
783         case WLAN_CIPHER_SUITE_AES_CMAC:
784                 if (WARN_ON(tid != 0))
785                         return;
786                 pn = key->u.aes_cmac.rx_pn;
787                 memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
788                 break;
789         }
790 }
791 EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
792
793 void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
794                               struct ieee80211_key_seq *seq)
795 {
796         struct ieee80211_key *key;
797         u64 pn64;
798
799         key = container_of(keyconf, struct ieee80211_key, conf);
800
801         switch (key->conf.cipher) {
802         case WLAN_CIPHER_SUITE_TKIP:
803                 key->u.tkip.tx.iv32 = seq->tkip.iv32;
804                 key->u.tkip.tx.iv16 = seq->tkip.iv16;
805                 break;
806         case WLAN_CIPHER_SUITE_CCMP:
807                 pn64 = (u64)seq->ccmp.pn[5] |
808                        ((u64)seq->ccmp.pn[4] << 8) |
809                        ((u64)seq->ccmp.pn[3] << 16) |
810                        ((u64)seq->ccmp.pn[2] << 24) |
811                        ((u64)seq->ccmp.pn[1] << 32) |
812                        ((u64)seq->ccmp.pn[0] << 40);
813                 atomic64_set(&key->u.ccmp.tx_pn, pn64);
814                 break;
815         case WLAN_CIPHER_SUITE_AES_CMAC:
816                 pn64 = (u64)seq->aes_cmac.pn[5] |
817                        ((u64)seq->aes_cmac.pn[4] << 8) |
818                        ((u64)seq->aes_cmac.pn[3] << 16) |
819                        ((u64)seq->aes_cmac.pn[2] << 24) |
820                        ((u64)seq->aes_cmac.pn[1] << 32) |
821                        ((u64)seq->aes_cmac.pn[0] << 40);
822                 atomic64_set(&key->u.aes_cmac.tx_pn, pn64);
823                 break;
824         default:
825                 WARN_ON(1);
826                 break;
827         }
828 }
829 EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
830
831 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
832                               int tid, struct ieee80211_key_seq *seq)
833 {
834         struct ieee80211_key *key;
835         u8 *pn;
836
837         key = container_of(keyconf, struct ieee80211_key, conf);
838
839         switch (key->conf.cipher) {
840         case WLAN_CIPHER_SUITE_TKIP:
841                 if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
842                         return;
843                 key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
844                 key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
845                 break;
846         case WLAN_CIPHER_SUITE_CCMP:
847                 if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
848                         return;
849                 if (tid < 0)
850                         pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
851                 else
852                         pn = key->u.ccmp.rx_pn[tid];
853                 memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
854                 break;
855         case WLAN_CIPHER_SUITE_AES_CMAC:
856                 if (WARN_ON(tid != 0))
857                         return;
858                 pn = key->u.aes_cmac.rx_pn;
859                 memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
860                 break;
861         default:
862                 WARN_ON(1);
863                 break;
864         }
865 }
866 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
867
868 void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
869 {
870         struct ieee80211_key *key;
871
872         key = container_of(keyconf, struct ieee80211_key, conf);
873
874         assert_key_lock(key->local);
875
876         /*
877          * if key was uploaded, we assume the driver will/has remove(d)
878          * it, so adjust bookkeeping accordingly
879          */
880         if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
881                 key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
882
883                 if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
884                       (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
885                       (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
886                         increment_tailroom_need_count(key->sdata);
887         }
888
889         ieee80211_key_free(key, false);
890 }
891 EXPORT_SYMBOL_GPL(ieee80211_remove_key);
892
893 struct ieee80211_key_conf *
894 ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
895                         struct ieee80211_key_conf *keyconf)
896 {
897         struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
898         struct ieee80211_local *local = sdata->local;
899         struct ieee80211_key *key;
900         int err;
901
902         if (WARN_ON(!local->wowlan))
903                 return ERR_PTR(-EINVAL);
904
905         if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
906                 return ERR_PTR(-EINVAL);
907
908         key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
909                                   keyconf->keylen, keyconf->key,
910                                   0, NULL, NULL);
911         if (IS_ERR(key))
912                 return ERR_CAST(key);
913
914         if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
915                 key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
916
917         err = ieee80211_key_link(key, sdata, NULL);
918         if (err)
919                 return ERR_PTR(err);
920
921         return &key->conf;
922 }
923 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);