1 // SPDX-License-Identifier: GPL-2.0
5 static bool tcp_rack_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
7 return t1 > t2 || (t1 == t2 && after(seq1, seq2));
10 static u32 tcp_rack_reo_wnd(const struct sock *sk)
12 struct tcp_sock *tp = tcp_sk(sk);
14 if (!tp->reord_seen) {
15 /* If reordering has not been observed, be aggressive during
16 * the recovery or starting the recovery by DUPACK threshold.
18 if (inet_csk(sk)->icsk_ca_state >= TCP_CA_Recovery)
21 if (tp->sacked_out >= tp->reordering &&
22 !(sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_NO_DUPTHRESH))
26 /* To be more reordering resilient, allow min_rtt/4 settling delay.
27 * Use min_rtt instead of the smoothed RTT because reordering is
28 * often a path property and less related to queuing or delayed ACKs.
29 * Upon receiving DSACKs, linearly increase the window up to the
32 return min((tcp_min_rtt(tp) >> 2) * tp->rack.reo_wnd_steps,
36 s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, u32 reo_wnd)
38 return tp->rack.rtt_us + reo_wnd -
39 tcp_stamp_us_delta(tp->tcp_mstamp, tcp_skb_timestamp_us(skb));
42 /* RACK loss detection (IETF draft draft-ietf-tcpm-rack-01):
44 * Marks a packet lost, if some packet sent later has been (s)acked.
45 * The underlying idea is similar to the traditional dupthresh and FACK
46 * but they look at different metrics:
48 * dupthresh: 3 OOO packets delivered (packet count)
49 * FACK: sequence delta to highest sacked sequence (sequence space)
50 * RACK: sent time delta to the latest delivered packet (time domain)
52 * The advantage of RACK is it applies to both original and retransmitted
53 * packet and therefore is robust against tail losses. Another advantage
54 * is being more resilient to reordering by simply allowing some
55 * "settling delay", instead of tweaking the dupthresh.
57 * When tcp_rack_detect_loss() detects some packets are lost and we
58 * are not already in the CA_Recovery state, either tcp_rack_reo_timeout()
59 * or tcp_time_to_recover()'s "Trick#1: the loss is proven" code path will
60 * make us enter the CA_Recovery state.
62 static void tcp_rack_detect_loss(struct sock *sk, u32 *reo_timeout)
64 struct tcp_sock *tp = tcp_sk(sk);
65 struct sk_buff *skb, *n;
69 reo_wnd = tcp_rack_reo_wnd(sk);
70 list_for_each_entry_safe(skb, n, &tp->tsorted_sent_queue,
72 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
75 /* Skip ones marked lost but not yet retransmitted */
76 if ((scb->sacked & TCPCB_LOST) &&
77 !(scb->sacked & TCPCB_SACKED_RETRANS))
80 if (!tcp_rack_sent_after(tp->rack.mstamp,
81 tcp_skb_timestamp_us(skb),
82 tp->rack.end_seq, scb->end_seq))
85 /* A packet is lost if it has not been s/acked beyond
86 * the recent RTT plus the reordering window.
88 remaining = tcp_rack_skb_timeout(tp, skb, reo_wnd);
90 tcp_mark_skb_lost(sk, skb);
91 list_del_init(&skb->tcp_tsorted_anchor);
93 /* Record maximum wait time */
94 *reo_timeout = max_t(u32, *reo_timeout, remaining);
99 bool tcp_rack_mark_lost(struct sock *sk)
101 struct tcp_sock *tp = tcp_sk(sk);
104 if (!tp->rack.advanced)
107 /* Reset the advanced flag to avoid unnecessary queue scanning */
108 tp->rack.advanced = 0;
109 tcp_rack_detect_loss(sk, &timeout);
111 timeout = usecs_to_jiffies(timeout) + TCP_TIMEOUT_MIN;
112 inet_csk_reset_xmit_timer(sk, ICSK_TIME_REO_TIMEOUT,
113 timeout, inet_csk(sk)->icsk_rto);
118 /* Record the most recently (re)sent time among the (s)acked packets
119 * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from
120 * draft-cheng-tcpm-rack-00.txt
122 void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
127 rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, xmit_time);
128 if (rtt_us < tcp_min_rtt(tp) && (sacked & TCPCB_RETRANS)) {
129 /* If the sacked packet was retransmitted, it's ambiguous
130 * whether the retransmission or the original (or the prior
131 * retransmission) was sacked.
133 * If the original is lost, there is no ambiguity. Otherwise
134 * we assume the original can be delayed up to aRTT + min_rtt.
135 * the aRTT term is bounded by the fast recovery or timeout,
136 * so it's at least one RTT (i.e., retransmission is at least
141 tp->rack.advanced = 1;
142 tp->rack.rtt_us = rtt_us;
143 if (tcp_rack_sent_after(xmit_time, tp->rack.mstamp,
144 end_seq, tp->rack.end_seq)) {
145 tp->rack.mstamp = xmit_time;
146 tp->rack.end_seq = end_seq;
150 /* We have waited long enough to accommodate reordering. Mark the expired
151 * packets lost and retransmit them.
153 void tcp_rack_reo_timeout(struct sock *sk)
155 struct tcp_sock *tp = tcp_sk(sk);
156 u32 timeout, prior_inflight;
159 prior_inflight = tcp_packets_in_flight(tp);
160 tcp_rack_detect_loss(sk, &timeout);
161 if (prior_inflight != tcp_packets_in_flight(tp)) {
162 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Recovery) {
163 tcp_enter_recovery(sk, false);
164 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
165 tcp_cwnd_reduction(sk, 1, tp->lost - lost, 0);
167 tcp_xmit_retransmit_queue(sk);
169 if (inet_csk(sk)->icsk_pending != ICSK_TIME_RETRANS)
173 /* Updates the RACK's reo_wnd based on DSACK and no. of recoveries.
175 * If a DSACK is received that seems like it may have been due to reordering
176 * triggering fast recovery, increment reo_wnd by min_rtt/4 (upper bounded
177 * by srtt), since there is possibility that spurious retransmission was
178 * due to reordering delay longer than reo_wnd.
180 * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16)
181 * no. of successful recoveries (accounts for full DSACK-based loss
182 * recovery undo). After that, reset it to default (min_rtt/4).
184 * At max, reo_wnd is incremented only once per rtt. So that the new
185 * DSACK on which we are reacting, is due to the spurious retx (approx)
186 * after the reo_wnd has been updated last time.
188 * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than
189 * absolute value to account for change in rtt.
191 void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs)
193 struct tcp_sock *tp = tcp_sk(sk);
195 if (sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_STATIC_REO_WND ||
196 !rs->prior_delivered)
199 /* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */
200 if (before(rs->prior_delivered, tp->rack.last_delivered))
201 tp->rack.dsack_seen = 0;
203 /* Adjust the reo_wnd if update is pending */
204 if (tp->rack.dsack_seen) {
205 tp->rack.reo_wnd_steps = min_t(u32, 0xFF,
206 tp->rack.reo_wnd_steps + 1);
207 tp->rack.dsack_seen = 0;
208 tp->rack.last_delivered = tp->delivered;
209 tp->rack.reo_wnd_persist = TCP_RACK_RECOVERY_THRESH;
210 } else if (!tp->rack.reo_wnd_persist) {
211 tp->rack.reo_wnd_steps = 1;
215 /* RFC6582 NewReno recovery for non-SACK connection. It simply retransmits
216 * the next unacked packet upon receiving
217 * a) three or more DUPACKs to start the fast recovery
218 * b) an ACK acknowledging new data during the fast recovery.
220 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced)
222 const u8 state = inet_csk(sk)->icsk_ca_state;
223 struct tcp_sock *tp = tcp_sk(sk);
225 if ((state < TCP_CA_Recovery && tp->sacked_out >= tp->reordering) ||
226 (state == TCP_CA_Recovery && snd_una_advanced)) {
227 struct sk_buff *skb = tcp_rtx_queue_head(sk);
230 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
233 mss = tcp_skb_mss(skb);
234 if (tcp_skb_pcount(skb) > 1 && skb->len > mss)
235 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
236 mss, mss, GFP_ATOMIC);
238 tcp_mark_skb_lost(sk, skb);