1 // SPDX-License-Identifier: GPL-2.0-only
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
38 #define pr_fmt(fmt) "TCP: " fmt
41 #include <net/mptcp.h>
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
48 #include <trace/events/tcp.h>
50 /* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
55 u64 val = tcp_clock_ns();
57 tp->tcp_clock_cache = val;
58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 int push_one, gfp_t gfp);
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
67 struct inet_connection_sock *icsk = inet_csk(sk);
68 struct tcp_sock *tp = tcp_sk(sk);
69 unsigned int prior_packets = tp->packets_out;
71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
73 __skb_unlink(skb, &sk->sk_write_queue);
74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
76 if (tp->highest_sack == NULL)
77 tp->highest_sack = skb;
79 tp->packets_out += tcp_skb_pcount(skb);
80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89 * window scaling factor due to loss of precision.
90 * If window has been shrunk, what should we make? It is not clear at all.
91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93 * invalid. OK, let's make this for now:
95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
97 const struct tcp_sock *tp = tcp_sk(sk);
99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 (tp->rx_opt.wscale_ok &&
101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
104 return tcp_wnd_end(tp);
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
121 static __u16 tcp_advertise_mss(struct sock *sk)
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
128 unsigned int metric = dst_metric_advmss(dst);
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
144 struct tcp_sock *tp = tcp_sk(sk);
145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 u32 cwnd = tp->snd_cwnd;
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
155 tp->snd_cwnd = max(cwnd, restart_cwnd);
156 tp->snd_cwnd_stamp = tcp_jiffies32;
157 tp->snd_cwnd_used = 0;
160 /* Congestion state accounting after a packet has been sent. */
161 static void tcp_event_data_sent(struct tcp_sock *tp,
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_jiffies32;
167 if (tcp_packets_in_flight(tp) == 0)
168 tcp_ca_event(sk, CA_EVENT_TX_START);
170 /* If this is the first data packet sent in response to the
171 * previous received data,
172 * and it is a reply for ato after last received packet,
173 * increase pingpong count.
175 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
176 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
177 inet_csk_inc_pingpong_cnt(sk);
182 /* Account for an ACK we sent. */
183 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
186 struct tcp_sock *tp = tcp_sk(sk);
188 if (unlikely(tp->compressed_ack)) {
189 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
191 tp->compressed_ack = 0;
192 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
196 if (unlikely(rcv_nxt != tp->rcv_nxt))
197 return; /* Special ACK sent by DCTCP to reflect ECN */
198 tcp_dec_quickack_mode(sk, pkts);
199 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
202 /* Determine a window scaling and initial window to offer.
203 * Based on the assumption that the given amount of space
204 * will be offered. Store the results in the tp structure.
205 * NOTE: for smooth operation initial space offering should
206 * be a multiple of mss if possible. We assume here that mss >= 1.
207 * This MUST be enforced by all callers.
209 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
210 __u32 *rcv_wnd, __u32 *window_clamp,
211 int wscale_ok, __u8 *rcv_wscale,
214 unsigned int space = (__space < 0 ? 0 : __space);
216 /* If no clamp set the clamp to the max possible scaled window */
217 if (*window_clamp == 0)
218 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
219 space = min(*window_clamp, space);
221 /* Quantize space offering to a multiple of mss if possible. */
223 space = rounddown(space, mss);
225 /* NOTE: offering an initial window larger than 32767
226 * will break some buggy TCP stacks. If the admin tells us
227 * it is likely we could be speaking with such a buggy stack
228 * we will truncate our initial window offering to 32K-1
229 * unless the remote has sent us a window scaling option,
230 * which we interpret as a sign the remote TCP is not
231 * misinterpreting the window field as a signed quantity.
233 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
234 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
236 (*rcv_wnd) = min_t(u32, space, U16_MAX);
239 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
243 /* Set window scaling on max possible window */
244 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
245 space = max_t(u32, space, sysctl_rmem_max);
246 space = min_t(u32, space, *window_clamp);
247 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
250 /* Set the clamp no higher than max representable value */
251 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
253 EXPORT_SYMBOL(tcp_select_initial_window);
255 /* Chose a new window to advertise, update state in tcp_sock for the
256 * socket, and return result with RFC1323 scaling applied. The return
257 * value can be stuffed directly into th->window for an outgoing
260 static u16 tcp_select_window(struct sock *sk)
262 struct tcp_sock *tp = tcp_sk(sk);
263 u32 old_win = tp->rcv_wnd;
264 u32 cur_win = tcp_receive_window(tp);
265 u32 new_win = __tcp_select_window(sk);
267 /* Never shrink the offered window */
268 if (new_win < cur_win) {
269 /* Danger Will Robinson!
270 * Don't update rcv_wup/rcv_wnd here or else
271 * we will not be able to advertise a zero
272 * window in time. --DaveM
274 * Relax Will Robinson.
277 NET_INC_STATS(sock_net(sk),
278 LINUX_MIB_TCPWANTZEROWINDOWADV);
279 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
281 tp->rcv_wnd = new_win;
282 tp->rcv_wup = tp->rcv_nxt;
284 /* Make sure we do not exceed the maximum possible
287 if (!tp->rx_opt.rcv_wscale &&
288 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
289 new_win = min(new_win, MAX_TCP_WINDOW);
291 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
293 /* RFC1323 scaling applied */
294 new_win >>= tp->rx_opt.rcv_wscale;
296 /* If we advertise zero window, disable fast path. */
300 NET_INC_STATS(sock_net(sk),
301 LINUX_MIB_TCPTOZEROWINDOWADV);
302 } else if (old_win == 0) {
303 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
309 /* Packet ECN state for a SYN-ACK */
310 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
312 const struct tcp_sock *tp = tcp_sk(sk);
314 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
315 if (!(tp->ecn_flags & TCP_ECN_OK))
316 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
317 else if (tcp_ca_needs_ecn(sk) ||
318 tcp_bpf_ca_needs_ecn(sk))
322 /* Packet ECN state for a SYN. */
323 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
325 struct tcp_sock *tp = tcp_sk(sk);
326 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
327 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
328 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
331 const struct dst_entry *dst = __sk_dst_get(sk);
333 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
341 tp->ecn_flags = TCP_ECN_OK;
342 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
347 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
349 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
350 /* tp->ecn_flags are cleared at a later point in time when
351 * SYN ACK is ultimatively being received.
353 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
357 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
359 if (inet_rsk(req)->ecn_ok)
363 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
366 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
367 struct tcphdr *th, int tcp_header_len)
369 struct tcp_sock *tp = tcp_sk(sk);
371 if (tp->ecn_flags & TCP_ECN_OK) {
372 /* Not-retransmitted data segment: set ECT and inject CWR. */
373 if (skb->len != tcp_header_len &&
374 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
376 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
377 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
379 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
381 } else if (!tcp_ca_needs_ecn(sk)) {
382 /* ACK or retransmitted segment: clear ECT|CE */
383 INET_ECN_dontxmit(sk);
385 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
390 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
391 * auto increment end seqno.
393 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
395 skb->ip_summed = CHECKSUM_PARTIAL;
397 TCP_SKB_CB(skb)->tcp_flags = flags;
399 tcp_skb_pcount_set(skb, 1);
401 TCP_SKB_CB(skb)->seq = seq;
402 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
404 TCP_SKB_CB(skb)->end_seq = seq;
407 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
409 return tp->snd_una != tp->snd_up;
412 #define OPTION_SACK_ADVERTISE BIT(0)
413 #define OPTION_TS BIT(1)
414 #define OPTION_MD5 BIT(2)
415 #define OPTION_WSCALE BIT(3)
416 #define OPTION_FAST_OPEN_COOKIE BIT(8)
417 #define OPTION_SMC BIT(9)
418 #define OPTION_MPTCP BIT(10)
420 static void smc_options_write(__be32 *ptr, u16 *options)
422 #if IS_ENABLED(CONFIG_SMC)
423 if (static_branch_unlikely(&tcp_have_smc)) {
424 if (unlikely(OPTION_SMC & *options)) {
425 *ptr++ = htonl((TCPOPT_NOP << 24) |
428 (TCPOLEN_EXP_SMC_BASE));
429 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
435 struct tcp_out_options {
436 u16 options; /* bit field of OPTION_* */
437 u16 mss; /* 0 to disable */
438 u8 ws; /* window scale, 0 to disable */
439 u8 num_sack_blocks; /* number of SACK blocks to include */
440 u8 hash_size; /* bytes in hash_location */
441 u8 bpf_opt_len; /* length of BPF hdr option */
442 __u8 *hash_location; /* temporary pointer, overloaded */
443 __u32 tsval, tsecr; /* need to include OPTION_TS */
444 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
445 struct mptcp_out_options mptcp;
448 static void mptcp_options_write(__be32 *ptr, const struct tcp_sock *tp,
449 struct tcp_out_options *opts)
451 #if IS_ENABLED(CONFIG_MPTCP)
452 if (unlikely(OPTION_MPTCP & opts->options))
453 mptcp_write_options(ptr, tp, &opts->mptcp);
457 #ifdef CONFIG_CGROUP_BPF
458 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
459 enum tcp_synack_type synack_type)
462 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
464 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
465 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
470 /* req, syn_skb and synack_type are used when writing synack */
471 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
472 struct request_sock *req,
473 struct sk_buff *syn_skb,
474 enum tcp_synack_type synack_type,
475 struct tcp_out_options *opts,
476 unsigned int *remaining)
478 struct bpf_sock_ops_kern sock_ops;
481 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
482 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
486 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
489 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
491 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
494 /* The listen "sk" cannot be passed here because
495 * it is not locked. It would not make too much
496 * sense to do bpf_setsockopt(listen_sk) based
497 * on individual connection request also.
499 * Thus, "req" is passed here and the cgroup-bpf-progs
500 * of the listen "sk" will be run.
502 * "req" is also used here for fastopen even the "sk" here is
503 * a fullsock "child" sk. It is to keep the behavior
504 * consistent between fastopen and non-fastopen on
505 * the bpf programming side.
507 sock_ops.sk = (struct sock *)req;
508 sock_ops.syn_skb = syn_skb;
510 sock_owned_by_me(sk);
512 sock_ops.is_fullsock = 1;
516 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
517 sock_ops.remaining_opt_len = *remaining;
518 /* tcp_current_mss() does not pass a skb */
520 bpf_skops_init_skb(&sock_ops, skb, 0);
522 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
524 if (err || sock_ops.remaining_opt_len == *remaining)
527 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
528 /* round up to 4 bytes */
529 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
531 *remaining -= opts->bpf_opt_len;
534 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
535 struct request_sock *req,
536 struct sk_buff *syn_skb,
537 enum tcp_synack_type synack_type,
538 struct tcp_out_options *opts)
540 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
541 struct bpf_sock_ops_kern sock_ops;
544 if (likely(!max_opt_len))
547 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
549 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
552 sock_ops.sk = (struct sock *)req;
553 sock_ops.syn_skb = syn_skb;
555 sock_owned_by_me(sk);
557 sock_ops.is_fullsock = 1;
561 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
562 sock_ops.remaining_opt_len = max_opt_len;
563 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
564 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
566 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
571 nr_written = max_opt_len - sock_ops.remaining_opt_len;
573 if (nr_written < max_opt_len)
574 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
575 max_opt_len - nr_written);
578 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
579 struct request_sock *req,
580 struct sk_buff *syn_skb,
581 enum tcp_synack_type synack_type,
582 struct tcp_out_options *opts,
583 unsigned int *remaining)
587 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
588 struct request_sock *req,
589 struct sk_buff *syn_skb,
590 enum tcp_synack_type synack_type,
591 struct tcp_out_options *opts)
596 /* Write previously computed TCP options to the packet.
598 * Beware: Something in the Internet is very sensitive to the ordering of
599 * TCP options, we learned this through the hard way, so be careful here.
600 * Luckily we can at least blame others for their non-compliance but from
601 * inter-operability perspective it seems that we're somewhat stuck with
602 * the ordering which we have been using if we want to keep working with
603 * those broken things (not that it currently hurts anybody as there isn't
604 * particular reason why the ordering would need to be changed).
606 * At least SACK_PERM as the first option is known to lead to a disaster
607 * (but it may well be that other scenarios fail similarly).
609 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
610 struct tcp_out_options *opts)
612 u16 options = opts->options; /* mungable copy */
614 if (unlikely(OPTION_MD5 & options)) {
615 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
616 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
617 /* overload cookie hash location */
618 opts->hash_location = (__u8 *)ptr;
622 if (unlikely(opts->mss)) {
623 *ptr++ = htonl((TCPOPT_MSS << 24) |
624 (TCPOLEN_MSS << 16) |
628 if (likely(OPTION_TS & options)) {
629 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
630 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
631 (TCPOLEN_SACK_PERM << 16) |
632 (TCPOPT_TIMESTAMP << 8) |
634 options &= ~OPTION_SACK_ADVERTISE;
636 *ptr++ = htonl((TCPOPT_NOP << 24) |
638 (TCPOPT_TIMESTAMP << 8) |
641 *ptr++ = htonl(opts->tsval);
642 *ptr++ = htonl(opts->tsecr);
645 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
646 *ptr++ = htonl((TCPOPT_NOP << 24) |
648 (TCPOPT_SACK_PERM << 8) |
652 if (unlikely(OPTION_WSCALE & options)) {
653 *ptr++ = htonl((TCPOPT_NOP << 24) |
654 (TCPOPT_WINDOW << 16) |
655 (TCPOLEN_WINDOW << 8) |
659 if (unlikely(opts->num_sack_blocks)) {
660 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
661 tp->duplicate_sack : tp->selective_acks;
664 *ptr++ = htonl((TCPOPT_NOP << 24) |
667 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
668 TCPOLEN_SACK_PERBLOCK)));
670 for (this_sack = 0; this_sack < opts->num_sack_blocks;
672 *ptr++ = htonl(sp[this_sack].start_seq);
673 *ptr++ = htonl(sp[this_sack].end_seq);
676 tp->rx_opt.dsack = 0;
679 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
680 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
682 u32 len; /* Fast Open option length */
685 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
686 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
687 TCPOPT_FASTOPEN_MAGIC);
688 p += TCPOLEN_EXP_FASTOPEN_BASE;
690 len = TCPOLEN_FASTOPEN_BASE + foc->len;
691 *p++ = TCPOPT_FASTOPEN;
695 memcpy(p, foc->val, foc->len);
696 if ((len & 3) == 2) {
697 p[foc->len] = TCPOPT_NOP;
698 p[foc->len + 1] = TCPOPT_NOP;
700 ptr += (len + 3) >> 2;
703 smc_options_write(ptr, &options);
705 mptcp_options_write(ptr, tp, opts);
708 static void smc_set_option(const struct tcp_sock *tp,
709 struct tcp_out_options *opts,
710 unsigned int *remaining)
712 #if IS_ENABLED(CONFIG_SMC)
713 if (static_branch_unlikely(&tcp_have_smc)) {
715 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
716 opts->options |= OPTION_SMC;
717 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
724 static void smc_set_option_cond(const struct tcp_sock *tp,
725 const struct inet_request_sock *ireq,
726 struct tcp_out_options *opts,
727 unsigned int *remaining)
729 #if IS_ENABLED(CONFIG_SMC)
730 if (static_branch_unlikely(&tcp_have_smc)) {
731 if (tp->syn_smc && ireq->smc_ok) {
732 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
733 opts->options |= OPTION_SMC;
734 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
741 static void mptcp_set_option_cond(const struct request_sock *req,
742 struct tcp_out_options *opts,
743 unsigned int *remaining)
745 if (rsk_is_mptcp(req)) {
748 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
749 if (*remaining >= size) {
750 opts->options |= OPTION_MPTCP;
757 /* Compute TCP options for SYN packets. This is not the final
758 * network wire format yet.
760 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
761 struct tcp_out_options *opts,
762 struct tcp_md5sig_key **md5)
764 struct tcp_sock *tp = tcp_sk(sk);
765 unsigned int remaining = MAX_TCP_OPTION_SPACE;
766 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
769 #ifdef CONFIG_TCP_MD5SIG
770 if (static_branch_unlikely(&tcp_md5_needed) &&
771 rcu_access_pointer(tp->md5sig_info)) {
772 *md5 = tp->af_specific->md5_lookup(sk, sk);
774 opts->options |= OPTION_MD5;
775 remaining -= TCPOLEN_MD5SIG_ALIGNED;
780 /* We always get an MSS option. The option bytes which will be seen in
781 * normal data packets should timestamps be used, must be in the MSS
782 * advertised. But we subtract them from tp->mss_cache so that
783 * calculations in tcp_sendmsg are simpler etc. So account for this
784 * fact here if necessary. If we don't do this correctly, as a
785 * receiver we won't recognize data packets as being full sized when we
786 * should, and thus we won't abide by the delayed ACK rules correctly.
787 * SACKs don't matter, we never delay an ACK when we have any of those
789 opts->mss = tcp_advertise_mss(sk);
790 remaining -= TCPOLEN_MSS_ALIGNED;
792 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
793 opts->options |= OPTION_TS;
794 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
795 opts->tsecr = tp->rx_opt.ts_recent;
796 remaining -= TCPOLEN_TSTAMP_ALIGNED;
798 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
799 opts->ws = tp->rx_opt.rcv_wscale;
800 opts->options |= OPTION_WSCALE;
801 remaining -= TCPOLEN_WSCALE_ALIGNED;
803 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
804 opts->options |= OPTION_SACK_ADVERTISE;
805 if (unlikely(!(OPTION_TS & opts->options)))
806 remaining -= TCPOLEN_SACKPERM_ALIGNED;
809 if (fastopen && fastopen->cookie.len >= 0) {
810 u32 need = fastopen->cookie.len;
812 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
813 TCPOLEN_FASTOPEN_BASE;
814 need = (need + 3) & ~3U; /* Align to 32 bits */
815 if (remaining >= need) {
816 opts->options |= OPTION_FAST_OPEN_COOKIE;
817 opts->fastopen_cookie = &fastopen->cookie;
819 tp->syn_fastopen = 1;
820 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
824 smc_set_option(tp, opts, &remaining);
826 if (sk_is_mptcp(sk)) {
829 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
830 opts->options |= OPTION_MPTCP;
835 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
837 return MAX_TCP_OPTION_SPACE - remaining;
840 /* Set up TCP options for SYN-ACKs. */
841 static unsigned int tcp_synack_options(const struct sock *sk,
842 struct request_sock *req,
843 unsigned int mss, struct sk_buff *skb,
844 struct tcp_out_options *opts,
845 const struct tcp_md5sig_key *md5,
846 struct tcp_fastopen_cookie *foc,
847 enum tcp_synack_type synack_type,
848 struct sk_buff *syn_skb)
850 struct inet_request_sock *ireq = inet_rsk(req);
851 unsigned int remaining = MAX_TCP_OPTION_SPACE;
853 #ifdef CONFIG_TCP_MD5SIG
855 opts->options |= OPTION_MD5;
856 remaining -= TCPOLEN_MD5SIG_ALIGNED;
858 /* We can't fit any SACK blocks in a packet with MD5 + TS
859 * options. There was discussion about disabling SACK
860 * rather than TS in order to fit in better with old,
861 * buggy kernels, but that was deemed to be unnecessary.
863 if (synack_type != TCP_SYNACK_COOKIE)
864 ireq->tstamp_ok &= !ireq->sack_ok;
868 /* We always send an MSS option. */
870 remaining -= TCPOLEN_MSS_ALIGNED;
872 if (likely(ireq->wscale_ok)) {
873 opts->ws = ireq->rcv_wscale;
874 opts->options |= OPTION_WSCALE;
875 remaining -= TCPOLEN_WSCALE_ALIGNED;
877 if (likely(ireq->tstamp_ok)) {
878 opts->options |= OPTION_TS;
879 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
880 opts->tsecr = req->ts_recent;
881 remaining -= TCPOLEN_TSTAMP_ALIGNED;
883 if (likely(ireq->sack_ok)) {
884 opts->options |= OPTION_SACK_ADVERTISE;
885 if (unlikely(!ireq->tstamp_ok))
886 remaining -= TCPOLEN_SACKPERM_ALIGNED;
888 if (foc != NULL && foc->len >= 0) {
891 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
892 TCPOLEN_FASTOPEN_BASE;
893 need = (need + 3) & ~3U; /* Align to 32 bits */
894 if (remaining >= need) {
895 opts->options |= OPTION_FAST_OPEN_COOKIE;
896 opts->fastopen_cookie = foc;
901 mptcp_set_option_cond(req, opts, &remaining);
903 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
905 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
906 synack_type, opts, &remaining);
908 return MAX_TCP_OPTION_SPACE - remaining;
911 /* Compute TCP options for ESTABLISHED sockets. This is not the
912 * final wire format yet.
914 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
915 struct tcp_out_options *opts,
916 struct tcp_md5sig_key **md5)
918 struct tcp_sock *tp = tcp_sk(sk);
919 unsigned int size = 0;
920 unsigned int eff_sacks;
925 #ifdef CONFIG_TCP_MD5SIG
926 if (static_branch_unlikely(&tcp_md5_needed) &&
927 rcu_access_pointer(tp->md5sig_info)) {
928 *md5 = tp->af_specific->md5_lookup(sk, sk);
930 opts->options |= OPTION_MD5;
931 size += TCPOLEN_MD5SIG_ALIGNED;
936 if (likely(tp->rx_opt.tstamp_ok)) {
937 opts->options |= OPTION_TS;
938 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
939 opts->tsecr = tp->rx_opt.ts_recent;
940 size += TCPOLEN_TSTAMP_ALIGNED;
943 /* MPTCP options have precedence over SACK for the limited TCP
944 * option space because a MPTCP connection would be forced to
945 * fall back to regular TCP if a required multipath option is
946 * missing. SACK still gets a chance to use whatever space is
949 if (sk_is_mptcp(sk)) {
950 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
951 unsigned int opt_size = 0;
953 if (mptcp_established_options(sk, skb, &opt_size, remaining,
955 opts->options |= OPTION_MPTCP;
960 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
961 if (unlikely(eff_sacks)) {
962 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
963 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
964 TCPOLEN_SACK_PERBLOCK))
967 opts->num_sack_blocks =
968 min_t(unsigned int, eff_sacks,
969 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
970 TCPOLEN_SACK_PERBLOCK);
972 size += TCPOLEN_SACK_BASE_ALIGNED +
973 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
976 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
977 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
978 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
980 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
982 size = MAX_TCP_OPTION_SPACE - remaining;
989 /* TCP SMALL QUEUES (TSQ)
991 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
992 * to reduce RTT and bufferbloat.
993 * We do this using a special skb destructor (tcp_wfree).
995 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
996 * needs to be reallocated in a driver.
997 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
999 * Since transmit from skb destructor is forbidden, we use a tasklet
1000 * to process all sockets that eventually need to send more skbs.
1001 * We use one tasklet per cpu, with its own queue of sockets.
1003 struct tsq_tasklet {
1004 struct tasklet_struct tasklet;
1005 struct list_head head; /* queue of tcp sockets */
1007 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1009 static void tcp_tsq_write(struct sock *sk)
1011 if ((1 << sk->sk_state) &
1012 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1013 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1014 struct tcp_sock *tp = tcp_sk(sk);
1016 if (tp->lost_out > tp->retrans_out &&
1017 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
1018 tcp_mstamp_refresh(tp);
1019 tcp_xmit_retransmit_queue(sk);
1022 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1027 static void tcp_tsq_handler(struct sock *sk)
1030 if (!sock_owned_by_user(sk))
1032 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1037 * One tasklet per cpu tries to send more skbs.
1038 * We run in tasklet context but need to disable irqs when
1039 * transferring tsq->head because tcp_wfree() might
1040 * interrupt us (non NAPI drivers)
1042 static void tcp_tasklet_func(struct tasklet_struct *t)
1044 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet);
1046 unsigned long flags;
1047 struct list_head *q, *n;
1048 struct tcp_sock *tp;
1051 local_irq_save(flags);
1052 list_splice_init(&tsq->head, &list);
1053 local_irq_restore(flags);
1055 list_for_each_safe(q, n, &list) {
1056 tp = list_entry(q, struct tcp_sock, tsq_node);
1057 list_del(&tp->tsq_node);
1059 sk = (struct sock *)tp;
1060 smp_mb__before_atomic();
1061 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1063 tcp_tsq_handler(sk);
1068 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1069 TCPF_WRITE_TIMER_DEFERRED | \
1070 TCPF_DELACK_TIMER_DEFERRED | \
1071 TCPF_MTU_REDUCED_DEFERRED)
1073 * tcp_release_cb - tcp release_sock() callback
1076 * called from release_sock() to perform protocol dependent
1077 * actions before socket release.
1079 void tcp_release_cb(struct sock *sk)
1081 unsigned long flags, nflags;
1083 /* perform an atomic operation only if at least one flag is set */
1085 flags = sk->sk_tsq_flags;
1086 if (!(flags & TCP_DEFERRED_ALL))
1088 nflags = flags & ~TCP_DEFERRED_ALL;
1089 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1091 if (flags & TCPF_TSQ_DEFERRED) {
1095 /* Here begins the tricky part :
1096 * We are called from release_sock() with :
1098 * 2) sk_lock.slock spinlock held
1099 * 3) socket owned by us (sk->sk_lock.owned == 1)
1101 * But following code is meant to be called from BH handlers,
1102 * so we should keep BH disabled, but early release socket ownership
1104 sock_release_ownership(sk);
1106 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1107 tcp_write_timer_handler(sk);
1110 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1111 tcp_delack_timer_handler(sk);
1114 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1115 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1119 EXPORT_SYMBOL(tcp_release_cb);
1121 void __init tcp_tasklet_init(void)
1125 for_each_possible_cpu(i) {
1126 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1128 INIT_LIST_HEAD(&tsq->head);
1129 tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1134 * Write buffer destructor automatically called from kfree_skb.
1135 * We can't xmit new skbs from this context, as we might already
1138 void tcp_wfree(struct sk_buff *skb)
1140 struct sock *sk = skb->sk;
1141 struct tcp_sock *tp = tcp_sk(sk);
1142 unsigned long flags, nval, oval;
1144 /* Keep one reference on sk_wmem_alloc.
1145 * Will be released by sk_free() from here or tcp_tasklet_func()
1147 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1149 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1150 * Wait until our queues (qdisc + devices) are drained.
1152 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1153 * - chance for incoming ACK (processed by another cpu maybe)
1154 * to migrate this flow (skb->ooo_okay will be eventually set)
1156 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1159 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1160 struct tsq_tasklet *tsq;
1163 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1166 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1167 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1171 /* queue this socket to tasklet queue */
1172 local_irq_save(flags);
1173 tsq = this_cpu_ptr(&tsq_tasklet);
1174 empty = list_empty(&tsq->head);
1175 list_add(&tp->tsq_node, &tsq->head);
1177 tasklet_schedule(&tsq->tasklet);
1178 local_irq_restore(flags);
1185 /* Note: Called under soft irq.
1186 * We can call TCP stack right away, unless socket is owned by user.
1188 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1190 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1191 struct sock *sk = (struct sock *)tp;
1193 tcp_tsq_handler(sk);
1196 return HRTIMER_NORESTART;
1199 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1202 struct tcp_sock *tp = tcp_sk(sk);
1204 if (sk->sk_pacing_status != SK_PACING_NONE) {
1205 unsigned long rate = sk->sk_pacing_rate;
1207 /* Original sch_fq does not pace first 10 MSS
1208 * Note that tp->data_segs_out overflows after 2^32 packets,
1209 * this is a minor annoyance.
1211 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1212 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1213 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1215 /* take into account OS jitter */
1216 len_ns -= min_t(u64, len_ns / 2, credit);
1217 tp->tcp_wstamp_ns += len_ns;
1220 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1223 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1224 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1225 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1227 /* This routine actually transmits TCP packets queued in by
1228 * tcp_do_sendmsg(). This is used by both the initial
1229 * transmission and possible later retransmissions.
1230 * All SKB's seen here are completely headerless. It is our
1231 * job to build the TCP header, and pass the packet down to
1232 * IP so it can do the same plus pass the packet off to the
1235 * We are working here with either a clone of the original
1236 * SKB, or a fresh unique copy made by the retransmit engine.
1238 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1239 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1241 const struct inet_connection_sock *icsk = inet_csk(sk);
1242 struct inet_sock *inet;
1243 struct tcp_sock *tp;
1244 struct tcp_skb_cb *tcb;
1245 struct tcp_out_options opts;
1246 unsigned int tcp_options_size, tcp_header_size;
1247 struct sk_buff *oskb = NULL;
1248 struct tcp_md5sig_key *md5;
1253 BUG_ON(!skb || !tcp_skb_pcount(skb));
1255 prior_wstamp = tp->tcp_wstamp_ns;
1256 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1257 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1261 tcp_skb_tsorted_save(oskb) {
1262 if (unlikely(skb_cloned(oskb)))
1263 skb = pskb_copy(oskb, gfp_mask);
1265 skb = skb_clone(oskb, gfp_mask);
1266 } tcp_skb_tsorted_restore(oskb);
1270 /* retransmit skbs might have a non zero value in skb->dev
1271 * because skb->dev is aliased with skb->rbnode.rb_left
1277 tcb = TCP_SKB_CB(skb);
1278 memset(&opts, 0, sizeof(opts));
1280 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1281 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1283 tcp_options_size = tcp_established_options(sk, skb, &opts,
1285 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1286 * at receiver : This slightly improve GRO performance.
1287 * Note that we do not force the PSH flag for non GSO packets,
1288 * because they might be sent under high congestion events,
1289 * and in this case it is better to delay the delivery of 1-MSS
1290 * packets and thus the corresponding ACK packet that would
1291 * release the following packet.
1293 if (tcp_skb_pcount(skb) > 1)
1294 tcb->tcp_flags |= TCPHDR_PSH;
1296 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1298 /* if no packet is in qdisc/device queue, then allow XPS to select
1299 * another queue. We can be called from tcp_tsq_handler()
1300 * which holds one reference to sk.
1302 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1303 * One way to get this would be to set skb->truesize = 2 on them.
1305 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1307 /* If we had to use memory reserve to allocate this skb,
1308 * this might cause drops if packet is looped back :
1309 * Other socket might not have SOCK_MEMALLOC.
1310 * Packets not looped back do not care about pfmemalloc.
1312 skb->pfmemalloc = 0;
1314 skb_push(skb, tcp_header_size);
1315 skb_reset_transport_header(skb);
1319 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1320 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1322 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1324 /* Build TCP header and checksum it. */
1325 th = (struct tcphdr *)skb->data;
1326 th->source = inet->inet_sport;
1327 th->dest = inet->inet_dport;
1328 th->seq = htonl(tcb->seq);
1329 th->ack_seq = htonl(rcv_nxt);
1330 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1336 /* The urg_mode check is necessary during a below snd_una win probe */
1337 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1338 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1339 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1341 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1342 th->urg_ptr = htons(0xFFFF);
1347 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1348 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1349 th->window = htons(tcp_select_window(sk));
1350 tcp_ecn_send(sk, skb, th, tcp_header_size);
1352 /* RFC1323: The window in SYN & SYN/ACK segments
1355 th->window = htons(min(tp->rcv_wnd, 65535U));
1358 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1360 #ifdef CONFIG_TCP_MD5SIG
1361 /* Calculate the MD5 hash, as we have all we need now */
1364 tp->af_specific->calc_md5_hash(opts.hash_location,
1369 /* BPF prog is the last one writing header option */
1370 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1372 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1373 tcp_v6_send_check, tcp_v4_send_check,
1376 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1377 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1379 if (skb->len != tcp_header_size) {
1380 tcp_event_data_sent(tp, sk);
1381 tp->data_segs_out += tcp_skb_pcount(skb);
1382 tp->bytes_sent += skb->len - tcp_header_size;
1385 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1386 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1387 tcp_skb_pcount(skb));
1389 tp->segs_out += tcp_skb_pcount(skb);
1390 skb_set_hash_from_sk(skb, sk);
1391 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1392 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1393 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1395 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1397 /* Cleanup our debris for IP stacks */
1398 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1399 sizeof(struct inet6_skb_parm)));
1401 tcp_add_tx_delay(skb, tp);
1403 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1404 inet6_csk_xmit, ip_queue_xmit,
1405 sk, skb, &inet->cork.fl);
1407 if (unlikely(err > 0)) {
1409 err = net_xmit_eval(err);
1412 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1413 tcp_rate_skb_sent(sk, oskb);
1418 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1421 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1422 tcp_sk(sk)->rcv_nxt);
1425 /* This routine just queues the buffer for sending.
1427 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1428 * otherwise socket can stall.
1430 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1432 struct tcp_sock *tp = tcp_sk(sk);
1434 /* Advance write_seq and place onto the write_queue. */
1435 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1436 __skb_header_release(skb);
1437 tcp_add_write_queue_tail(sk, skb);
1438 sk_wmem_queued_add(sk, skb->truesize);
1439 sk_mem_charge(sk, skb->truesize);
1442 /* Initialize TSO segments for a packet. */
1443 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1445 if (skb->len <= mss_now) {
1446 /* Avoid the costly divide in the normal
1449 tcp_skb_pcount_set(skb, 1);
1450 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1452 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1453 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1457 /* Pcount in the middle of the write queue got changed, we need to do various
1458 * tweaks to fix counters
1460 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1462 struct tcp_sock *tp = tcp_sk(sk);
1464 tp->packets_out -= decr;
1466 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1467 tp->sacked_out -= decr;
1468 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1469 tp->retrans_out -= decr;
1470 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1471 tp->lost_out -= decr;
1473 /* Reno case is special. Sigh... */
1474 if (tcp_is_reno(tp) && decr > 0)
1475 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1477 if (tp->lost_skb_hint &&
1478 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1479 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1480 tp->lost_cnt_hint -= decr;
1482 tcp_verify_left_out(tp);
1485 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1487 return TCP_SKB_CB(skb)->txstamp_ack ||
1488 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1491 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1493 struct skb_shared_info *shinfo = skb_shinfo(skb);
1495 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1496 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1497 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1498 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1500 shinfo->tx_flags &= ~tsflags;
1501 shinfo2->tx_flags |= tsflags;
1502 swap(shinfo->tskey, shinfo2->tskey);
1503 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1504 TCP_SKB_CB(skb)->txstamp_ack = 0;
1508 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1510 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1511 TCP_SKB_CB(skb)->eor = 0;
1514 /* Insert buff after skb on the write or rtx queue of sk. */
1515 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1516 struct sk_buff *buff,
1518 enum tcp_queue tcp_queue)
1520 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1521 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1523 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1526 /* Function to create two new TCP segments. Shrinks the given segment
1527 * to the specified size and appends a new segment with the rest of the
1528 * packet to the list. This won't be called frequently, I hope.
1529 * Remember, these are still headerless SKBs at this point.
1531 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1532 struct sk_buff *skb, u32 len,
1533 unsigned int mss_now, gfp_t gfp)
1535 struct tcp_sock *tp = tcp_sk(sk);
1536 struct sk_buff *buff;
1537 int nsize, old_factor;
1542 if (WARN_ON(len > skb->len))
1545 nsize = skb_headlen(skb) - len;
1549 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1550 * We need some allowance to not penalize applications setting small
1552 * Also allow first and last skb in retransmit queue to be split.
1554 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1555 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1556 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1557 skb != tcp_rtx_queue_head(sk) &&
1558 skb != tcp_rtx_queue_tail(sk))) {
1559 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1563 if (skb_unclone_keeptruesize(skb, gfp))
1566 /* Get a new skb... force flag on. */
1567 buff = tcp_stream_alloc_skb(sk, nsize, gfp, true);
1569 return -ENOMEM; /* We'll just try again later. */
1570 skb_copy_decrypted(buff, skb);
1571 mptcp_skb_ext_copy(buff, skb);
1573 sk_wmem_queued_add(sk, buff->truesize);
1574 sk_mem_charge(sk, buff->truesize);
1575 nlen = skb->len - len - nsize;
1576 buff->truesize += nlen;
1577 skb->truesize -= nlen;
1579 /* Correct the sequence numbers. */
1580 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1581 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1582 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1584 /* PSH and FIN should only be set in the second packet. */
1585 flags = TCP_SKB_CB(skb)->tcp_flags;
1586 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1587 TCP_SKB_CB(buff)->tcp_flags = flags;
1588 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1589 tcp_skb_fragment_eor(skb, buff);
1591 skb_split(skb, buff, len);
1593 skb_set_delivery_time(buff, skb->tstamp, true);
1594 tcp_fragment_tstamp(skb, buff);
1596 old_factor = tcp_skb_pcount(skb);
1598 /* Fix up tso_factor for both original and new SKB. */
1599 tcp_set_skb_tso_segs(skb, mss_now);
1600 tcp_set_skb_tso_segs(buff, mss_now);
1602 /* Update delivered info for the new segment */
1603 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1605 /* If this packet has been sent out already, we must
1606 * adjust the various packet counters.
1608 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1609 int diff = old_factor - tcp_skb_pcount(skb) -
1610 tcp_skb_pcount(buff);
1613 tcp_adjust_pcount(sk, skb, diff);
1616 /* Link BUFF into the send queue. */
1617 __skb_header_release(buff);
1618 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1619 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1620 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1625 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1626 * data is not copied, but immediately discarded.
1628 static int __pskb_trim_head(struct sk_buff *skb, int len)
1630 struct skb_shared_info *shinfo;
1633 eat = min_t(int, len, skb_headlen(skb));
1635 __skb_pull(skb, eat);
1642 shinfo = skb_shinfo(skb);
1643 for (i = 0; i < shinfo->nr_frags; i++) {
1644 int size = skb_frag_size(&shinfo->frags[i]);
1647 skb_frag_unref(skb, i);
1650 shinfo->frags[k] = shinfo->frags[i];
1652 skb_frag_off_add(&shinfo->frags[k], eat);
1653 skb_frag_size_sub(&shinfo->frags[k], eat);
1659 shinfo->nr_frags = k;
1661 skb->data_len -= len;
1662 skb->len = skb->data_len;
1666 /* Remove acked data from a packet in the transmit queue. */
1667 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1671 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1674 delta_truesize = __pskb_trim_head(skb, len);
1676 TCP_SKB_CB(skb)->seq += len;
1678 if (delta_truesize) {
1679 skb->truesize -= delta_truesize;
1680 sk_wmem_queued_add(sk, -delta_truesize);
1681 if (!skb_zcopy_pure(skb))
1682 sk_mem_uncharge(sk, delta_truesize);
1685 /* Any change of skb->len requires recalculation of tso factor. */
1686 if (tcp_skb_pcount(skb) > 1)
1687 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1692 /* Calculate MSS not accounting any TCP options. */
1693 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1695 const struct tcp_sock *tp = tcp_sk(sk);
1696 const struct inet_connection_sock *icsk = inet_csk(sk);
1699 /* Calculate base mss without TCP options:
1700 It is MMS_S - sizeof(tcphdr) of rfc1122
1702 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1704 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1705 if (icsk->icsk_af_ops->net_frag_header_len) {
1706 const struct dst_entry *dst = __sk_dst_get(sk);
1708 if (dst && dst_allfrag(dst))
1709 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1712 /* Clamp it (mss_clamp does not include tcp options) */
1713 if (mss_now > tp->rx_opt.mss_clamp)
1714 mss_now = tp->rx_opt.mss_clamp;
1716 /* Now subtract optional transport overhead */
1717 mss_now -= icsk->icsk_ext_hdr_len;
1719 /* Then reserve room for full set of TCP options and 8 bytes of data */
1720 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1724 /* Calculate MSS. Not accounting for SACKs here. */
1725 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1727 /* Subtract TCP options size, not including SACKs */
1728 return __tcp_mtu_to_mss(sk, pmtu) -
1729 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1731 EXPORT_SYMBOL(tcp_mtu_to_mss);
1733 /* Inverse of above */
1734 int tcp_mss_to_mtu(struct sock *sk, int mss)
1736 const struct tcp_sock *tp = tcp_sk(sk);
1737 const struct inet_connection_sock *icsk = inet_csk(sk);
1741 tp->tcp_header_len +
1742 icsk->icsk_ext_hdr_len +
1743 icsk->icsk_af_ops->net_header_len;
1745 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1746 if (icsk->icsk_af_ops->net_frag_header_len) {
1747 const struct dst_entry *dst = __sk_dst_get(sk);
1749 if (dst && dst_allfrag(dst))
1750 mtu += icsk->icsk_af_ops->net_frag_header_len;
1754 EXPORT_SYMBOL(tcp_mss_to_mtu);
1756 /* MTU probing init per socket */
1757 void tcp_mtup_init(struct sock *sk)
1759 struct tcp_sock *tp = tcp_sk(sk);
1760 struct inet_connection_sock *icsk = inet_csk(sk);
1761 struct net *net = sock_net(sk);
1763 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1764 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1765 icsk->icsk_af_ops->net_header_len;
1766 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1767 icsk->icsk_mtup.probe_size = 0;
1768 if (icsk->icsk_mtup.enabled)
1769 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1771 EXPORT_SYMBOL(tcp_mtup_init);
1773 /* This function synchronize snd mss to current pmtu/exthdr set.
1775 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1776 for TCP options, but includes only bare TCP header.
1778 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1779 It is minimum of user_mss and mss received with SYN.
1780 It also does not include TCP options.
1782 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1784 tp->mss_cache is current effective sending mss, including
1785 all tcp options except for SACKs. It is evaluated,
1786 taking into account current pmtu, but never exceeds
1787 tp->rx_opt.mss_clamp.
1789 NOTE1. rfc1122 clearly states that advertised MSS
1790 DOES NOT include either tcp or ip options.
1792 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1793 are READ ONLY outside this function. --ANK (980731)
1795 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1797 struct tcp_sock *tp = tcp_sk(sk);
1798 struct inet_connection_sock *icsk = inet_csk(sk);
1801 if (icsk->icsk_mtup.search_high > pmtu)
1802 icsk->icsk_mtup.search_high = pmtu;
1804 mss_now = tcp_mtu_to_mss(sk, pmtu);
1805 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1807 /* And store cached results */
1808 icsk->icsk_pmtu_cookie = pmtu;
1809 if (icsk->icsk_mtup.enabled)
1810 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1811 tp->mss_cache = mss_now;
1815 EXPORT_SYMBOL(tcp_sync_mss);
1817 /* Compute the current effective MSS, taking SACKs and IP options,
1818 * and even PMTU discovery events into account.
1820 unsigned int tcp_current_mss(struct sock *sk)
1822 const struct tcp_sock *tp = tcp_sk(sk);
1823 const struct dst_entry *dst = __sk_dst_get(sk);
1825 unsigned int header_len;
1826 struct tcp_out_options opts;
1827 struct tcp_md5sig_key *md5;
1829 mss_now = tp->mss_cache;
1832 u32 mtu = dst_mtu(dst);
1833 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1834 mss_now = tcp_sync_mss(sk, mtu);
1837 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1838 sizeof(struct tcphdr);
1839 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1840 * some common options. If this is an odd packet (because we have SACK
1841 * blocks etc) then our calculated header_len will be different, and
1842 * we have to adjust mss_now correspondingly */
1843 if (header_len != tp->tcp_header_len) {
1844 int delta = (int) header_len - tp->tcp_header_len;
1851 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1852 * As additional protections, we do not touch cwnd in retransmission phases,
1853 * and if application hit its sndbuf limit recently.
1855 static void tcp_cwnd_application_limited(struct sock *sk)
1857 struct tcp_sock *tp = tcp_sk(sk);
1859 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1860 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1861 /* Limited by application or receiver window. */
1862 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1863 u32 win_used = max(tp->snd_cwnd_used, init_win);
1864 if (win_used < tp->snd_cwnd) {
1865 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1866 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1868 tp->snd_cwnd_used = 0;
1870 tp->snd_cwnd_stamp = tcp_jiffies32;
1873 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1875 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1876 struct tcp_sock *tp = tcp_sk(sk);
1878 /* Track the maximum number of outstanding packets in each
1879 * window, and remember whether we were cwnd-limited then.
1881 if (!before(tp->snd_una, tp->max_packets_seq) ||
1882 tp->packets_out > tp->max_packets_out ||
1884 tp->max_packets_out = tp->packets_out;
1885 tp->max_packets_seq = tp->snd_nxt;
1886 tp->is_cwnd_limited = is_cwnd_limited;
1889 if (tcp_is_cwnd_limited(sk)) {
1890 /* Network is feed fully. */
1891 tp->snd_cwnd_used = 0;
1892 tp->snd_cwnd_stamp = tcp_jiffies32;
1894 /* Network starves. */
1895 if (tp->packets_out > tp->snd_cwnd_used)
1896 tp->snd_cwnd_used = tp->packets_out;
1898 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1899 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1900 !ca_ops->cong_control)
1901 tcp_cwnd_application_limited(sk);
1903 /* The following conditions together indicate the starvation
1904 * is caused by insufficient sender buffer:
1905 * 1) just sent some data (see tcp_write_xmit)
1906 * 2) not cwnd limited (this else condition)
1907 * 3) no more data to send (tcp_write_queue_empty())
1908 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1910 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1911 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1912 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1913 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1917 /* Minshall's variant of the Nagle send check. */
1918 static bool tcp_minshall_check(const struct tcp_sock *tp)
1920 return after(tp->snd_sml, tp->snd_una) &&
1921 !after(tp->snd_sml, tp->snd_nxt);
1924 /* Update snd_sml if this skb is under mss
1925 * Note that a TSO packet might end with a sub-mss segment
1926 * The test is really :
1927 * if ((skb->len % mss) != 0)
1928 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1929 * But we can avoid doing the divide again given we already have
1930 * skb_pcount = skb->len / mss_now
1932 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1933 const struct sk_buff *skb)
1935 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1936 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1939 /* Return false, if packet can be sent now without violation Nagle's rules:
1940 * 1. It is full sized. (provided by caller in %partial bool)
1941 * 2. Or it contains FIN. (already checked by caller)
1942 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1943 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1944 * With Minshall's modification: all sent small packets are ACKed.
1946 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1950 ((nonagle & TCP_NAGLE_CORK) ||
1951 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1954 /* Return how many segs we'd like on a TSO packet,
1955 * depending on current pacing rate, and how close the peer is.
1958 * - For close peers, we rather send bigger packets to reduce
1959 * cpu costs, because occasional losses will be repaired fast.
1960 * - For long distance/rtt flows, we would like to get ACK clocking
1961 * with 1 ACK per ms.
1963 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1964 * in bigger TSO bursts. We we cut the RTT-based allowance in half
1965 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1966 * is below 1500 bytes after 6 * ~500 usec = 3ms.
1968 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1971 unsigned long bytes;
1974 bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1976 r = tcp_min_rtt(tcp_sk(sk)) >> sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log;
1977 if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1978 bytes += sk->sk_gso_max_size >> r;
1980 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1982 return max_t(u32, bytes / mss_now, min_tso_segs);
1985 /* Return the number of segments we want in the skb we are transmitting.
1986 * See if congestion control module wants to decide; otherwise, autosize.
1988 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1990 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1991 u32 min_tso, tso_segs;
1993 min_tso = ca_ops->min_tso_segs ?
1994 ca_ops->min_tso_segs(sk) :
1995 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1997 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1998 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2001 /* Returns the portion of skb which can be sent right away */
2002 static unsigned int tcp_mss_split_point(const struct sock *sk,
2003 const struct sk_buff *skb,
2004 unsigned int mss_now,
2005 unsigned int max_segs,
2008 const struct tcp_sock *tp = tcp_sk(sk);
2009 u32 partial, needed, window, max_len;
2011 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2012 max_len = mss_now * max_segs;
2014 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2017 needed = min(skb->len, window);
2019 if (max_len <= needed)
2022 partial = needed % mss_now;
2023 /* If last segment is not a full MSS, check if Nagle rules allow us
2024 * to include this last segment in this skb.
2025 * Otherwise, we'll split the skb at last MSS boundary
2027 if (tcp_nagle_check(partial != 0, tp, nonagle))
2028 return needed - partial;
2033 /* Can at least one segment of SKB be sent right now, according to the
2034 * congestion window rules? If so, return how many segments are allowed.
2036 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2037 const struct sk_buff *skb)
2039 u32 in_flight, cwnd, halfcwnd;
2041 /* Don't be strict about the congestion window for the final FIN. */
2042 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2043 tcp_skb_pcount(skb) == 1)
2046 in_flight = tcp_packets_in_flight(tp);
2047 cwnd = tp->snd_cwnd;
2048 if (in_flight >= cwnd)
2051 /* For better scheduling, ensure we have at least
2052 * 2 GSO packets in flight.
2054 halfcwnd = max(cwnd >> 1, 1U);
2055 return min(halfcwnd, cwnd - in_flight);
2058 /* Initialize TSO state of a skb.
2059 * This must be invoked the first time we consider transmitting
2060 * SKB onto the wire.
2062 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2064 int tso_segs = tcp_skb_pcount(skb);
2066 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2067 tcp_set_skb_tso_segs(skb, mss_now);
2068 tso_segs = tcp_skb_pcount(skb);
2074 /* Return true if the Nagle test allows this packet to be
2077 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2078 unsigned int cur_mss, int nonagle)
2080 /* Nagle rule does not apply to frames, which sit in the middle of the
2081 * write_queue (they have no chances to get new data).
2083 * This is implemented in the callers, where they modify the 'nonagle'
2084 * argument based upon the location of SKB in the send queue.
2086 if (nonagle & TCP_NAGLE_PUSH)
2089 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2090 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2093 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2099 /* Does at least the first segment of SKB fit into the send window? */
2100 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2101 const struct sk_buff *skb,
2102 unsigned int cur_mss)
2104 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2106 if (skb->len > cur_mss)
2107 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2109 return !after(end_seq, tcp_wnd_end(tp));
2112 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2113 * which is put after SKB on the list. It is very much like
2114 * tcp_fragment() except that it may make several kinds of assumptions
2115 * in order to speed up the splitting operation. In particular, we
2116 * know that all the data is in scatter-gather pages, and that the
2117 * packet has never been sent out before (and thus is not cloned).
2119 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2120 unsigned int mss_now, gfp_t gfp)
2122 int nlen = skb->len - len;
2123 struct sk_buff *buff;
2126 /* All of a TSO frame must be composed of paged data. */
2127 if (skb->len != skb->data_len)
2128 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2129 skb, len, mss_now, gfp);
2131 buff = tcp_stream_alloc_skb(sk, 0, gfp, true);
2132 if (unlikely(!buff))
2134 skb_copy_decrypted(buff, skb);
2135 mptcp_skb_ext_copy(buff, skb);
2137 sk_wmem_queued_add(sk, buff->truesize);
2138 sk_mem_charge(sk, buff->truesize);
2139 buff->truesize += nlen;
2140 skb->truesize -= nlen;
2142 /* Correct the sequence numbers. */
2143 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2144 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2145 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2147 /* PSH and FIN should only be set in the second packet. */
2148 flags = TCP_SKB_CB(skb)->tcp_flags;
2149 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2150 TCP_SKB_CB(buff)->tcp_flags = flags;
2152 tcp_skb_fragment_eor(skb, buff);
2154 skb_split(skb, buff, len);
2155 tcp_fragment_tstamp(skb, buff);
2157 /* Fix up tso_factor for both original and new SKB. */
2158 tcp_set_skb_tso_segs(skb, mss_now);
2159 tcp_set_skb_tso_segs(buff, mss_now);
2161 /* Link BUFF into the send queue. */
2162 __skb_header_release(buff);
2163 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2168 /* Try to defer sending, if possible, in order to minimize the amount
2169 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2171 * This algorithm is from John Heffner.
2173 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2174 bool *is_cwnd_limited,
2175 bool *is_rwnd_limited,
2178 const struct inet_connection_sock *icsk = inet_csk(sk);
2179 u32 send_win, cong_win, limit, in_flight;
2180 struct tcp_sock *tp = tcp_sk(sk);
2181 struct sk_buff *head;
2185 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2188 /* Avoid bursty behavior by allowing defer
2189 * only if the last write was recent (1 ms).
2190 * Note that tp->tcp_wstamp_ns can be in the future if we have
2191 * packets waiting in a qdisc or device for EDT delivery.
2193 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2197 in_flight = tcp_packets_in_flight(tp);
2199 BUG_ON(tcp_skb_pcount(skb) <= 1);
2200 BUG_ON(tp->snd_cwnd <= in_flight);
2202 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2204 /* From in_flight test above, we know that cwnd > in_flight. */
2205 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2207 limit = min(send_win, cong_win);
2209 /* If a full-sized TSO skb can be sent, do it. */
2210 if (limit >= max_segs * tp->mss_cache)
2213 /* Middle in queue won't get any more data, full sendable already? */
2214 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2217 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2219 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2221 /* If at least some fraction of a window is available,
2224 chunk /= win_divisor;
2228 /* Different approach, try not to defer past a single
2229 * ACK. Receiver should ACK every other full sized
2230 * frame, so if we have space for more than 3 frames
2233 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2237 /* TODO : use tsorted_sent_queue ? */
2238 head = tcp_rtx_queue_head(sk);
2241 delta = tp->tcp_clock_cache - head->tstamp;
2242 /* If next ACK is likely to come too late (half srtt), do not defer */
2243 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2246 /* Ok, it looks like it is advisable to defer.
2247 * Three cases are tracked :
2248 * 1) We are cwnd-limited
2249 * 2) We are rwnd-limited
2250 * 3) We are application limited.
2252 if (cong_win < send_win) {
2253 if (cong_win <= skb->len) {
2254 *is_cwnd_limited = true;
2258 if (send_win <= skb->len) {
2259 *is_rwnd_limited = true;
2264 /* If this packet won't get more data, do not wait. */
2265 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2266 TCP_SKB_CB(skb)->eor)
2275 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2277 struct inet_connection_sock *icsk = inet_csk(sk);
2278 struct tcp_sock *tp = tcp_sk(sk);
2279 struct net *net = sock_net(sk);
2283 interval = net->ipv4.sysctl_tcp_probe_interval;
2284 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2285 if (unlikely(delta >= interval * HZ)) {
2286 int mss = tcp_current_mss(sk);
2288 /* Update current search range */
2289 icsk->icsk_mtup.probe_size = 0;
2290 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2291 sizeof(struct tcphdr) +
2292 icsk->icsk_af_ops->net_header_len;
2293 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2295 /* Update probe time stamp */
2296 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2300 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2302 struct sk_buff *skb, *next;
2304 skb = tcp_send_head(sk);
2305 tcp_for_write_queue_from_safe(skb, next, sk) {
2306 if (len <= skb->len)
2309 if (unlikely(TCP_SKB_CB(skb)->eor) ||
2310 tcp_has_tx_tstamp(skb) ||
2311 !skb_pure_zcopy_same(skb, next))
2320 /* Create a new MTU probe if we are ready.
2321 * MTU probe is regularly attempting to increase the path MTU by
2322 * deliberately sending larger packets. This discovers routing
2323 * changes resulting in larger path MTUs.
2325 * Returns 0 if we should wait to probe (no cwnd available),
2326 * 1 if a probe was sent,
2329 static int tcp_mtu_probe(struct sock *sk)
2331 struct inet_connection_sock *icsk = inet_csk(sk);
2332 struct tcp_sock *tp = tcp_sk(sk);
2333 struct sk_buff *skb, *nskb, *next;
2334 struct net *net = sock_net(sk);
2341 /* Not currently probing/verifying,
2343 * have enough cwnd, and
2344 * not SACKing (the variable headers throw things off)
2346 if (likely(!icsk->icsk_mtup.enabled ||
2347 icsk->icsk_mtup.probe_size ||
2348 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2349 tp->snd_cwnd < 11 ||
2350 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2353 /* Use binary search for probe_size between tcp_mss_base,
2354 * and current mss_clamp. if (search_high - search_low)
2355 * smaller than a threshold, backoff from probing.
2357 mss_now = tcp_current_mss(sk);
2358 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2359 icsk->icsk_mtup.search_low) >> 1);
2360 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2361 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2362 /* When misfortune happens, we are reprobing actively,
2363 * and then reprobe timer has expired. We stick with current
2364 * probing process by not resetting search range to its orignal.
2366 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2367 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2368 /* Check whether enough time has elaplased for
2369 * another round of probing.
2371 tcp_mtu_check_reprobe(sk);
2375 /* Have enough data in the send queue to probe? */
2376 if (tp->write_seq - tp->snd_nxt < size_needed)
2379 if (tp->snd_wnd < size_needed)
2381 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2384 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2385 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2386 if (!tcp_packets_in_flight(tp))
2392 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2395 /* We're allowed to probe. Build it now. */
2396 nskb = tcp_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2399 sk_wmem_queued_add(sk, nskb->truesize);
2400 sk_mem_charge(sk, nskb->truesize);
2402 skb = tcp_send_head(sk);
2403 skb_copy_decrypted(nskb, skb);
2404 mptcp_skb_ext_copy(nskb, skb);
2406 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2407 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2408 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2410 tcp_insert_write_queue_before(nskb, skb, sk);
2411 tcp_highest_sack_replace(sk, skb, nskb);
2414 tcp_for_write_queue_from_safe(skb, next, sk) {
2415 copy = min_t(int, skb->len, probe_size - len);
2416 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2418 if (skb->len <= copy) {
2419 /* We've eaten all the data from this skb.
2421 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2422 /* If this is the last SKB we copy and eor is set
2423 * we need to propagate it to the new skb.
2425 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2426 tcp_skb_collapse_tstamp(nskb, skb);
2427 tcp_unlink_write_queue(skb, sk);
2428 tcp_wmem_free_skb(sk, skb);
2430 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2431 ~(TCPHDR_FIN|TCPHDR_PSH);
2432 if (!skb_shinfo(skb)->nr_frags) {
2433 skb_pull(skb, copy);
2435 __pskb_trim_head(skb, copy);
2436 tcp_set_skb_tso_segs(skb, mss_now);
2438 TCP_SKB_CB(skb)->seq += copy;
2443 if (len >= probe_size)
2446 tcp_init_tso_segs(nskb, nskb->len);
2448 /* We're ready to send. If this fails, the probe will
2449 * be resegmented into mss-sized pieces by tcp_write_xmit().
2451 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2452 /* Decrement cwnd here because we are sending
2453 * effectively two packets. */
2455 tcp_event_new_data_sent(sk, nskb);
2457 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2458 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2459 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2467 static bool tcp_pacing_check(struct sock *sk)
2469 struct tcp_sock *tp = tcp_sk(sk);
2471 if (!tcp_needs_internal_pacing(sk))
2474 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2477 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2478 hrtimer_start(&tp->pacing_timer,
2479 ns_to_ktime(tp->tcp_wstamp_ns),
2480 HRTIMER_MODE_ABS_PINNED_SOFT);
2486 /* TCP Small Queues :
2487 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2488 * (These limits are doubled for retransmits)
2490 * - better RTT estimation and ACK scheduling
2493 * Alas, some drivers / subsystems require a fair amount
2494 * of queued bytes to ensure line rate.
2495 * One example is wifi aggregation (802.11 AMPDU)
2497 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2498 unsigned int factor)
2500 unsigned long limit;
2502 limit = max_t(unsigned long,
2504 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2505 if (sk->sk_pacing_status == SK_PACING_NONE)
2506 limit = min_t(unsigned long, limit,
2507 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2510 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2511 tcp_sk(sk)->tcp_tx_delay) {
2512 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2514 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2515 * approximate our needs assuming an ~100% skb->truesize overhead.
2516 * USEC_PER_SEC is approximated by 2^20.
2517 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2519 extra_bytes >>= (20 - 1);
2520 limit += extra_bytes;
2522 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2523 /* Always send skb if rtx queue is empty.
2524 * No need to wait for TX completion to call us back,
2525 * after softirq/tasklet schedule.
2526 * This helps when TX completions are delayed too much.
2528 if (tcp_rtx_queue_empty(sk))
2531 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2532 /* It is possible TX completion already happened
2533 * before we set TSQ_THROTTLED, so we must
2534 * test again the condition.
2536 smp_mb__after_atomic();
2537 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2543 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2545 const u32 now = tcp_jiffies32;
2546 enum tcp_chrono old = tp->chrono_type;
2548 if (old > TCP_CHRONO_UNSPEC)
2549 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2550 tp->chrono_start = now;
2551 tp->chrono_type = new;
2554 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2556 struct tcp_sock *tp = tcp_sk(sk);
2558 /* If there are multiple conditions worthy of tracking in a
2559 * chronograph then the highest priority enum takes precedence
2560 * over the other conditions. So that if something "more interesting"
2561 * starts happening, stop the previous chrono and start a new one.
2563 if (type > tp->chrono_type)
2564 tcp_chrono_set(tp, type);
2567 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2569 struct tcp_sock *tp = tcp_sk(sk);
2572 /* There are multiple conditions worthy of tracking in a
2573 * chronograph, so that the highest priority enum takes
2574 * precedence over the other conditions (see tcp_chrono_start).
2575 * If a condition stops, we only stop chrono tracking if
2576 * it's the "most interesting" or current chrono we are
2577 * tracking and starts busy chrono if we have pending data.
2579 if (tcp_rtx_and_write_queues_empty(sk))
2580 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2581 else if (type == tp->chrono_type)
2582 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2585 /* This routine writes packets to the network. It advances the
2586 * send_head. This happens as incoming acks open up the remote
2589 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2590 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2591 * account rare use of URG, this is not a big flaw.
2593 * Send at most one packet when push_one > 0. Temporarily ignore
2594 * cwnd limit to force at most one packet out when push_one == 2.
2596 * Returns true, if no segments are in flight and we have queued segments,
2597 * but cannot send anything now because of SWS or another problem.
2599 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2600 int push_one, gfp_t gfp)
2602 struct tcp_sock *tp = tcp_sk(sk);
2603 struct sk_buff *skb;
2604 unsigned int tso_segs, sent_pkts;
2607 bool is_cwnd_limited = false, is_rwnd_limited = false;
2612 tcp_mstamp_refresh(tp);
2614 /* Do MTU probing. */
2615 result = tcp_mtu_probe(sk);
2618 } else if (result > 0) {
2623 max_segs = tcp_tso_segs(sk, mss_now);
2624 while ((skb = tcp_send_head(sk))) {
2627 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2628 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2629 tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2630 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2631 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2632 tcp_init_tso_segs(skb, mss_now);
2633 goto repair; /* Skip network transmission */
2636 if (tcp_pacing_check(sk))
2639 tso_segs = tcp_init_tso_segs(skb, mss_now);
2642 cwnd_quota = tcp_cwnd_test(tp, skb);
2645 /* Force out a loss probe pkt. */
2651 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2652 is_rwnd_limited = true;
2656 if (tso_segs == 1) {
2657 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2658 (tcp_skb_is_last(sk, skb) ?
2659 nonagle : TCP_NAGLE_PUSH))))
2663 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2664 &is_rwnd_limited, max_segs))
2669 if (tso_segs > 1 && !tcp_urg_mode(tp))
2670 limit = tcp_mss_split_point(sk, skb, mss_now,
2676 if (skb->len > limit &&
2677 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2680 if (tcp_small_queue_check(sk, skb, 0))
2683 /* Argh, we hit an empty skb(), presumably a thread
2684 * is sleeping in sendmsg()/sk_stream_wait_memory().
2685 * We do not want to send a pure-ack packet and have
2686 * a strange looking rtx queue with empty packet(s).
2688 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2691 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2695 /* Advance the send_head. This one is sent out.
2696 * This call will increment packets_out.
2698 tcp_event_new_data_sent(sk, skb);
2700 tcp_minshall_update(tp, mss_now, skb);
2701 sent_pkts += tcp_skb_pcount(skb);
2707 if (is_rwnd_limited)
2708 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2710 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2712 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2713 if (likely(sent_pkts || is_cwnd_limited))
2714 tcp_cwnd_validate(sk, is_cwnd_limited);
2716 if (likely(sent_pkts)) {
2717 if (tcp_in_cwnd_reduction(sk))
2718 tp->prr_out += sent_pkts;
2720 /* Send one loss probe per tail loss episode. */
2722 tcp_schedule_loss_probe(sk, false);
2725 return !tp->packets_out && !tcp_write_queue_empty(sk);
2728 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2730 struct inet_connection_sock *icsk = inet_csk(sk);
2731 struct tcp_sock *tp = tcp_sk(sk);
2732 u32 timeout, rto_delta_us;
2735 /* Don't do any loss probe on a Fast Open connection before 3WHS
2738 if (rcu_access_pointer(tp->fastopen_rsk))
2741 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2742 /* Schedule a loss probe in 2*RTT for SACK capable connections
2743 * not in loss recovery, that are either limited by cwnd or application.
2745 if ((early_retrans != 3 && early_retrans != 4) ||
2746 !tp->packets_out || !tcp_is_sack(tp) ||
2747 (icsk->icsk_ca_state != TCP_CA_Open &&
2748 icsk->icsk_ca_state != TCP_CA_CWR))
2751 /* Probe timeout is 2*rtt. Add minimum RTO to account
2752 * for delayed ack when there's one outstanding packet. If no RTT
2753 * sample is available then probe after TCP_TIMEOUT_INIT.
2756 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2757 if (tp->packets_out == 1)
2758 timeout += TCP_RTO_MIN;
2760 timeout += TCP_TIMEOUT_MIN;
2762 timeout = TCP_TIMEOUT_INIT;
2765 /* If the RTO formula yields an earlier time, then use that time. */
2766 rto_delta_us = advancing_rto ?
2767 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2768 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2769 if (rto_delta_us > 0)
2770 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2772 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2776 /* Thanks to skb fast clones, we can detect if a prior transmit of
2777 * a packet is still in a qdisc or driver queue.
2778 * In this case, there is very little point doing a retransmit !
2780 static bool skb_still_in_host_queue(struct sock *sk,
2781 const struct sk_buff *skb)
2783 if (unlikely(skb_fclone_busy(sk, skb))) {
2784 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2785 smp_mb__after_atomic();
2786 if (skb_fclone_busy(sk, skb)) {
2787 NET_INC_STATS(sock_net(sk),
2788 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2795 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2796 * retransmit the last segment.
2798 void tcp_send_loss_probe(struct sock *sk)
2800 struct tcp_sock *tp = tcp_sk(sk);
2801 struct sk_buff *skb;
2803 int mss = tcp_current_mss(sk);
2805 /* At most one outstanding TLP */
2806 if (tp->tlp_high_seq)
2809 tp->tlp_retrans = 0;
2810 skb = tcp_send_head(sk);
2811 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2812 pcount = tp->packets_out;
2813 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2814 if (tp->packets_out > pcount)
2818 skb = skb_rb_last(&sk->tcp_rtx_queue);
2819 if (unlikely(!skb)) {
2820 WARN_ONCE(tp->packets_out,
2821 "invalid inflight: %u state %u cwnd %u mss %d\n",
2822 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2823 inet_csk(sk)->icsk_pending = 0;
2827 if (skb_still_in_host_queue(sk, skb))
2830 pcount = tcp_skb_pcount(skb);
2831 if (WARN_ON(!pcount))
2834 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2835 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2836 (pcount - 1) * mss, mss,
2839 skb = skb_rb_next(skb);
2842 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2845 if (__tcp_retransmit_skb(sk, skb, 1))
2848 tp->tlp_retrans = 1;
2851 /* Record snd_nxt for loss detection. */
2852 tp->tlp_high_seq = tp->snd_nxt;
2854 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2855 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2856 inet_csk(sk)->icsk_pending = 0;
2861 /* Push out any pending frames which were held back due to
2862 * TCP_CORK or attempt at coalescing tiny packets.
2863 * The socket must be locked by the caller.
2865 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2868 /* If we are closed, the bytes will have to remain here.
2869 * In time closedown will finish, we empty the write queue and
2870 * all will be happy.
2872 if (unlikely(sk->sk_state == TCP_CLOSE))
2875 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2876 sk_gfp_mask(sk, GFP_ATOMIC)))
2877 tcp_check_probe_timer(sk);
2880 /* Send _single_ skb sitting at the send head. This function requires
2881 * true push pending frames to setup probe timer etc.
2883 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2885 struct sk_buff *skb = tcp_send_head(sk);
2887 BUG_ON(!skb || skb->len < mss_now);
2889 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2892 /* This function returns the amount that we can raise the
2893 * usable window based on the following constraints
2895 * 1. The window can never be shrunk once it is offered (RFC 793)
2896 * 2. We limit memory per socket
2899 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2900 * RECV.NEXT + RCV.WIN fixed until:
2901 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2903 * i.e. don't raise the right edge of the window until you can raise
2904 * it at least MSS bytes.
2906 * Unfortunately, the recommended algorithm breaks header prediction,
2907 * since header prediction assumes th->window stays fixed.
2909 * Strictly speaking, keeping th->window fixed violates the receiver
2910 * side SWS prevention criteria. The problem is that under this rule
2911 * a stream of single byte packets will cause the right side of the
2912 * window to always advance by a single byte.
2914 * Of course, if the sender implements sender side SWS prevention
2915 * then this will not be a problem.
2917 * BSD seems to make the following compromise:
2919 * If the free space is less than the 1/4 of the maximum
2920 * space available and the free space is less than 1/2 mss,
2921 * then set the window to 0.
2922 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2923 * Otherwise, just prevent the window from shrinking
2924 * and from being larger than the largest representable value.
2926 * This prevents incremental opening of the window in the regime
2927 * where TCP is limited by the speed of the reader side taking
2928 * data out of the TCP receive queue. It does nothing about
2929 * those cases where the window is constrained on the sender side
2930 * because the pipeline is full.
2932 * BSD also seems to "accidentally" limit itself to windows that are a
2933 * multiple of MSS, at least until the free space gets quite small.
2934 * This would appear to be a side effect of the mbuf implementation.
2935 * Combining these two algorithms results in the observed behavior
2936 * of having a fixed window size at almost all times.
2938 * Below we obtain similar behavior by forcing the offered window to
2939 * a multiple of the mss when it is feasible to do so.
2941 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2942 * Regular options like TIMESTAMP are taken into account.
2944 u32 __tcp_select_window(struct sock *sk)
2946 struct inet_connection_sock *icsk = inet_csk(sk);
2947 struct tcp_sock *tp = tcp_sk(sk);
2948 /* MSS for the peer's data. Previous versions used mss_clamp
2949 * here. I don't know if the value based on our guesses
2950 * of peer's MSS is better for the performance. It's more correct
2951 * but may be worse for the performance because of rcv_mss
2952 * fluctuations. --SAW 1998/11/1
2954 int mss = icsk->icsk_ack.rcv_mss;
2955 int free_space = tcp_space(sk);
2956 int allowed_space = tcp_full_space(sk);
2957 int full_space, window;
2959 if (sk_is_mptcp(sk))
2960 mptcp_space(sk, &free_space, &allowed_space);
2962 full_space = min_t(int, tp->window_clamp, allowed_space);
2964 if (unlikely(mss > full_space)) {
2969 if (free_space < (full_space >> 1)) {
2970 icsk->icsk_ack.quick = 0;
2972 if (tcp_under_memory_pressure(sk))
2973 tcp_adjust_rcv_ssthresh(sk);
2975 /* free_space might become our new window, make sure we don't
2976 * increase it due to wscale.
2978 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2980 /* if free space is less than mss estimate, or is below 1/16th
2981 * of the maximum allowed, try to move to zero-window, else
2982 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2983 * new incoming data is dropped due to memory limits.
2984 * With large window, mss test triggers way too late in order
2985 * to announce zero window in time before rmem limit kicks in.
2987 if (free_space < (allowed_space >> 4) || free_space < mss)
2991 if (free_space > tp->rcv_ssthresh)
2992 free_space = tp->rcv_ssthresh;
2994 /* Don't do rounding if we are using window scaling, since the
2995 * scaled window will not line up with the MSS boundary anyway.
2997 if (tp->rx_opt.rcv_wscale) {
2998 window = free_space;
3000 /* Advertise enough space so that it won't get scaled away.
3001 * Import case: prevent zero window announcement if
3002 * 1<<rcv_wscale > mss.
3004 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3006 window = tp->rcv_wnd;
3007 /* Get the largest window that is a nice multiple of mss.
3008 * Window clamp already applied above.
3009 * If our current window offering is within 1 mss of the
3010 * free space we just keep it. This prevents the divide
3011 * and multiply from happening most of the time.
3012 * We also don't do any window rounding when the free space
3015 if (window <= free_space - mss || window > free_space)
3016 window = rounddown(free_space, mss);
3017 else if (mss == full_space &&
3018 free_space > window + (full_space >> 1))
3019 window = free_space;
3025 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3026 const struct sk_buff *next_skb)
3028 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3029 const struct skb_shared_info *next_shinfo =
3030 skb_shinfo(next_skb);
3031 struct skb_shared_info *shinfo = skb_shinfo(skb);
3033 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3034 shinfo->tskey = next_shinfo->tskey;
3035 TCP_SKB_CB(skb)->txstamp_ack |=
3036 TCP_SKB_CB(next_skb)->txstamp_ack;
3040 /* Collapses two adjacent SKB's during retransmission. */
3041 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3043 struct tcp_sock *tp = tcp_sk(sk);
3044 struct sk_buff *next_skb = skb_rb_next(skb);
3047 next_skb_size = next_skb->len;
3049 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3051 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3054 tcp_highest_sack_replace(sk, next_skb, skb);
3056 /* Update sequence range on original skb. */
3057 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3059 /* Merge over control information. This moves PSH/FIN etc. over */
3060 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3062 /* All done, get rid of second SKB and account for it so
3063 * packet counting does not break.
3065 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3066 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3068 /* changed transmit queue under us so clear hints */
3069 tcp_clear_retrans_hints_partial(tp);
3070 if (next_skb == tp->retransmit_skb_hint)
3071 tp->retransmit_skb_hint = skb;
3073 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3075 tcp_skb_collapse_tstamp(skb, next_skb);
3077 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3081 /* Check if coalescing SKBs is legal. */
3082 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3084 if (tcp_skb_pcount(skb) > 1)
3086 if (skb_cloned(skb))
3088 /* Some heuristics for collapsing over SACK'd could be invented */
3089 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3095 /* Collapse packets in the retransmit queue to make to create
3096 * less packets on the wire. This is only done on retransmission.
3098 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3101 struct tcp_sock *tp = tcp_sk(sk);
3102 struct sk_buff *skb = to, *tmp;
3105 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
3107 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3110 skb_rbtree_walk_from_safe(skb, tmp) {
3111 if (!tcp_can_collapse(sk, skb))
3114 if (!tcp_skb_can_collapse(to, skb))
3127 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3130 if (!tcp_collapse_retrans(sk, to))
3135 /* This retransmits one SKB. Policy decisions and retransmit queue
3136 * state updates are done by the caller. Returns non-zero if an
3137 * error occurred which prevented the send.
3139 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3141 struct inet_connection_sock *icsk = inet_csk(sk);
3142 struct tcp_sock *tp = tcp_sk(sk);
3143 unsigned int cur_mss;
3147 /* Inconclusive MTU probe */
3148 if (icsk->icsk_mtup.probe_size)
3149 icsk->icsk_mtup.probe_size = 0;
3151 if (skb_still_in_host_queue(sk, skb))
3154 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3155 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3159 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3163 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3164 return -EHOSTUNREACH; /* Routing failure or similar. */
3166 cur_mss = tcp_current_mss(sk);
3168 /* If receiver has shrunk his window, and skb is out of
3169 * new window, do not retransmit it. The exception is the
3170 * case, when window is shrunk to zero. In this case
3171 * our retransmit serves as a zero window probe.
3173 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
3174 TCP_SKB_CB(skb)->seq != tp->snd_una)
3177 len = cur_mss * segs;
3178 if (skb->len > len) {
3179 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3180 cur_mss, GFP_ATOMIC))
3181 return -ENOMEM; /* We'll try again later. */
3183 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3186 diff = tcp_skb_pcount(skb);
3187 tcp_set_skb_tso_segs(skb, cur_mss);
3188 diff -= tcp_skb_pcount(skb);
3190 tcp_adjust_pcount(sk, skb, diff);
3191 if (skb->len < cur_mss)
3192 tcp_retrans_try_collapse(sk, skb, cur_mss);
3195 /* RFC3168, section 6.1.1.1. ECN fallback */
3196 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3197 tcp_ecn_clear_syn(sk, skb);
3199 /* Update global and local TCP statistics. */
3200 segs = tcp_skb_pcount(skb);
3201 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3202 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3203 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3204 tp->total_retrans += segs;
3205 tp->bytes_retrans += skb->len;
3207 /* make sure skb->data is aligned on arches that require it
3208 * and check if ack-trimming & collapsing extended the headroom
3209 * beyond what csum_start can cover.
3211 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3212 skb_headroom(skb) >= 0xFFFF)) {
3213 struct sk_buff *nskb;
3215 tcp_skb_tsorted_save(skb) {
3216 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3219 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3223 } tcp_skb_tsorted_restore(skb);
3226 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3227 tcp_rate_skb_sent(sk, skb);
3230 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3233 /* To avoid taking spuriously low RTT samples based on a timestamp
3234 * for a transmit that never happened, always mark EVER_RETRANS
3236 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3238 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3239 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3240 TCP_SKB_CB(skb)->seq, segs, err);
3243 trace_tcp_retransmit_skb(sk, skb);
3244 } else if (err != -EBUSY) {
3245 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3250 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3252 struct tcp_sock *tp = tcp_sk(sk);
3253 int err = __tcp_retransmit_skb(sk, skb, segs);
3256 #if FASTRETRANS_DEBUG > 0
3257 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3258 net_dbg_ratelimited("retrans_out leaked\n");
3261 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3262 tp->retrans_out += tcp_skb_pcount(skb);
3265 /* Save stamp of the first (attempted) retransmit. */
3266 if (!tp->retrans_stamp)
3267 tp->retrans_stamp = tcp_skb_timestamp(skb);
3269 if (tp->undo_retrans < 0)
3270 tp->undo_retrans = 0;
3271 tp->undo_retrans += tcp_skb_pcount(skb);
3275 /* This gets called after a retransmit timeout, and the initially
3276 * retransmitted data is acknowledged. It tries to continue
3277 * resending the rest of the retransmit queue, until either
3278 * we've sent it all or the congestion window limit is reached.
3280 void tcp_xmit_retransmit_queue(struct sock *sk)
3282 const struct inet_connection_sock *icsk = inet_csk(sk);
3283 struct sk_buff *skb, *rtx_head, *hole = NULL;
3284 struct tcp_sock *tp = tcp_sk(sk);
3285 bool rearm_timer = false;
3289 if (!tp->packets_out)
3292 rtx_head = tcp_rtx_queue_head(sk);
3293 skb = tp->retransmit_skb_hint ?: rtx_head;
3294 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3295 skb_rbtree_walk_from(skb) {
3299 if (tcp_pacing_check(sk))
3302 /* we could do better than to assign each time */
3304 tp->retransmit_skb_hint = skb;
3306 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3309 sacked = TCP_SKB_CB(skb)->sacked;
3310 /* In case tcp_shift_skb_data() have aggregated large skbs,
3311 * we need to make sure not sending too bigs TSO packets
3313 segs = min_t(int, segs, max_segs);
3315 if (tp->retrans_out >= tp->lost_out) {
3317 } else if (!(sacked & TCPCB_LOST)) {
3318 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3323 if (icsk->icsk_ca_state != TCP_CA_Loss)
3324 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3326 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3329 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3332 if (tcp_small_queue_check(sk, skb, 1))
3335 if (tcp_retransmit_skb(sk, skb, segs))
3338 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3340 if (tcp_in_cwnd_reduction(sk))
3341 tp->prr_out += tcp_skb_pcount(skb);
3343 if (skb == rtx_head &&
3344 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3349 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3350 inet_csk(sk)->icsk_rto,
3354 /* We allow to exceed memory limits for FIN packets to expedite
3355 * connection tear down and (memory) recovery.
3356 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3357 * or even be forced to close flow without any FIN.
3358 * In general, we want to allow one skb per socket to avoid hangs
3359 * with edge trigger epoll()
3361 void sk_forced_mem_schedule(struct sock *sk, int size)
3365 if (size <= sk->sk_forward_alloc)
3367 amt = sk_mem_pages(size);
3368 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3369 sk_memory_allocated_add(sk, amt);
3371 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3372 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3373 gfp_memcg_charge() | __GFP_NOFAIL);
3376 /* Send a FIN. The caller locks the socket for us.
3377 * We should try to send a FIN packet really hard, but eventually give up.
3379 void tcp_send_fin(struct sock *sk)
3381 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3382 struct tcp_sock *tp = tcp_sk(sk);
3384 /* Optimization, tack on the FIN if we have one skb in write queue and
3385 * this skb was not yet sent, or we are under memory pressure.
3386 * Note: in the latter case, FIN packet will be sent after a timeout,
3387 * as TCP stack thinks it has already been transmitted.
3390 if (!tskb && tcp_under_memory_pressure(sk))
3391 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3394 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3395 TCP_SKB_CB(tskb)->end_seq++;
3398 /* This means tskb was already sent.
3399 * Pretend we included the FIN on previous transmit.
3400 * We need to set tp->snd_nxt to the value it would have
3401 * if FIN had been sent. This is because retransmit path
3402 * does not change tp->snd_nxt.
3404 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3408 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3412 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3413 skb_reserve(skb, MAX_TCP_HEADER);
3414 sk_forced_mem_schedule(sk, skb->truesize);
3415 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3416 tcp_init_nondata_skb(skb, tp->write_seq,
3417 TCPHDR_ACK | TCPHDR_FIN);
3418 tcp_queue_skb(sk, skb);
3420 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3423 /* We get here when a process closes a file descriptor (either due to
3424 * an explicit close() or as a byproduct of exit()'ing) and there
3425 * was unread data in the receive queue. This behavior is recommended
3426 * by RFC 2525, section 2.17. -DaveM
3428 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3430 struct sk_buff *skb;
3432 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3434 /* NOTE: No TCP options attached and we never retransmit this. */
3435 skb = alloc_skb(MAX_TCP_HEADER, priority);
3437 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3441 /* Reserve space for headers and prepare control bits. */
3442 skb_reserve(skb, MAX_TCP_HEADER);
3443 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3444 TCPHDR_ACK | TCPHDR_RST);
3445 tcp_mstamp_refresh(tcp_sk(sk));
3447 if (tcp_transmit_skb(sk, skb, 0, priority))
3448 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3450 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3451 * skb here is different to the troublesome skb, so use NULL
3453 trace_tcp_send_reset(sk, NULL);
3456 /* Send a crossed SYN-ACK during socket establishment.
3457 * WARNING: This routine must only be called when we have already sent
3458 * a SYN packet that crossed the incoming SYN that caused this routine
3459 * to get called. If this assumption fails then the initial rcv_wnd
3460 * and rcv_wscale values will not be correct.
3462 int tcp_send_synack(struct sock *sk)
3464 struct sk_buff *skb;
3466 skb = tcp_rtx_queue_head(sk);
3467 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3468 pr_err("%s: wrong queue state\n", __func__);
3471 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3472 if (skb_cloned(skb)) {
3473 struct sk_buff *nskb;
3475 tcp_skb_tsorted_save(skb) {
3476 nskb = skb_copy(skb, GFP_ATOMIC);
3477 } tcp_skb_tsorted_restore(skb);
3480 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3481 tcp_highest_sack_replace(sk, skb, nskb);
3482 tcp_rtx_queue_unlink_and_free(skb, sk);
3483 __skb_header_release(nskb);
3484 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3485 sk_wmem_queued_add(sk, nskb->truesize);
3486 sk_mem_charge(sk, nskb->truesize);
3490 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3491 tcp_ecn_send_synack(sk, skb);
3493 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3497 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3498 * @sk: listener socket
3499 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3500 * should not use it again.
3501 * @req: request_sock pointer
3502 * @foc: cookie for tcp fast open
3503 * @synack_type: Type of synack to prepare
3504 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3506 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3507 struct request_sock *req,
3508 struct tcp_fastopen_cookie *foc,
3509 enum tcp_synack_type synack_type,
3510 struct sk_buff *syn_skb)
3512 struct inet_request_sock *ireq = inet_rsk(req);
3513 const struct tcp_sock *tp = tcp_sk(sk);
3514 struct tcp_md5sig_key *md5 = NULL;
3515 struct tcp_out_options opts;
3516 struct sk_buff *skb;
3517 int tcp_header_size;
3522 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3523 if (unlikely(!skb)) {
3527 /* Reserve space for headers. */
3528 skb_reserve(skb, MAX_TCP_HEADER);
3530 switch (synack_type) {
3531 case TCP_SYNACK_NORMAL:
3532 skb_set_owner_w(skb, req_to_sk(req));
3534 case TCP_SYNACK_COOKIE:
3535 /* Under synflood, we do not attach skb to a socket,
3536 * to avoid false sharing.
3539 case TCP_SYNACK_FASTOPEN:
3540 /* sk is a const pointer, because we want to express multiple
3541 * cpu might call us concurrently.
3542 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3544 skb_set_owner_w(skb, (struct sock *)sk);
3547 skb_dst_set(skb, dst);
3549 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3551 memset(&opts, 0, sizeof(opts));
3552 now = tcp_clock_ns();
3553 #ifdef CONFIG_SYN_COOKIES
3554 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3555 skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3560 skb_set_delivery_time(skb, now, true);
3561 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3562 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3565 #ifdef CONFIG_TCP_MD5SIG
3567 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3569 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3570 /* bpf program will be interested in the tcp_flags */
3571 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3572 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3574 syn_skb) + sizeof(*th);
3576 skb_push(skb, tcp_header_size);
3577 skb_reset_transport_header(skb);
3579 th = (struct tcphdr *)skb->data;
3580 memset(th, 0, sizeof(struct tcphdr));
3583 tcp_ecn_make_synack(req, th);
3584 th->source = htons(ireq->ir_num);
3585 th->dest = ireq->ir_rmt_port;
3586 skb->mark = ireq->ir_mark;
3587 skb->ip_summed = CHECKSUM_PARTIAL;
3588 th->seq = htonl(tcp_rsk(req)->snt_isn);
3589 /* XXX data is queued and acked as is. No buffer/window check */
3590 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3592 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3593 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3594 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3595 th->doff = (tcp_header_size >> 2);
3596 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3598 #ifdef CONFIG_TCP_MD5SIG
3599 /* Okay, we have all we need - do the md5 hash if needed */
3601 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3602 md5, req_to_sk(req), skb);
3606 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3607 synack_type, &opts);
3609 skb_set_delivery_time(skb, now, true);
3610 tcp_add_tx_delay(skb, tp);
3614 EXPORT_SYMBOL(tcp_make_synack);
3616 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3618 struct inet_connection_sock *icsk = inet_csk(sk);
3619 const struct tcp_congestion_ops *ca;
3620 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3622 if (ca_key == TCP_CA_UNSPEC)
3626 ca = tcp_ca_find_key(ca_key);
3627 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3628 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3629 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3630 icsk->icsk_ca_ops = ca;
3635 /* Do all connect socket setups that can be done AF independent. */
3636 static void tcp_connect_init(struct sock *sk)
3638 const struct dst_entry *dst = __sk_dst_get(sk);
3639 struct tcp_sock *tp = tcp_sk(sk);
3643 /* We'll fix this up when we get a response from the other end.
3644 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3646 tp->tcp_header_len = sizeof(struct tcphdr);
3647 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3648 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3650 #ifdef CONFIG_TCP_MD5SIG
3651 if (tp->af_specific->md5_lookup(sk, sk))
3652 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3655 /* If user gave his TCP_MAXSEG, record it to clamp */
3656 if (tp->rx_opt.user_mss)
3657 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3660 tcp_sync_mss(sk, dst_mtu(dst));
3662 tcp_ca_dst_init(sk, dst);
3664 if (!tp->window_clamp)
3665 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3666 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3668 tcp_initialize_rcv_mss(sk);
3670 /* limit the window selection if the user enforce a smaller rx buffer */
3671 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3672 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3673 tp->window_clamp = tcp_full_space(sk);
3675 rcv_wnd = tcp_rwnd_init_bpf(sk);
3677 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3679 tcp_select_initial_window(sk, tcp_full_space(sk),
3680 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3683 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3687 tp->rx_opt.rcv_wscale = rcv_wscale;
3688 tp->rcv_ssthresh = tp->rcv_wnd;
3691 sock_reset_flag(sk, SOCK_DONE);
3694 tcp_write_queue_purge(sk);
3695 tp->snd_una = tp->write_seq;
3696 tp->snd_sml = tp->write_seq;
3697 tp->snd_up = tp->write_seq;
3698 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3700 if (likely(!tp->repair))
3703 tp->rcv_tstamp = tcp_jiffies32;
3704 tp->rcv_wup = tp->rcv_nxt;
3705 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3707 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3708 inet_csk(sk)->icsk_retransmits = 0;
3709 tcp_clear_retrans(tp);
3712 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3714 struct tcp_sock *tp = tcp_sk(sk);
3715 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3717 tcb->end_seq += skb->len;
3718 __skb_header_release(skb);
3719 sk_wmem_queued_add(sk, skb->truesize);
3720 sk_mem_charge(sk, skb->truesize);
3721 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3722 tp->packets_out += tcp_skb_pcount(skb);
3725 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3726 * queue a data-only packet after the regular SYN, such that regular SYNs
3727 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3728 * only the SYN sequence, the data are retransmitted in the first ACK.
3729 * If cookie is not cached or other error occurs, falls back to send a
3730 * regular SYN with Fast Open cookie request option.
3732 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3734 struct inet_connection_sock *icsk = inet_csk(sk);
3735 struct tcp_sock *tp = tcp_sk(sk);
3736 struct tcp_fastopen_request *fo = tp->fastopen_req;
3738 struct sk_buff *syn_data;
3740 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3741 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3744 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3745 * user-MSS. Reserve maximum option space for middleboxes that add
3746 * private TCP options. The cost is reduced data space in SYN :(
3748 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3749 /* Sync mss_cache after updating the mss_clamp */
3750 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3752 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3753 MAX_TCP_OPTION_SPACE;
3755 space = min_t(size_t, space, fo->size);
3757 /* limit to order-0 allocations */
3758 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3760 syn_data = tcp_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3763 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3765 int copied = copy_from_iter(skb_put(syn_data, space), space,
3766 &fo->data->msg_iter);
3767 if (unlikely(!copied)) {
3768 tcp_skb_tsorted_anchor_cleanup(syn_data);
3769 kfree_skb(syn_data);
3772 if (copied != space) {
3773 skb_trim(syn_data, copied);
3776 skb_zcopy_set(syn_data, fo->uarg, NULL);
3778 /* No more data pending in inet_wait_for_connect() */
3779 if (space == fo->size)
3783 tcp_connect_queue_skb(sk, syn_data);
3785 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3787 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3789 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3791 /* Now full SYN+DATA was cloned and sent (or not),
3792 * remove the SYN from the original skb (syn_data)
3793 * we keep in write queue in case of a retransmit, as we
3794 * also have the SYN packet (with no data) in the same queue.
3796 TCP_SKB_CB(syn_data)->seq++;
3797 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3799 tp->syn_data = (fo->copied > 0);
3800 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3801 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3805 /* data was not sent, put it in write_queue */
3806 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3807 tp->packets_out -= tcp_skb_pcount(syn_data);
3810 /* Send a regular SYN with Fast Open cookie request option */
3811 if (fo->cookie.len > 0)
3813 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3815 tp->syn_fastopen = 0;
3817 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3821 /* Build a SYN and send it off. */
3822 int tcp_connect(struct sock *sk)
3824 struct tcp_sock *tp = tcp_sk(sk);
3825 struct sk_buff *buff;
3828 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3830 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3831 return -EHOSTUNREACH; /* Routing failure or similar. */
3833 tcp_connect_init(sk);
3835 if (unlikely(tp->repair)) {
3836 tcp_finish_connect(sk, NULL);
3840 buff = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3841 if (unlikely(!buff))
3844 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3845 tcp_mstamp_refresh(tp);
3846 tp->retrans_stamp = tcp_time_stamp(tp);
3847 tcp_connect_queue_skb(sk, buff);
3848 tcp_ecn_send_syn(sk, buff);
3849 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3851 /* Send off SYN; include data in Fast Open. */
3852 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3853 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3854 if (err == -ECONNREFUSED)
3857 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3858 * in order to make this packet get counted in tcpOutSegs.
3860 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3861 tp->pushed_seq = tp->write_seq;
3862 buff = tcp_send_head(sk);
3863 if (unlikely(buff)) {
3864 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3865 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3867 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3869 /* Timer for repeating the SYN until an answer. */
3870 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3871 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3874 EXPORT_SYMBOL(tcp_connect);
3876 /* Send out a delayed ack, the caller does the policy checking
3877 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3880 void tcp_send_delayed_ack(struct sock *sk)
3882 struct inet_connection_sock *icsk = inet_csk(sk);
3883 int ato = icsk->icsk_ack.ato;
3884 unsigned long timeout;
3886 if (ato > TCP_DELACK_MIN) {
3887 const struct tcp_sock *tp = tcp_sk(sk);
3888 int max_ato = HZ / 2;
3890 if (inet_csk_in_pingpong_mode(sk) ||
3891 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3892 max_ato = TCP_DELACK_MAX;
3894 /* Slow path, intersegment interval is "high". */
3896 /* If some rtt estimate is known, use it to bound delayed ack.
3897 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3901 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3908 ato = min(ato, max_ato);
3911 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3913 /* Stay within the limit we were given */
3914 timeout = jiffies + ato;
3916 /* Use new timeout only if there wasn't a older one earlier. */
3917 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3918 /* If delack timer is about to expire, send ACK now. */
3919 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3924 if (!time_before(timeout, icsk->icsk_ack.timeout))
3925 timeout = icsk->icsk_ack.timeout;
3927 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3928 icsk->icsk_ack.timeout = timeout;
3929 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3932 /* This routine sends an ack and also updates the window. */
3933 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3935 struct sk_buff *buff;
3937 /* If we have been reset, we may not send again. */
3938 if (sk->sk_state == TCP_CLOSE)
3941 /* We are not putting this on the write queue, so
3942 * tcp_transmit_skb() will set the ownership to this
3945 buff = alloc_skb(MAX_TCP_HEADER,
3946 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3947 if (unlikely(!buff)) {
3948 struct inet_connection_sock *icsk = inet_csk(sk);
3949 unsigned long delay;
3951 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3952 if (delay < TCP_RTO_MAX)
3953 icsk->icsk_ack.retry++;
3954 inet_csk_schedule_ack(sk);
3955 icsk->icsk_ack.ato = TCP_ATO_MIN;
3956 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3960 /* Reserve space for headers and prepare control bits. */
3961 skb_reserve(buff, MAX_TCP_HEADER);
3962 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3964 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3966 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3968 skb_set_tcp_pure_ack(buff);
3970 /* Send it off, this clears delayed acks for us. */
3971 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3973 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3975 void tcp_send_ack(struct sock *sk)
3977 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3980 /* This routine sends a packet with an out of date sequence
3981 * number. It assumes the other end will try to ack it.
3983 * Question: what should we make while urgent mode?
3984 * 4.4BSD forces sending single byte of data. We cannot send
3985 * out of window data, because we have SND.NXT==SND.MAX...
3987 * Current solution: to send TWO zero-length segments in urgent mode:
3988 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3989 * out-of-date with SND.UNA-1 to probe window.
3991 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3993 struct tcp_sock *tp = tcp_sk(sk);
3994 struct sk_buff *skb;
3996 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3997 skb = alloc_skb(MAX_TCP_HEADER,
3998 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4002 /* Reserve space for headers and set control bits. */
4003 skb_reserve(skb, MAX_TCP_HEADER);
4004 /* Use a previous sequence. This should cause the other
4005 * end to send an ack. Don't queue or clone SKB, just
4008 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4009 NET_INC_STATS(sock_net(sk), mib);
4010 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4013 /* Called from setsockopt( ... TCP_REPAIR ) */
4014 void tcp_send_window_probe(struct sock *sk)
4016 if (sk->sk_state == TCP_ESTABLISHED) {
4017 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4018 tcp_mstamp_refresh(tcp_sk(sk));
4019 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4023 /* Initiate keepalive or window probe from timer. */
4024 int tcp_write_wakeup(struct sock *sk, int mib)
4026 struct tcp_sock *tp = tcp_sk(sk);
4027 struct sk_buff *skb;
4029 if (sk->sk_state == TCP_CLOSE)
4032 skb = tcp_send_head(sk);
4033 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4035 unsigned int mss = tcp_current_mss(sk);
4036 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4038 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4039 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4041 /* We are probing the opening of a window
4042 * but the window size is != 0
4043 * must have been a result SWS avoidance ( sender )
4045 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4047 seg_size = min(seg_size, mss);
4048 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4049 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4050 skb, seg_size, mss, GFP_ATOMIC))
4052 } else if (!tcp_skb_pcount(skb))
4053 tcp_set_skb_tso_segs(skb, mss);
4055 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4056 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4058 tcp_event_new_data_sent(sk, skb);
4061 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4062 tcp_xmit_probe_skb(sk, 1, mib);
4063 return tcp_xmit_probe_skb(sk, 0, mib);
4067 /* A window probe timeout has occurred. If window is not closed send
4068 * a partial packet else a zero probe.
4070 void tcp_send_probe0(struct sock *sk)
4072 struct inet_connection_sock *icsk = inet_csk(sk);
4073 struct tcp_sock *tp = tcp_sk(sk);
4074 struct net *net = sock_net(sk);
4075 unsigned long timeout;
4078 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4080 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4081 /* Cancel probe timer, if it is not required. */
4082 icsk->icsk_probes_out = 0;
4083 icsk->icsk_backoff = 0;
4084 icsk->icsk_probes_tstamp = 0;
4088 icsk->icsk_probes_out++;
4090 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
4091 icsk->icsk_backoff++;
4092 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4094 /* If packet was not sent due to local congestion,
4095 * Let senders fight for local resources conservatively.
4097 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4100 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4101 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4104 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4106 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4110 /* Paired with WRITE_ONCE() in sock_setsockopt() */
4111 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4112 tcp_rsk(req)->txhash = net_tx_rndhash();
4113 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4116 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4117 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4118 if (unlikely(tcp_passive_fastopen(sk)))
4119 tcp_sk(sk)->total_retrans++;
4120 trace_tcp_retransmit_synack(sk, req);
4124 EXPORT_SYMBOL(tcp_rtx_synack);