1 // SPDX-License-Identifier: GPL-2.0-only
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
38 #define pr_fmt(fmt) "TCP: " fmt
41 #include <net/mptcp.h>
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
48 #include <trace/events/tcp.h>
50 /* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
55 u64 val = tcp_clock_ns();
57 tp->tcp_clock_cache = val;
58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 int push_one, gfp_t gfp);
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
67 struct inet_connection_sock *icsk = inet_csk(sk);
68 struct tcp_sock *tp = tcp_sk(sk);
69 unsigned int prior_packets = tp->packets_out;
71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
73 __skb_unlink(skb, &sk->sk_write_queue);
74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
76 if (tp->highest_sack == NULL)
77 tp->highest_sack = skb;
79 tp->packets_out += tcp_skb_pcount(skb);
80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
88 * window scaling factor due to loss of precision.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 const struct tcp_sock *tp = tcp_sk(sk);
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
99 (tp->rx_opt.wscale_ok &&
100 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
103 return tcp_wnd_end(tp);
106 /* Calculate mss to advertise in SYN segment.
107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 * 1. It is independent of path mtu.
110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
112 * attached devices, because some buggy hosts are confused by
114 * 4. We do not make 3, we advertise MSS, calculated from first
115 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
116 * This may be overridden via information stored in routing table.
117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
118 * probably even Jumbo".
120 static __u16 tcp_advertise_mss(struct sock *sk)
122 struct tcp_sock *tp = tcp_sk(sk);
123 const struct dst_entry *dst = __sk_dst_get(sk);
124 int mss = tp->advmss;
127 unsigned int metric = dst_metric_advmss(dst);
138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
139 * This is the first part of cwnd validation mechanism.
141 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 struct tcp_sock *tp = tcp_sk(sk);
144 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
145 u32 cwnd = tp->snd_cwnd;
147 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 tp->snd_ssthresh = tcp_current_ssthresh(sk);
150 restart_cwnd = min(restart_cwnd, cwnd);
152 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 tp->snd_cwnd = max(cwnd, restart_cwnd);
155 tp->snd_cwnd_stamp = tcp_jiffies32;
156 tp->snd_cwnd_used = 0;
159 /* Congestion state accounting after a packet has been sent. */
160 static void tcp_event_data_sent(struct tcp_sock *tp,
163 struct inet_connection_sock *icsk = inet_csk(sk);
164 const u32 now = tcp_jiffies32;
166 if (tcp_packets_in_flight(tp) == 0)
167 tcp_ca_event(sk, CA_EVENT_TX_START);
169 /* If this is the first data packet sent in response to the
170 * previous received data,
171 * and it is a reply for ato after last received packet,
172 * increase pingpong count.
174 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
175 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 inet_csk_inc_pingpong_cnt(sk);
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
185 struct tcp_sock *tp = tcp_sk(sk);
187 if (unlikely(tp->compressed_ack)) {
188 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
190 tp->compressed_ack = 0;
191 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
195 if (unlikely(rcv_nxt != tp->rcv_nxt))
196 return; /* Special ACK sent by DCTCP to reflect ECN */
197 tcp_dec_quickack_mode(sk, pkts);
198 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
201 /* Determine a window scaling and initial window to offer.
202 * Based on the assumption that the given amount of space
203 * will be offered. Store the results in the tp structure.
204 * NOTE: for smooth operation initial space offering should
205 * be a multiple of mss if possible. We assume here that mss >= 1.
206 * This MUST be enforced by all callers.
208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
209 __u32 *rcv_wnd, __u32 *window_clamp,
210 int wscale_ok, __u8 *rcv_wscale,
213 unsigned int space = (__space < 0 ? 0 : __space);
215 /* If no clamp set the clamp to the max possible scaled window */
216 if (*window_clamp == 0)
217 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
218 space = min(*window_clamp, space);
220 /* Quantize space offering to a multiple of mss if possible. */
222 space = rounddown(space, mss);
224 /* NOTE: offering an initial window larger than 32767
225 * will break some buggy TCP stacks. If the admin tells us
226 * it is likely we could be speaking with such a buggy stack
227 * we will truncate our initial window offering to 32K-1
228 * unless the remote has sent us a window scaling option,
229 * which we interpret as a sign the remote TCP is not
230 * misinterpreting the window field as a signed quantity.
232 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
235 (*rcv_wnd) = min_t(u32, space, U16_MAX);
238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
242 /* Set window scaling on max possible window */
243 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
244 space = max_t(u32, space, sysctl_rmem_max);
245 space = min_t(u32, space, *window_clamp);
246 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
249 /* Set the clamp no higher than max representable value */
250 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
252 EXPORT_SYMBOL(tcp_select_initial_window);
254 /* Chose a new window to advertise, update state in tcp_sock for the
255 * socket, and return result with RFC1323 scaling applied. The return
256 * value can be stuffed directly into th->window for an outgoing
259 static u16 tcp_select_window(struct sock *sk)
261 struct tcp_sock *tp = tcp_sk(sk);
262 u32 old_win = tp->rcv_wnd;
263 u32 cur_win = tcp_receive_window(tp);
264 u32 new_win = __tcp_select_window(sk);
266 /* Never shrink the offered window */
267 if (new_win < cur_win) {
268 /* Danger Will Robinson!
269 * Don't update rcv_wup/rcv_wnd here or else
270 * we will not be able to advertise a zero
271 * window in time. --DaveM
273 * Relax Will Robinson.
276 NET_INC_STATS(sock_net(sk),
277 LINUX_MIB_TCPWANTZEROWINDOWADV);
278 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
280 tp->rcv_wnd = new_win;
281 tp->rcv_wup = tp->rcv_nxt;
283 /* Make sure we do not exceed the maximum possible
286 if (!tp->rx_opt.rcv_wscale &&
287 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
288 new_win = min(new_win, MAX_TCP_WINDOW);
290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
292 /* RFC1323 scaling applied */
293 new_win >>= tp->rx_opt.rcv_wscale;
295 /* If we advertise zero window, disable fast path. */
299 NET_INC_STATS(sock_net(sk),
300 LINUX_MIB_TCPTOZEROWINDOWADV);
301 } else if (old_win == 0) {
302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
308 /* Packet ECN state for a SYN-ACK */
309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
311 const struct tcp_sock *tp = tcp_sk(sk);
313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
314 if (!(tp->ecn_flags & TCP_ECN_OK))
315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
316 else if (tcp_ca_needs_ecn(sk) ||
317 tcp_bpf_ca_needs_ecn(sk))
321 /* Packet ECN state for a SYN. */
322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
324 struct tcp_sock *tp = tcp_sk(sk);
325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
330 const struct dst_entry *dst = __sk_dst_get(sk);
332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
340 tp->ecn_flags = TCP_ECN_OK;
341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
349 /* tp->ecn_flags are cleared at a later point in time when
350 * SYN ACK is ultimatively being received.
352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
358 if (inet_rsk(req)->ecn_ok)
362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
366 struct tcphdr *th, int tcp_header_len)
368 struct tcp_sock *tp = tcp_sk(sk);
370 if (tp->ecn_flags & TCP_ECN_OK) {
371 /* Not-retransmitted data segment: set ECT and inject CWR. */
372 if (skb->len != tcp_header_len &&
373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
380 } else if (!tcp_ca_needs_ecn(sk)) {
381 /* ACK or retransmitted segment: clear ECT|CE */
382 INET_ECN_dontxmit(sk);
384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
389 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390 * auto increment end seqno.
392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
394 skb->ip_summed = CHECKSUM_PARTIAL;
396 TCP_SKB_CB(skb)->tcp_flags = flags;
397 TCP_SKB_CB(skb)->sacked = 0;
399 tcp_skb_pcount_set(skb, 1);
401 TCP_SKB_CB(skb)->seq = seq;
402 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
404 TCP_SKB_CB(skb)->end_seq = seq;
407 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
409 return tp->snd_una != tp->snd_up;
412 #define OPTION_SACK_ADVERTISE (1 << 0)
413 #define OPTION_TS (1 << 1)
414 #define OPTION_MD5 (1 << 2)
415 #define OPTION_WSCALE (1 << 3)
416 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
417 #define OPTION_SMC (1 << 9)
418 #define OPTION_MPTCP (1 << 10)
420 static void smc_options_write(__be32 *ptr, u16 *options)
422 #if IS_ENABLED(CONFIG_SMC)
423 if (static_branch_unlikely(&tcp_have_smc)) {
424 if (unlikely(OPTION_SMC & *options)) {
425 *ptr++ = htonl((TCPOPT_NOP << 24) |
428 (TCPOLEN_EXP_SMC_BASE));
429 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
435 struct tcp_out_options {
436 u16 options; /* bit field of OPTION_* */
437 u16 mss; /* 0 to disable */
438 u8 ws; /* window scale, 0 to disable */
439 u8 num_sack_blocks; /* number of SACK blocks to include */
440 u8 hash_size; /* bytes in hash_location */
441 __u8 *hash_location; /* temporary pointer, overloaded */
442 __u32 tsval, tsecr; /* need to include OPTION_TS */
443 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
444 struct mptcp_out_options mptcp;
447 static void mptcp_options_write(__be32 *ptr, struct tcp_out_options *opts)
449 #if IS_ENABLED(CONFIG_MPTCP)
450 if (unlikely(OPTION_MPTCP & opts->options))
451 mptcp_write_options(ptr, &opts->mptcp);
455 /* Write previously computed TCP options to the packet.
457 * Beware: Something in the Internet is very sensitive to the ordering of
458 * TCP options, we learned this through the hard way, so be careful here.
459 * Luckily we can at least blame others for their non-compliance but from
460 * inter-operability perspective it seems that we're somewhat stuck with
461 * the ordering which we have been using if we want to keep working with
462 * those broken things (not that it currently hurts anybody as there isn't
463 * particular reason why the ordering would need to be changed).
465 * At least SACK_PERM as the first option is known to lead to a disaster
466 * (but it may well be that other scenarios fail similarly).
468 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
469 struct tcp_out_options *opts)
471 u16 options = opts->options; /* mungable copy */
473 if (unlikely(OPTION_MD5 & options)) {
474 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
475 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
476 /* overload cookie hash location */
477 opts->hash_location = (__u8 *)ptr;
481 if (unlikely(opts->mss)) {
482 *ptr++ = htonl((TCPOPT_MSS << 24) |
483 (TCPOLEN_MSS << 16) |
487 if (likely(OPTION_TS & options)) {
488 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
489 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
490 (TCPOLEN_SACK_PERM << 16) |
491 (TCPOPT_TIMESTAMP << 8) |
493 options &= ~OPTION_SACK_ADVERTISE;
495 *ptr++ = htonl((TCPOPT_NOP << 24) |
497 (TCPOPT_TIMESTAMP << 8) |
500 *ptr++ = htonl(opts->tsval);
501 *ptr++ = htonl(opts->tsecr);
504 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
505 *ptr++ = htonl((TCPOPT_NOP << 24) |
507 (TCPOPT_SACK_PERM << 8) |
511 if (unlikely(OPTION_WSCALE & options)) {
512 *ptr++ = htonl((TCPOPT_NOP << 24) |
513 (TCPOPT_WINDOW << 16) |
514 (TCPOLEN_WINDOW << 8) |
518 if (unlikely(opts->num_sack_blocks)) {
519 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
520 tp->duplicate_sack : tp->selective_acks;
523 *ptr++ = htonl((TCPOPT_NOP << 24) |
526 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
527 TCPOLEN_SACK_PERBLOCK)));
529 for (this_sack = 0; this_sack < opts->num_sack_blocks;
531 *ptr++ = htonl(sp[this_sack].start_seq);
532 *ptr++ = htonl(sp[this_sack].end_seq);
535 tp->rx_opt.dsack = 0;
538 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
539 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
541 u32 len; /* Fast Open option length */
544 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
545 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
546 TCPOPT_FASTOPEN_MAGIC);
547 p += TCPOLEN_EXP_FASTOPEN_BASE;
549 len = TCPOLEN_FASTOPEN_BASE + foc->len;
550 *p++ = TCPOPT_FASTOPEN;
554 memcpy(p, foc->val, foc->len);
555 if ((len & 3) == 2) {
556 p[foc->len] = TCPOPT_NOP;
557 p[foc->len + 1] = TCPOPT_NOP;
559 ptr += (len + 3) >> 2;
562 smc_options_write(ptr, &options);
564 mptcp_options_write(ptr, opts);
567 static void smc_set_option(const struct tcp_sock *tp,
568 struct tcp_out_options *opts,
569 unsigned int *remaining)
571 #if IS_ENABLED(CONFIG_SMC)
572 if (static_branch_unlikely(&tcp_have_smc)) {
574 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
575 opts->options |= OPTION_SMC;
576 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
583 static void smc_set_option_cond(const struct tcp_sock *tp,
584 const struct inet_request_sock *ireq,
585 struct tcp_out_options *opts,
586 unsigned int *remaining)
588 #if IS_ENABLED(CONFIG_SMC)
589 if (static_branch_unlikely(&tcp_have_smc)) {
590 if (tp->syn_smc && ireq->smc_ok) {
591 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
592 opts->options |= OPTION_SMC;
593 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
600 static void mptcp_set_option_cond(const struct request_sock *req,
601 struct tcp_out_options *opts,
602 unsigned int *remaining)
604 if (rsk_is_mptcp(req)) {
607 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
608 if (*remaining >= size) {
609 opts->options |= OPTION_MPTCP;
616 /* Compute TCP options for SYN packets. This is not the final
617 * network wire format yet.
619 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
620 struct tcp_out_options *opts,
621 struct tcp_md5sig_key **md5)
623 struct tcp_sock *tp = tcp_sk(sk);
624 unsigned int remaining = MAX_TCP_OPTION_SPACE;
625 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
628 #ifdef CONFIG_TCP_MD5SIG
629 if (static_branch_unlikely(&tcp_md5_needed) &&
630 rcu_access_pointer(tp->md5sig_info)) {
631 *md5 = tp->af_specific->md5_lookup(sk, sk);
633 opts->options |= OPTION_MD5;
634 remaining -= TCPOLEN_MD5SIG_ALIGNED;
639 /* We always get an MSS option. The option bytes which will be seen in
640 * normal data packets should timestamps be used, must be in the MSS
641 * advertised. But we subtract them from tp->mss_cache so that
642 * calculations in tcp_sendmsg are simpler etc. So account for this
643 * fact here if necessary. If we don't do this correctly, as a
644 * receiver we won't recognize data packets as being full sized when we
645 * should, and thus we won't abide by the delayed ACK rules correctly.
646 * SACKs don't matter, we never delay an ACK when we have any of those
648 opts->mss = tcp_advertise_mss(sk);
649 remaining -= TCPOLEN_MSS_ALIGNED;
651 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
652 opts->options |= OPTION_TS;
653 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
654 opts->tsecr = tp->rx_opt.ts_recent;
655 remaining -= TCPOLEN_TSTAMP_ALIGNED;
657 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
658 opts->ws = tp->rx_opt.rcv_wscale;
659 opts->options |= OPTION_WSCALE;
660 remaining -= TCPOLEN_WSCALE_ALIGNED;
662 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
663 opts->options |= OPTION_SACK_ADVERTISE;
664 if (unlikely(!(OPTION_TS & opts->options)))
665 remaining -= TCPOLEN_SACKPERM_ALIGNED;
668 if (fastopen && fastopen->cookie.len >= 0) {
669 u32 need = fastopen->cookie.len;
671 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
672 TCPOLEN_FASTOPEN_BASE;
673 need = (need + 3) & ~3U; /* Align to 32 bits */
674 if (remaining >= need) {
675 opts->options |= OPTION_FAST_OPEN_COOKIE;
676 opts->fastopen_cookie = &fastopen->cookie;
678 tp->syn_fastopen = 1;
679 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
683 smc_set_option(tp, opts, &remaining);
685 if (sk_is_mptcp(sk)) {
688 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
689 opts->options |= OPTION_MPTCP;
694 return MAX_TCP_OPTION_SPACE - remaining;
697 /* Set up TCP options for SYN-ACKs. */
698 static unsigned int tcp_synack_options(const struct sock *sk,
699 struct request_sock *req,
700 unsigned int mss, struct sk_buff *skb,
701 struct tcp_out_options *opts,
702 const struct tcp_md5sig_key *md5,
703 struct tcp_fastopen_cookie *foc,
704 enum tcp_synack_type synack_type)
706 struct inet_request_sock *ireq = inet_rsk(req);
707 unsigned int remaining = MAX_TCP_OPTION_SPACE;
709 #ifdef CONFIG_TCP_MD5SIG
711 opts->options |= OPTION_MD5;
712 remaining -= TCPOLEN_MD5SIG_ALIGNED;
714 /* We can't fit any SACK blocks in a packet with MD5 + TS
715 * options. There was discussion about disabling SACK
716 * rather than TS in order to fit in better with old,
717 * buggy kernels, but that was deemed to be unnecessary.
719 if (synack_type != TCP_SYNACK_COOKIE)
720 ireq->tstamp_ok &= !ireq->sack_ok;
724 /* We always send an MSS option. */
726 remaining -= TCPOLEN_MSS_ALIGNED;
728 if (likely(ireq->wscale_ok)) {
729 opts->ws = ireq->rcv_wscale;
730 opts->options |= OPTION_WSCALE;
731 remaining -= TCPOLEN_WSCALE_ALIGNED;
733 if (likely(ireq->tstamp_ok)) {
734 opts->options |= OPTION_TS;
735 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
736 opts->tsecr = req->ts_recent;
737 remaining -= TCPOLEN_TSTAMP_ALIGNED;
739 if (likely(ireq->sack_ok)) {
740 opts->options |= OPTION_SACK_ADVERTISE;
741 if (unlikely(!ireq->tstamp_ok))
742 remaining -= TCPOLEN_SACKPERM_ALIGNED;
744 if (foc != NULL && foc->len >= 0) {
747 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
748 TCPOLEN_FASTOPEN_BASE;
749 need = (need + 3) & ~3U; /* Align to 32 bits */
750 if (remaining >= need) {
751 opts->options |= OPTION_FAST_OPEN_COOKIE;
752 opts->fastopen_cookie = foc;
757 mptcp_set_option_cond(req, opts, &remaining);
759 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
761 return MAX_TCP_OPTION_SPACE - remaining;
764 /* Compute TCP options for ESTABLISHED sockets. This is not the
765 * final wire format yet.
767 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
768 struct tcp_out_options *opts,
769 struct tcp_md5sig_key **md5)
771 struct tcp_sock *tp = tcp_sk(sk);
772 unsigned int size = 0;
773 unsigned int eff_sacks;
778 #ifdef CONFIG_TCP_MD5SIG
779 if (static_branch_unlikely(&tcp_md5_needed) &&
780 rcu_access_pointer(tp->md5sig_info)) {
781 *md5 = tp->af_specific->md5_lookup(sk, sk);
783 opts->options |= OPTION_MD5;
784 size += TCPOLEN_MD5SIG_ALIGNED;
789 if (likely(tp->rx_opt.tstamp_ok)) {
790 opts->options |= OPTION_TS;
791 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
792 opts->tsecr = tp->rx_opt.ts_recent;
793 size += TCPOLEN_TSTAMP_ALIGNED;
796 /* MPTCP options have precedence over SACK for the limited TCP
797 * option space because a MPTCP connection would be forced to
798 * fall back to regular TCP if a required multipath option is
799 * missing. SACK still gets a chance to use whatever space is
802 if (sk_is_mptcp(sk)) {
803 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
804 unsigned int opt_size = 0;
806 if (mptcp_established_options(sk, skb, &opt_size, remaining,
808 opts->options |= OPTION_MPTCP;
813 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
814 if (unlikely(eff_sacks)) {
815 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
816 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
817 TCPOLEN_SACK_PERBLOCK))
820 opts->num_sack_blocks =
821 min_t(unsigned int, eff_sacks,
822 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
823 TCPOLEN_SACK_PERBLOCK);
825 size += TCPOLEN_SACK_BASE_ALIGNED +
826 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
833 /* TCP SMALL QUEUES (TSQ)
835 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
836 * to reduce RTT and bufferbloat.
837 * We do this using a special skb destructor (tcp_wfree).
839 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
840 * needs to be reallocated in a driver.
841 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
843 * Since transmit from skb destructor is forbidden, we use a tasklet
844 * to process all sockets that eventually need to send more skbs.
845 * We use one tasklet per cpu, with its own queue of sockets.
848 struct tasklet_struct tasklet;
849 struct list_head head; /* queue of tcp sockets */
851 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
853 static void tcp_tsq_write(struct sock *sk)
855 if ((1 << sk->sk_state) &
856 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
857 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
858 struct tcp_sock *tp = tcp_sk(sk);
860 if (tp->lost_out > tp->retrans_out &&
861 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
862 tcp_mstamp_refresh(tp);
863 tcp_xmit_retransmit_queue(sk);
866 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
871 static void tcp_tsq_handler(struct sock *sk)
874 if (!sock_owned_by_user(sk))
876 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
881 * One tasklet per cpu tries to send more skbs.
882 * We run in tasklet context but need to disable irqs when
883 * transferring tsq->head because tcp_wfree() might
884 * interrupt us (non NAPI drivers)
886 static void tcp_tasklet_func(unsigned long data)
888 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
891 struct list_head *q, *n;
895 local_irq_save(flags);
896 list_splice_init(&tsq->head, &list);
897 local_irq_restore(flags);
899 list_for_each_safe(q, n, &list) {
900 tp = list_entry(q, struct tcp_sock, tsq_node);
901 list_del(&tp->tsq_node);
903 sk = (struct sock *)tp;
904 smp_mb__before_atomic();
905 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
912 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
913 TCPF_WRITE_TIMER_DEFERRED | \
914 TCPF_DELACK_TIMER_DEFERRED | \
915 TCPF_MTU_REDUCED_DEFERRED)
917 * tcp_release_cb - tcp release_sock() callback
920 * called from release_sock() to perform protocol dependent
921 * actions before socket release.
923 void tcp_release_cb(struct sock *sk)
925 unsigned long flags, nflags;
927 /* perform an atomic operation only if at least one flag is set */
929 flags = sk->sk_tsq_flags;
930 if (!(flags & TCP_DEFERRED_ALL))
932 nflags = flags & ~TCP_DEFERRED_ALL;
933 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
935 if (flags & TCPF_TSQ_DEFERRED) {
939 /* Here begins the tricky part :
940 * We are called from release_sock() with :
942 * 2) sk_lock.slock spinlock held
943 * 3) socket owned by us (sk->sk_lock.owned == 1)
945 * But following code is meant to be called from BH handlers,
946 * so we should keep BH disabled, but early release socket ownership
948 sock_release_ownership(sk);
950 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
951 tcp_write_timer_handler(sk);
954 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
955 tcp_delack_timer_handler(sk);
958 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
959 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
963 EXPORT_SYMBOL(tcp_release_cb);
965 void __init tcp_tasklet_init(void)
969 for_each_possible_cpu(i) {
970 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
972 INIT_LIST_HEAD(&tsq->head);
973 tasklet_init(&tsq->tasklet,
980 * Write buffer destructor automatically called from kfree_skb.
981 * We can't xmit new skbs from this context, as we might already
984 void tcp_wfree(struct sk_buff *skb)
986 struct sock *sk = skb->sk;
987 struct tcp_sock *tp = tcp_sk(sk);
988 unsigned long flags, nval, oval;
990 /* Keep one reference on sk_wmem_alloc.
991 * Will be released by sk_free() from here or tcp_tasklet_func()
993 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
995 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
996 * Wait until our queues (qdisc + devices) are drained.
998 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
999 * - chance for incoming ACK (processed by another cpu maybe)
1000 * to migrate this flow (skb->ooo_okay will be eventually set)
1002 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1005 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1006 struct tsq_tasklet *tsq;
1009 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1012 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1013 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1017 /* queue this socket to tasklet queue */
1018 local_irq_save(flags);
1019 tsq = this_cpu_ptr(&tsq_tasklet);
1020 empty = list_empty(&tsq->head);
1021 list_add(&tp->tsq_node, &tsq->head);
1023 tasklet_schedule(&tsq->tasklet);
1024 local_irq_restore(flags);
1031 /* Note: Called under soft irq.
1032 * We can call TCP stack right away, unless socket is owned by user.
1034 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1036 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1037 struct sock *sk = (struct sock *)tp;
1039 tcp_tsq_handler(sk);
1042 return HRTIMER_NORESTART;
1045 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1048 struct tcp_sock *tp = tcp_sk(sk);
1050 if (sk->sk_pacing_status != SK_PACING_NONE) {
1051 unsigned long rate = sk->sk_pacing_rate;
1053 /* Original sch_fq does not pace first 10 MSS
1054 * Note that tp->data_segs_out overflows after 2^32 packets,
1055 * this is a minor annoyance.
1057 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1058 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1059 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1061 /* take into account OS jitter */
1062 len_ns -= min_t(u64, len_ns / 2, credit);
1063 tp->tcp_wstamp_ns += len_ns;
1066 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1069 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1070 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1071 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1073 /* This routine actually transmits TCP packets queued in by
1074 * tcp_do_sendmsg(). This is used by both the initial
1075 * transmission and possible later retransmissions.
1076 * All SKB's seen here are completely headerless. It is our
1077 * job to build the TCP header, and pass the packet down to
1078 * IP so it can do the same plus pass the packet off to the
1081 * We are working here with either a clone of the original
1082 * SKB, or a fresh unique copy made by the retransmit engine.
1084 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1085 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1087 const struct inet_connection_sock *icsk = inet_csk(sk);
1088 struct inet_sock *inet;
1089 struct tcp_sock *tp;
1090 struct tcp_skb_cb *tcb;
1091 struct tcp_out_options opts;
1092 unsigned int tcp_options_size, tcp_header_size;
1093 struct sk_buff *oskb = NULL;
1094 struct tcp_md5sig_key *md5;
1099 BUG_ON(!skb || !tcp_skb_pcount(skb));
1101 prior_wstamp = tp->tcp_wstamp_ns;
1102 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1103 skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1105 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1109 tcp_skb_tsorted_save(oskb) {
1110 if (unlikely(skb_cloned(oskb)))
1111 skb = pskb_copy(oskb, gfp_mask);
1113 skb = skb_clone(oskb, gfp_mask);
1114 } tcp_skb_tsorted_restore(oskb);
1118 /* retransmit skbs might have a non zero value in skb->dev
1119 * because skb->dev is aliased with skb->rbnode.rb_left
1125 tcb = TCP_SKB_CB(skb);
1126 memset(&opts, 0, sizeof(opts));
1128 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1129 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1131 tcp_options_size = tcp_established_options(sk, skb, &opts,
1133 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1134 * at receiver : This slightly improve GRO performance.
1135 * Note that we do not force the PSH flag for non GSO packets,
1136 * because they might be sent under high congestion events,
1137 * and in this case it is better to delay the delivery of 1-MSS
1138 * packets and thus the corresponding ACK packet that would
1139 * release the following packet.
1141 if (tcp_skb_pcount(skb) > 1)
1142 tcb->tcp_flags |= TCPHDR_PSH;
1144 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1146 /* if no packet is in qdisc/device queue, then allow XPS to select
1147 * another queue. We can be called from tcp_tsq_handler()
1148 * which holds one reference to sk.
1150 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1151 * One way to get this would be to set skb->truesize = 2 on them.
1153 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1155 /* If we had to use memory reserve to allocate this skb,
1156 * this might cause drops if packet is looped back :
1157 * Other socket might not have SOCK_MEMALLOC.
1158 * Packets not looped back do not care about pfmemalloc.
1160 skb->pfmemalloc = 0;
1162 skb_push(skb, tcp_header_size);
1163 skb_reset_transport_header(skb);
1167 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1168 skb_set_hash_from_sk(skb, sk);
1169 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1171 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1173 /* Build TCP header and checksum it. */
1174 th = (struct tcphdr *)skb->data;
1175 th->source = inet->inet_sport;
1176 th->dest = inet->inet_dport;
1177 th->seq = htonl(tcb->seq);
1178 th->ack_seq = htonl(rcv_nxt);
1179 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1185 /* The urg_mode check is necessary during a below snd_una win probe */
1186 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1187 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1188 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1190 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1191 th->urg_ptr = htons(0xFFFF);
1196 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1197 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1198 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1199 th->window = htons(tcp_select_window(sk));
1200 tcp_ecn_send(sk, skb, th, tcp_header_size);
1202 /* RFC1323: The window in SYN & SYN/ACK segments
1205 th->window = htons(min(tp->rcv_wnd, 65535U));
1207 #ifdef CONFIG_TCP_MD5SIG
1208 /* Calculate the MD5 hash, as we have all we need now */
1210 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1211 tp->af_specific->calc_md5_hash(opts.hash_location,
1216 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1217 tcp_v6_send_check, tcp_v4_send_check,
1220 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1221 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1223 if (skb->len != tcp_header_size) {
1224 tcp_event_data_sent(tp, sk);
1225 tp->data_segs_out += tcp_skb_pcount(skb);
1226 tp->bytes_sent += skb->len - tcp_header_size;
1229 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1230 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1231 tcp_skb_pcount(skb));
1233 tp->segs_out += tcp_skb_pcount(skb);
1234 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1235 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1236 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1238 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1240 /* Cleanup our debris for IP stacks */
1241 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1242 sizeof(struct inet6_skb_parm)));
1244 tcp_add_tx_delay(skb, tp);
1246 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1247 inet6_csk_xmit, ip_queue_xmit,
1248 sk, skb, &inet->cork.fl);
1250 if (unlikely(err > 0)) {
1252 err = net_xmit_eval(err);
1255 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1256 tcp_rate_skb_sent(sk, oskb);
1261 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1264 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1265 tcp_sk(sk)->rcv_nxt);
1268 /* This routine just queues the buffer for sending.
1270 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1271 * otherwise socket can stall.
1273 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1275 struct tcp_sock *tp = tcp_sk(sk);
1277 /* Advance write_seq and place onto the write_queue. */
1278 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1279 __skb_header_release(skb);
1280 tcp_add_write_queue_tail(sk, skb);
1281 sk_wmem_queued_add(sk, skb->truesize);
1282 sk_mem_charge(sk, skb->truesize);
1285 /* Initialize TSO segments for a packet. */
1286 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1288 if (skb->len <= mss_now) {
1289 /* Avoid the costly divide in the normal
1292 tcp_skb_pcount_set(skb, 1);
1293 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1295 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1296 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1300 /* Pcount in the middle of the write queue got changed, we need to do various
1301 * tweaks to fix counters
1303 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1305 struct tcp_sock *tp = tcp_sk(sk);
1307 tp->packets_out -= decr;
1309 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1310 tp->sacked_out -= decr;
1311 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1312 tp->retrans_out -= decr;
1313 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1314 tp->lost_out -= decr;
1316 /* Reno case is special. Sigh... */
1317 if (tcp_is_reno(tp) && decr > 0)
1318 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1320 if (tp->lost_skb_hint &&
1321 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1322 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1323 tp->lost_cnt_hint -= decr;
1325 tcp_verify_left_out(tp);
1328 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1330 return TCP_SKB_CB(skb)->txstamp_ack ||
1331 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1334 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1336 struct skb_shared_info *shinfo = skb_shinfo(skb);
1338 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1339 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1340 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1341 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1343 shinfo->tx_flags &= ~tsflags;
1344 shinfo2->tx_flags |= tsflags;
1345 swap(shinfo->tskey, shinfo2->tskey);
1346 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1347 TCP_SKB_CB(skb)->txstamp_ack = 0;
1351 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1353 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1354 TCP_SKB_CB(skb)->eor = 0;
1357 /* Insert buff after skb on the write or rtx queue of sk. */
1358 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1359 struct sk_buff *buff,
1361 enum tcp_queue tcp_queue)
1363 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1364 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1366 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1369 /* Function to create two new TCP segments. Shrinks the given segment
1370 * to the specified size and appends a new segment with the rest of the
1371 * packet to the list. This won't be called frequently, I hope.
1372 * Remember, these are still headerless SKBs at this point.
1374 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1375 struct sk_buff *skb, u32 len,
1376 unsigned int mss_now, gfp_t gfp)
1378 struct tcp_sock *tp = tcp_sk(sk);
1379 struct sk_buff *buff;
1380 int nsize, old_factor;
1385 if (WARN_ON(len > skb->len))
1388 nsize = skb_headlen(skb) - len;
1392 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1393 * We need some allowance to not penalize applications setting small
1395 * Also allow first and last skb in retransmit queue to be split.
1397 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1398 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1399 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1400 skb != tcp_rtx_queue_head(sk) &&
1401 skb != tcp_rtx_queue_tail(sk))) {
1402 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1406 if (skb_unclone(skb, gfp))
1409 /* Get a new skb... force flag on. */
1410 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1412 return -ENOMEM; /* We'll just try again later. */
1413 skb_copy_decrypted(buff, skb);
1415 sk_wmem_queued_add(sk, buff->truesize);
1416 sk_mem_charge(sk, buff->truesize);
1417 nlen = skb->len - len - nsize;
1418 buff->truesize += nlen;
1419 skb->truesize -= nlen;
1421 /* Correct the sequence numbers. */
1422 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1423 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1424 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1426 /* PSH and FIN should only be set in the second packet. */
1427 flags = TCP_SKB_CB(skb)->tcp_flags;
1428 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1429 TCP_SKB_CB(buff)->tcp_flags = flags;
1430 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1431 tcp_skb_fragment_eor(skb, buff);
1433 skb_split(skb, buff, len);
1435 buff->ip_summed = CHECKSUM_PARTIAL;
1437 buff->tstamp = skb->tstamp;
1438 tcp_fragment_tstamp(skb, buff);
1440 old_factor = tcp_skb_pcount(skb);
1442 /* Fix up tso_factor for both original and new SKB. */
1443 tcp_set_skb_tso_segs(skb, mss_now);
1444 tcp_set_skb_tso_segs(buff, mss_now);
1446 /* Update delivered info for the new segment */
1447 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1449 /* If this packet has been sent out already, we must
1450 * adjust the various packet counters.
1452 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1453 int diff = old_factor - tcp_skb_pcount(skb) -
1454 tcp_skb_pcount(buff);
1457 tcp_adjust_pcount(sk, skb, diff);
1460 /* Link BUFF into the send queue. */
1461 __skb_header_release(buff);
1462 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1463 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1464 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1469 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1470 * data is not copied, but immediately discarded.
1472 static int __pskb_trim_head(struct sk_buff *skb, int len)
1474 struct skb_shared_info *shinfo;
1477 eat = min_t(int, len, skb_headlen(skb));
1479 __skb_pull(skb, eat);
1486 shinfo = skb_shinfo(skb);
1487 for (i = 0; i < shinfo->nr_frags; i++) {
1488 int size = skb_frag_size(&shinfo->frags[i]);
1491 skb_frag_unref(skb, i);
1494 shinfo->frags[k] = shinfo->frags[i];
1496 skb_frag_off_add(&shinfo->frags[k], eat);
1497 skb_frag_size_sub(&shinfo->frags[k], eat);
1503 shinfo->nr_frags = k;
1505 skb->data_len -= len;
1506 skb->len = skb->data_len;
1510 /* Remove acked data from a packet in the transmit queue. */
1511 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1515 if (skb_unclone(skb, GFP_ATOMIC))
1518 delta_truesize = __pskb_trim_head(skb, len);
1520 TCP_SKB_CB(skb)->seq += len;
1521 skb->ip_summed = CHECKSUM_PARTIAL;
1523 if (delta_truesize) {
1524 skb->truesize -= delta_truesize;
1525 sk_wmem_queued_add(sk, -delta_truesize);
1526 sk_mem_uncharge(sk, delta_truesize);
1527 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1530 /* Any change of skb->len requires recalculation of tso factor. */
1531 if (tcp_skb_pcount(skb) > 1)
1532 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1537 /* Calculate MSS not accounting any TCP options. */
1538 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1540 const struct tcp_sock *tp = tcp_sk(sk);
1541 const struct inet_connection_sock *icsk = inet_csk(sk);
1544 /* Calculate base mss without TCP options:
1545 It is MMS_S - sizeof(tcphdr) of rfc1122
1547 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1549 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1550 if (icsk->icsk_af_ops->net_frag_header_len) {
1551 const struct dst_entry *dst = __sk_dst_get(sk);
1553 if (dst && dst_allfrag(dst))
1554 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1557 /* Clamp it (mss_clamp does not include tcp options) */
1558 if (mss_now > tp->rx_opt.mss_clamp)
1559 mss_now = tp->rx_opt.mss_clamp;
1561 /* Now subtract optional transport overhead */
1562 mss_now -= icsk->icsk_ext_hdr_len;
1564 /* Then reserve room for full set of TCP options and 8 bytes of data */
1565 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1569 /* Calculate MSS. Not accounting for SACKs here. */
1570 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1572 /* Subtract TCP options size, not including SACKs */
1573 return __tcp_mtu_to_mss(sk, pmtu) -
1574 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1577 /* Inverse of above */
1578 int tcp_mss_to_mtu(struct sock *sk, int mss)
1580 const struct tcp_sock *tp = tcp_sk(sk);
1581 const struct inet_connection_sock *icsk = inet_csk(sk);
1585 tp->tcp_header_len +
1586 icsk->icsk_ext_hdr_len +
1587 icsk->icsk_af_ops->net_header_len;
1589 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1590 if (icsk->icsk_af_ops->net_frag_header_len) {
1591 const struct dst_entry *dst = __sk_dst_get(sk);
1593 if (dst && dst_allfrag(dst))
1594 mtu += icsk->icsk_af_ops->net_frag_header_len;
1598 EXPORT_SYMBOL(tcp_mss_to_mtu);
1600 /* MTU probing init per socket */
1601 void tcp_mtup_init(struct sock *sk)
1603 struct tcp_sock *tp = tcp_sk(sk);
1604 struct inet_connection_sock *icsk = inet_csk(sk);
1605 struct net *net = sock_net(sk);
1607 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1608 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1609 icsk->icsk_af_ops->net_header_len;
1610 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1611 icsk->icsk_mtup.probe_size = 0;
1612 if (icsk->icsk_mtup.enabled)
1613 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1615 EXPORT_SYMBOL(tcp_mtup_init);
1617 /* This function synchronize snd mss to current pmtu/exthdr set.
1619 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1620 for TCP options, but includes only bare TCP header.
1622 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1623 It is minimum of user_mss and mss received with SYN.
1624 It also does not include TCP options.
1626 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1628 tp->mss_cache is current effective sending mss, including
1629 all tcp options except for SACKs. It is evaluated,
1630 taking into account current pmtu, but never exceeds
1631 tp->rx_opt.mss_clamp.
1633 NOTE1. rfc1122 clearly states that advertised MSS
1634 DOES NOT include either tcp or ip options.
1636 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1637 are READ ONLY outside this function. --ANK (980731)
1639 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1641 struct tcp_sock *tp = tcp_sk(sk);
1642 struct inet_connection_sock *icsk = inet_csk(sk);
1645 if (icsk->icsk_mtup.search_high > pmtu)
1646 icsk->icsk_mtup.search_high = pmtu;
1648 mss_now = tcp_mtu_to_mss(sk, pmtu);
1649 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1651 /* And store cached results */
1652 icsk->icsk_pmtu_cookie = pmtu;
1653 if (icsk->icsk_mtup.enabled)
1654 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1655 tp->mss_cache = mss_now;
1659 EXPORT_SYMBOL(tcp_sync_mss);
1661 /* Compute the current effective MSS, taking SACKs and IP options,
1662 * and even PMTU discovery events into account.
1664 unsigned int tcp_current_mss(struct sock *sk)
1666 const struct tcp_sock *tp = tcp_sk(sk);
1667 const struct dst_entry *dst = __sk_dst_get(sk);
1669 unsigned int header_len;
1670 struct tcp_out_options opts;
1671 struct tcp_md5sig_key *md5;
1673 mss_now = tp->mss_cache;
1676 u32 mtu = dst_mtu(dst);
1677 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1678 mss_now = tcp_sync_mss(sk, mtu);
1681 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1682 sizeof(struct tcphdr);
1683 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1684 * some common options. If this is an odd packet (because we have SACK
1685 * blocks etc) then our calculated header_len will be different, and
1686 * we have to adjust mss_now correspondingly */
1687 if (header_len != tp->tcp_header_len) {
1688 int delta = (int) header_len - tp->tcp_header_len;
1695 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1696 * As additional protections, we do not touch cwnd in retransmission phases,
1697 * and if application hit its sndbuf limit recently.
1699 static void tcp_cwnd_application_limited(struct sock *sk)
1701 struct tcp_sock *tp = tcp_sk(sk);
1703 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1704 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1705 /* Limited by application or receiver window. */
1706 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1707 u32 win_used = max(tp->snd_cwnd_used, init_win);
1708 if (win_used < tp->snd_cwnd) {
1709 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1710 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1712 tp->snd_cwnd_used = 0;
1714 tp->snd_cwnd_stamp = tcp_jiffies32;
1717 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1719 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1720 struct tcp_sock *tp = tcp_sk(sk);
1722 /* Track the maximum number of outstanding packets in each
1723 * window, and remember whether we were cwnd-limited then.
1725 if (!before(tp->snd_una, tp->max_packets_seq) ||
1726 tp->packets_out > tp->max_packets_out) {
1727 tp->max_packets_out = tp->packets_out;
1728 tp->max_packets_seq = tp->snd_nxt;
1729 tp->is_cwnd_limited = is_cwnd_limited;
1732 if (tcp_is_cwnd_limited(sk)) {
1733 /* Network is feed fully. */
1734 tp->snd_cwnd_used = 0;
1735 tp->snd_cwnd_stamp = tcp_jiffies32;
1737 /* Network starves. */
1738 if (tp->packets_out > tp->snd_cwnd_used)
1739 tp->snd_cwnd_used = tp->packets_out;
1741 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1742 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1743 !ca_ops->cong_control)
1744 tcp_cwnd_application_limited(sk);
1746 /* The following conditions together indicate the starvation
1747 * is caused by insufficient sender buffer:
1748 * 1) just sent some data (see tcp_write_xmit)
1749 * 2) not cwnd limited (this else condition)
1750 * 3) no more data to send (tcp_write_queue_empty())
1751 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1753 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1754 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1755 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1756 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1760 /* Minshall's variant of the Nagle send check. */
1761 static bool tcp_minshall_check(const struct tcp_sock *tp)
1763 return after(tp->snd_sml, tp->snd_una) &&
1764 !after(tp->snd_sml, tp->snd_nxt);
1767 /* Update snd_sml if this skb is under mss
1768 * Note that a TSO packet might end with a sub-mss segment
1769 * The test is really :
1770 * if ((skb->len % mss) != 0)
1771 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1772 * But we can avoid doing the divide again given we already have
1773 * skb_pcount = skb->len / mss_now
1775 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1776 const struct sk_buff *skb)
1778 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1779 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1782 /* Return false, if packet can be sent now without violation Nagle's rules:
1783 * 1. It is full sized. (provided by caller in %partial bool)
1784 * 2. Or it contains FIN. (already checked by caller)
1785 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1786 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1787 * With Minshall's modification: all sent small packets are ACKed.
1789 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1793 ((nonagle & TCP_NAGLE_CORK) ||
1794 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1797 /* Return how many segs we'd like on a TSO packet,
1798 * to send one TSO packet per ms
1800 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1805 bytes = min_t(unsigned long,
1806 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1807 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1809 /* Goal is to send at least one packet per ms,
1810 * not one big TSO packet every 100 ms.
1811 * This preserves ACK clocking and is consistent
1812 * with tcp_tso_should_defer() heuristic.
1814 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1819 /* Return the number of segments we want in the skb we are transmitting.
1820 * See if congestion control module wants to decide; otherwise, autosize.
1822 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1824 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1825 u32 min_tso, tso_segs;
1827 min_tso = ca_ops->min_tso_segs ?
1828 ca_ops->min_tso_segs(sk) :
1829 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1831 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1832 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1835 /* Returns the portion of skb which can be sent right away */
1836 static unsigned int tcp_mss_split_point(const struct sock *sk,
1837 const struct sk_buff *skb,
1838 unsigned int mss_now,
1839 unsigned int max_segs,
1842 const struct tcp_sock *tp = tcp_sk(sk);
1843 u32 partial, needed, window, max_len;
1845 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1846 max_len = mss_now * max_segs;
1848 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1851 needed = min(skb->len, window);
1853 if (max_len <= needed)
1856 partial = needed % mss_now;
1857 /* If last segment is not a full MSS, check if Nagle rules allow us
1858 * to include this last segment in this skb.
1859 * Otherwise, we'll split the skb at last MSS boundary
1861 if (tcp_nagle_check(partial != 0, tp, nonagle))
1862 return needed - partial;
1867 /* Can at least one segment of SKB be sent right now, according to the
1868 * congestion window rules? If so, return how many segments are allowed.
1870 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1871 const struct sk_buff *skb)
1873 u32 in_flight, cwnd, halfcwnd;
1875 /* Don't be strict about the congestion window for the final FIN. */
1876 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1877 tcp_skb_pcount(skb) == 1)
1880 in_flight = tcp_packets_in_flight(tp);
1881 cwnd = tp->snd_cwnd;
1882 if (in_flight >= cwnd)
1885 /* For better scheduling, ensure we have at least
1886 * 2 GSO packets in flight.
1888 halfcwnd = max(cwnd >> 1, 1U);
1889 return min(halfcwnd, cwnd - in_flight);
1892 /* Initialize TSO state of a skb.
1893 * This must be invoked the first time we consider transmitting
1894 * SKB onto the wire.
1896 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1898 int tso_segs = tcp_skb_pcount(skb);
1900 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1901 tcp_set_skb_tso_segs(skb, mss_now);
1902 tso_segs = tcp_skb_pcount(skb);
1908 /* Return true if the Nagle test allows this packet to be
1911 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1912 unsigned int cur_mss, int nonagle)
1914 /* Nagle rule does not apply to frames, which sit in the middle of the
1915 * write_queue (they have no chances to get new data).
1917 * This is implemented in the callers, where they modify the 'nonagle'
1918 * argument based upon the location of SKB in the send queue.
1920 if (nonagle & TCP_NAGLE_PUSH)
1923 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1924 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1927 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1933 /* Does at least the first segment of SKB fit into the send window? */
1934 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1935 const struct sk_buff *skb,
1936 unsigned int cur_mss)
1938 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1940 if (skb->len > cur_mss)
1941 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1943 return !after(end_seq, tcp_wnd_end(tp));
1946 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1947 * which is put after SKB on the list. It is very much like
1948 * tcp_fragment() except that it may make several kinds of assumptions
1949 * in order to speed up the splitting operation. In particular, we
1950 * know that all the data is in scatter-gather pages, and that the
1951 * packet has never been sent out before (and thus is not cloned).
1953 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1954 unsigned int mss_now, gfp_t gfp)
1956 int nlen = skb->len - len;
1957 struct sk_buff *buff;
1960 /* All of a TSO frame must be composed of paged data. */
1961 if (skb->len != skb->data_len)
1962 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
1963 skb, len, mss_now, gfp);
1965 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1966 if (unlikely(!buff))
1968 skb_copy_decrypted(buff, skb);
1970 sk_wmem_queued_add(sk, buff->truesize);
1971 sk_mem_charge(sk, buff->truesize);
1972 buff->truesize += nlen;
1973 skb->truesize -= nlen;
1975 /* Correct the sequence numbers. */
1976 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1977 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1978 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1980 /* PSH and FIN should only be set in the second packet. */
1981 flags = TCP_SKB_CB(skb)->tcp_flags;
1982 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1983 TCP_SKB_CB(buff)->tcp_flags = flags;
1985 /* This packet was never sent out yet, so no SACK bits. */
1986 TCP_SKB_CB(buff)->sacked = 0;
1988 tcp_skb_fragment_eor(skb, buff);
1990 buff->ip_summed = CHECKSUM_PARTIAL;
1991 skb_split(skb, buff, len);
1992 tcp_fragment_tstamp(skb, buff);
1994 /* Fix up tso_factor for both original and new SKB. */
1995 tcp_set_skb_tso_segs(skb, mss_now);
1996 tcp_set_skb_tso_segs(buff, mss_now);
1998 /* Link BUFF into the send queue. */
1999 __skb_header_release(buff);
2000 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2005 /* Try to defer sending, if possible, in order to minimize the amount
2006 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2008 * This algorithm is from John Heffner.
2010 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2011 bool *is_cwnd_limited,
2012 bool *is_rwnd_limited,
2015 const struct inet_connection_sock *icsk = inet_csk(sk);
2016 u32 send_win, cong_win, limit, in_flight;
2017 struct tcp_sock *tp = tcp_sk(sk);
2018 struct sk_buff *head;
2022 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2025 /* Avoid bursty behavior by allowing defer
2026 * only if the last write was recent (1 ms).
2027 * Note that tp->tcp_wstamp_ns can be in the future if we have
2028 * packets waiting in a qdisc or device for EDT delivery.
2030 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2034 in_flight = tcp_packets_in_flight(tp);
2036 BUG_ON(tcp_skb_pcount(skb) <= 1);
2037 BUG_ON(tp->snd_cwnd <= in_flight);
2039 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2041 /* From in_flight test above, we know that cwnd > in_flight. */
2042 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2044 limit = min(send_win, cong_win);
2046 /* If a full-sized TSO skb can be sent, do it. */
2047 if (limit >= max_segs * tp->mss_cache)
2050 /* Middle in queue won't get any more data, full sendable already? */
2051 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2054 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2056 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2058 /* If at least some fraction of a window is available,
2061 chunk /= win_divisor;
2065 /* Different approach, try not to defer past a single
2066 * ACK. Receiver should ACK every other full sized
2067 * frame, so if we have space for more than 3 frames
2070 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2074 /* TODO : use tsorted_sent_queue ? */
2075 head = tcp_rtx_queue_head(sk);
2078 delta = tp->tcp_clock_cache - head->tstamp;
2079 /* If next ACK is likely to come too late (half srtt), do not defer */
2080 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2083 /* Ok, it looks like it is advisable to defer.
2084 * Three cases are tracked :
2085 * 1) We are cwnd-limited
2086 * 2) We are rwnd-limited
2087 * 3) We are application limited.
2089 if (cong_win < send_win) {
2090 if (cong_win <= skb->len) {
2091 *is_cwnd_limited = true;
2095 if (send_win <= skb->len) {
2096 *is_rwnd_limited = true;
2101 /* If this packet won't get more data, do not wait. */
2102 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2103 TCP_SKB_CB(skb)->eor)
2112 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2114 struct inet_connection_sock *icsk = inet_csk(sk);
2115 struct tcp_sock *tp = tcp_sk(sk);
2116 struct net *net = sock_net(sk);
2120 interval = net->ipv4.sysctl_tcp_probe_interval;
2121 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2122 if (unlikely(delta >= interval * HZ)) {
2123 int mss = tcp_current_mss(sk);
2125 /* Update current search range */
2126 icsk->icsk_mtup.probe_size = 0;
2127 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2128 sizeof(struct tcphdr) +
2129 icsk->icsk_af_ops->net_header_len;
2130 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2132 /* Update probe time stamp */
2133 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2137 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2139 struct sk_buff *skb, *next;
2141 skb = tcp_send_head(sk);
2142 tcp_for_write_queue_from_safe(skb, next, sk) {
2143 if (len <= skb->len)
2146 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2155 /* Create a new MTU probe if we are ready.
2156 * MTU probe is regularly attempting to increase the path MTU by
2157 * deliberately sending larger packets. This discovers routing
2158 * changes resulting in larger path MTUs.
2160 * Returns 0 if we should wait to probe (no cwnd available),
2161 * 1 if a probe was sent,
2164 static int tcp_mtu_probe(struct sock *sk)
2166 struct inet_connection_sock *icsk = inet_csk(sk);
2167 struct tcp_sock *tp = tcp_sk(sk);
2168 struct sk_buff *skb, *nskb, *next;
2169 struct net *net = sock_net(sk);
2176 /* Not currently probing/verifying,
2178 * have enough cwnd, and
2179 * not SACKing (the variable headers throw things off)
2181 if (likely(!icsk->icsk_mtup.enabled ||
2182 icsk->icsk_mtup.probe_size ||
2183 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2184 tp->snd_cwnd < 11 ||
2185 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2188 /* Use binary search for probe_size between tcp_mss_base,
2189 * and current mss_clamp. if (search_high - search_low)
2190 * smaller than a threshold, backoff from probing.
2192 mss_now = tcp_current_mss(sk);
2193 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2194 icsk->icsk_mtup.search_low) >> 1);
2195 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2196 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2197 /* When misfortune happens, we are reprobing actively,
2198 * and then reprobe timer has expired. We stick with current
2199 * probing process by not resetting search range to its orignal.
2201 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2202 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2203 /* Check whether enough time has elaplased for
2204 * another round of probing.
2206 tcp_mtu_check_reprobe(sk);
2210 /* Have enough data in the send queue to probe? */
2211 if (tp->write_seq - tp->snd_nxt < size_needed)
2214 if (tp->snd_wnd < size_needed)
2216 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2219 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2220 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2221 if (!tcp_packets_in_flight(tp))
2227 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2230 /* We're allowed to probe. Build it now. */
2231 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2234 sk_wmem_queued_add(sk, nskb->truesize);
2235 sk_mem_charge(sk, nskb->truesize);
2237 skb = tcp_send_head(sk);
2238 skb_copy_decrypted(nskb, skb);
2240 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2241 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2242 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2243 TCP_SKB_CB(nskb)->sacked = 0;
2245 nskb->ip_summed = CHECKSUM_PARTIAL;
2247 tcp_insert_write_queue_before(nskb, skb, sk);
2248 tcp_highest_sack_replace(sk, skb, nskb);
2251 tcp_for_write_queue_from_safe(skb, next, sk) {
2252 copy = min_t(int, skb->len, probe_size - len);
2253 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2255 if (skb->len <= copy) {
2256 /* We've eaten all the data from this skb.
2258 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2259 /* If this is the last SKB we copy and eor is set
2260 * we need to propagate it to the new skb.
2262 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2263 tcp_skb_collapse_tstamp(nskb, skb);
2264 tcp_unlink_write_queue(skb, sk);
2265 sk_wmem_free_skb(sk, skb);
2267 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2268 ~(TCPHDR_FIN|TCPHDR_PSH);
2269 if (!skb_shinfo(skb)->nr_frags) {
2270 skb_pull(skb, copy);
2272 __pskb_trim_head(skb, copy);
2273 tcp_set_skb_tso_segs(skb, mss_now);
2275 TCP_SKB_CB(skb)->seq += copy;
2280 if (len >= probe_size)
2283 tcp_init_tso_segs(nskb, nskb->len);
2285 /* We're ready to send. If this fails, the probe will
2286 * be resegmented into mss-sized pieces by tcp_write_xmit().
2288 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2289 /* Decrement cwnd here because we are sending
2290 * effectively two packets. */
2292 tcp_event_new_data_sent(sk, nskb);
2294 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2295 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2296 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2304 static bool tcp_pacing_check(struct sock *sk)
2306 struct tcp_sock *tp = tcp_sk(sk);
2308 if (!tcp_needs_internal_pacing(sk))
2311 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2314 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2315 hrtimer_start(&tp->pacing_timer,
2316 ns_to_ktime(tp->tcp_wstamp_ns),
2317 HRTIMER_MODE_ABS_PINNED_SOFT);
2323 /* TCP Small Queues :
2324 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2325 * (These limits are doubled for retransmits)
2327 * - better RTT estimation and ACK scheduling
2330 * Alas, some drivers / subsystems require a fair amount
2331 * of queued bytes to ensure line rate.
2332 * One example is wifi aggregation (802.11 AMPDU)
2334 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2335 unsigned int factor)
2337 unsigned long limit;
2339 limit = max_t(unsigned long,
2341 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2342 if (sk->sk_pacing_status == SK_PACING_NONE)
2343 limit = min_t(unsigned long, limit,
2344 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2347 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2348 tcp_sk(sk)->tcp_tx_delay) {
2349 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2351 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2352 * approximate our needs assuming an ~100% skb->truesize overhead.
2353 * USEC_PER_SEC is approximated by 2^20.
2354 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2356 extra_bytes >>= (20 - 1);
2357 limit += extra_bytes;
2359 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2360 /* Always send skb if rtx queue is empty.
2361 * No need to wait for TX completion to call us back,
2362 * after softirq/tasklet schedule.
2363 * This helps when TX completions are delayed too much.
2365 if (tcp_rtx_queue_empty(sk))
2368 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2369 /* It is possible TX completion already happened
2370 * before we set TSQ_THROTTLED, so we must
2371 * test again the condition.
2373 smp_mb__after_atomic();
2374 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2380 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2382 const u32 now = tcp_jiffies32;
2383 enum tcp_chrono old = tp->chrono_type;
2385 if (old > TCP_CHRONO_UNSPEC)
2386 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2387 tp->chrono_start = now;
2388 tp->chrono_type = new;
2391 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2393 struct tcp_sock *tp = tcp_sk(sk);
2395 /* If there are multiple conditions worthy of tracking in a
2396 * chronograph then the highest priority enum takes precedence
2397 * over the other conditions. So that if something "more interesting"
2398 * starts happening, stop the previous chrono and start a new one.
2400 if (type > tp->chrono_type)
2401 tcp_chrono_set(tp, type);
2404 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2406 struct tcp_sock *tp = tcp_sk(sk);
2409 /* There are multiple conditions worthy of tracking in a
2410 * chronograph, so that the highest priority enum takes
2411 * precedence over the other conditions (see tcp_chrono_start).
2412 * If a condition stops, we only stop chrono tracking if
2413 * it's the "most interesting" or current chrono we are
2414 * tracking and starts busy chrono if we have pending data.
2416 if (tcp_rtx_and_write_queues_empty(sk))
2417 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2418 else if (type == tp->chrono_type)
2419 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2422 /* This routine writes packets to the network. It advances the
2423 * send_head. This happens as incoming acks open up the remote
2426 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2427 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2428 * account rare use of URG, this is not a big flaw.
2430 * Send at most one packet when push_one > 0. Temporarily ignore
2431 * cwnd limit to force at most one packet out when push_one == 2.
2433 * Returns true, if no segments are in flight and we have queued segments,
2434 * but cannot send anything now because of SWS or another problem.
2436 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2437 int push_one, gfp_t gfp)
2439 struct tcp_sock *tp = tcp_sk(sk);
2440 struct sk_buff *skb;
2441 unsigned int tso_segs, sent_pkts;
2444 bool is_cwnd_limited = false, is_rwnd_limited = false;
2449 tcp_mstamp_refresh(tp);
2451 /* Do MTU probing. */
2452 result = tcp_mtu_probe(sk);
2455 } else if (result > 0) {
2460 max_segs = tcp_tso_segs(sk, mss_now);
2461 while ((skb = tcp_send_head(sk))) {
2464 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2465 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2466 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2467 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2468 tcp_init_tso_segs(skb, mss_now);
2469 goto repair; /* Skip network transmission */
2472 if (tcp_pacing_check(sk))
2475 tso_segs = tcp_init_tso_segs(skb, mss_now);
2478 cwnd_quota = tcp_cwnd_test(tp, skb);
2481 /* Force out a loss probe pkt. */
2487 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2488 is_rwnd_limited = true;
2492 if (tso_segs == 1) {
2493 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2494 (tcp_skb_is_last(sk, skb) ?
2495 nonagle : TCP_NAGLE_PUSH))))
2499 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2500 &is_rwnd_limited, max_segs))
2505 if (tso_segs > 1 && !tcp_urg_mode(tp))
2506 limit = tcp_mss_split_point(sk, skb, mss_now,
2512 if (skb->len > limit &&
2513 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2516 if (tcp_small_queue_check(sk, skb, 0))
2519 /* Argh, we hit an empty skb(), presumably a thread
2520 * is sleeping in sendmsg()/sk_stream_wait_memory().
2521 * We do not want to send a pure-ack packet and have
2522 * a strange looking rtx queue with empty packet(s).
2524 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2527 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2531 /* Advance the send_head. This one is sent out.
2532 * This call will increment packets_out.
2534 tcp_event_new_data_sent(sk, skb);
2536 tcp_minshall_update(tp, mss_now, skb);
2537 sent_pkts += tcp_skb_pcount(skb);
2543 if (is_rwnd_limited)
2544 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2546 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2548 if (likely(sent_pkts)) {
2549 if (tcp_in_cwnd_reduction(sk))
2550 tp->prr_out += sent_pkts;
2552 /* Send one loss probe per tail loss episode. */
2554 tcp_schedule_loss_probe(sk, false);
2555 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2556 tcp_cwnd_validate(sk, is_cwnd_limited);
2559 return !tp->packets_out && !tcp_write_queue_empty(sk);
2562 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2564 struct inet_connection_sock *icsk = inet_csk(sk);
2565 struct tcp_sock *tp = tcp_sk(sk);
2566 u32 timeout, rto_delta_us;
2569 /* Don't do any loss probe on a Fast Open connection before 3WHS
2572 if (rcu_access_pointer(tp->fastopen_rsk))
2575 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2576 /* Schedule a loss probe in 2*RTT for SACK capable connections
2577 * not in loss recovery, that are either limited by cwnd or application.
2579 if ((early_retrans != 3 && early_retrans != 4) ||
2580 !tp->packets_out || !tcp_is_sack(tp) ||
2581 (icsk->icsk_ca_state != TCP_CA_Open &&
2582 icsk->icsk_ca_state != TCP_CA_CWR))
2585 /* Probe timeout is 2*rtt. Add minimum RTO to account
2586 * for delayed ack when there's one outstanding packet. If no RTT
2587 * sample is available then probe after TCP_TIMEOUT_INIT.
2590 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2591 if (tp->packets_out == 1)
2592 timeout += TCP_RTO_MIN;
2594 timeout += TCP_TIMEOUT_MIN;
2596 timeout = TCP_TIMEOUT_INIT;
2599 /* If the RTO formula yields an earlier time, then use that time. */
2600 rto_delta_us = advancing_rto ?
2601 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2602 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2603 if (rto_delta_us > 0)
2604 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2606 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2610 /* Thanks to skb fast clones, we can detect if a prior transmit of
2611 * a packet is still in a qdisc or driver queue.
2612 * In this case, there is very little point doing a retransmit !
2614 static bool skb_still_in_host_queue(const struct sock *sk,
2615 const struct sk_buff *skb)
2617 if (unlikely(skb_fclone_busy(sk, skb))) {
2618 NET_INC_STATS(sock_net(sk),
2619 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2625 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2626 * retransmit the last segment.
2628 void tcp_send_loss_probe(struct sock *sk)
2630 struct tcp_sock *tp = tcp_sk(sk);
2631 struct sk_buff *skb;
2633 int mss = tcp_current_mss(sk);
2635 skb = tcp_send_head(sk);
2636 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2637 pcount = tp->packets_out;
2638 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2639 if (tp->packets_out > pcount)
2643 skb = skb_rb_last(&sk->tcp_rtx_queue);
2644 if (unlikely(!skb)) {
2645 WARN_ONCE(tp->packets_out,
2646 "invalid inflight: %u state %u cwnd %u mss %d\n",
2647 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2648 inet_csk(sk)->icsk_pending = 0;
2652 /* At most one outstanding TLP retransmission. */
2653 if (tp->tlp_high_seq)
2656 if (skb_still_in_host_queue(sk, skb))
2659 pcount = tcp_skb_pcount(skb);
2660 if (WARN_ON(!pcount))
2663 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2664 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2665 (pcount - 1) * mss, mss,
2668 skb = skb_rb_next(skb);
2671 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2674 if (__tcp_retransmit_skb(sk, skb, 1))
2677 /* Record snd_nxt for loss detection. */
2678 tp->tlp_high_seq = tp->snd_nxt;
2681 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2682 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2683 inet_csk(sk)->icsk_pending = 0;
2688 /* Push out any pending frames which were held back due to
2689 * TCP_CORK or attempt at coalescing tiny packets.
2690 * The socket must be locked by the caller.
2692 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2695 /* If we are closed, the bytes will have to remain here.
2696 * In time closedown will finish, we empty the write queue and
2697 * all will be happy.
2699 if (unlikely(sk->sk_state == TCP_CLOSE))
2702 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2703 sk_gfp_mask(sk, GFP_ATOMIC)))
2704 tcp_check_probe_timer(sk);
2707 /* Send _single_ skb sitting at the send head. This function requires
2708 * true push pending frames to setup probe timer etc.
2710 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2712 struct sk_buff *skb = tcp_send_head(sk);
2714 BUG_ON(!skb || skb->len < mss_now);
2716 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2719 /* This function returns the amount that we can raise the
2720 * usable window based on the following constraints
2722 * 1. The window can never be shrunk once it is offered (RFC 793)
2723 * 2. We limit memory per socket
2726 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2727 * RECV.NEXT + RCV.WIN fixed until:
2728 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2730 * i.e. don't raise the right edge of the window until you can raise
2731 * it at least MSS bytes.
2733 * Unfortunately, the recommended algorithm breaks header prediction,
2734 * since header prediction assumes th->window stays fixed.
2736 * Strictly speaking, keeping th->window fixed violates the receiver
2737 * side SWS prevention criteria. The problem is that under this rule
2738 * a stream of single byte packets will cause the right side of the
2739 * window to always advance by a single byte.
2741 * Of course, if the sender implements sender side SWS prevention
2742 * then this will not be a problem.
2744 * BSD seems to make the following compromise:
2746 * If the free space is less than the 1/4 of the maximum
2747 * space available and the free space is less than 1/2 mss,
2748 * then set the window to 0.
2749 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2750 * Otherwise, just prevent the window from shrinking
2751 * and from being larger than the largest representable value.
2753 * This prevents incremental opening of the window in the regime
2754 * where TCP is limited by the speed of the reader side taking
2755 * data out of the TCP receive queue. It does nothing about
2756 * those cases where the window is constrained on the sender side
2757 * because the pipeline is full.
2759 * BSD also seems to "accidentally" limit itself to windows that are a
2760 * multiple of MSS, at least until the free space gets quite small.
2761 * This would appear to be a side effect of the mbuf implementation.
2762 * Combining these two algorithms results in the observed behavior
2763 * of having a fixed window size at almost all times.
2765 * Below we obtain similar behavior by forcing the offered window to
2766 * a multiple of the mss when it is feasible to do so.
2768 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2769 * Regular options like TIMESTAMP are taken into account.
2771 u32 __tcp_select_window(struct sock *sk)
2773 struct inet_connection_sock *icsk = inet_csk(sk);
2774 struct tcp_sock *tp = tcp_sk(sk);
2775 /* MSS for the peer's data. Previous versions used mss_clamp
2776 * here. I don't know if the value based on our guesses
2777 * of peer's MSS is better for the performance. It's more correct
2778 * but may be worse for the performance because of rcv_mss
2779 * fluctuations. --SAW 1998/11/1
2781 int mss = icsk->icsk_ack.rcv_mss;
2782 int free_space = tcp_space(sk);
2783 int allowed_space = tcp_full_space(sk);
2784 int full_space, window;
2786 if (sk_is_mptcp(sk))
2787 mptcp_space(sk, &free_space, &allowed_space);
2789 full_space = min_t(int, tp->window_clamp, allowed_space);
2791 if (unlikely(mss > full_space)) {
2796 if (free_space < (full_space >> 1)) {
2797 icsk->icsk_ack.quick = 0;
2799 if (tcp_under_memory_pressure(sk))
2800 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2803 /* free_space might become our new window, make sure we don't
2804 * increase it due to wscale.
2806 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2808 /* if free space is less than mss estimate, or is below 1/16th
2809 * of the maximum allowed, try to move to zero-window, else
2810 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2811 * new incoming data is dropped due to memory limits.
2812 * With large window, mss test triggers way too late in order
2813 * to announce zero window in time before rmem limit kicks in.
2815 if (free_space < (allowed_space >> 4) || free_space < mss)
2819 if (free_space > tp->rcv_ssthresh)
2820 free_space = tp->rcv_ssthresh;
2822 /* Don't do rounding if we are using window scaling, since the
2823 * scaled window will not line up with the MSS boundary anyway.
2825 if (tp->rx_opt.rcv_wscale) {
2826 window = free_space;
2828 /* Advertise enough space so that it won't get scaled away.
2829 * Import case: prevent zero window announcement if
2830 * 1<<rcv_wscale > mss.
2832 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2834 window = tp->rcv_wnd;
2835 /* Get the largest window that is a nice multiple of mss.
2836 * Window clamp already applied above.
2837 * If our current window offering is within 1 mss of the
2838 * free space we just keep it. This prevents the divide
2839 * and multiply from happening most of the time.
2840 * We also don't do any window rounding when the free space
2843 if (window <= free_space - mss || window > free_space)
2844 window = rounddown(free_space, mss);
2845 else if (mss == full_space &&
2846 free_space > window + (full_space >> 1))
2847 window = free_space;
2853 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2854 const struct sk_buff *next_skb)
2856 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2857 const struct skb_shared_info *next_shinfo =
2858 skb_shinfo(next_skb);
2859 struct skb_shared_info *shinfo = skb_shinfo(skb);
2861 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2862 shinfo->tskey = next_shinfo->tskey;
2863 TCP_SKB_CB(skb)->txstamp_ack |=
2864 TCP_SKB_CB(next_skb)->txstamp_ack;
2868 /* Collapses two adjacent SKB's during retransmission. */
2869 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2871 struct tcp_sock *tp = tcp_sk(sk);
2872 struct sk_buff *next_skb = skb_rb_next(skb);
2875 next_skb_size = next_skb->len;
2877 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2879 if (next_skb_size) {
2880 if (next_skb_size <= skb_availroom(skb))
2881 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2883 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
2886 tcp_highest_sack_replace(sk, next_skb, skb);
2888 /* Update sequence range on original skb. */
2889 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2891 /* Merge over control information. This moves PSH/FIN etc. over */
2892 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2894 /* All done, get rid of second SKB and account for it so
2895 * packet counting does not break.
2897 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2898 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2900 /* changed transmit queue under us so clear hints */
2901 tcp_clear_retrans_hints_partial(tp);
2902 if (next_skb == tp->retransmit_skb_hint)
2903 tp->retransmit_skb_hint = skb;
2905 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2907 tcp_skb_collapse_tstamp(skb, next_skb);
2909 tcp_rtx_queue_unlink_and_free(next_skb, sk);
2913 /* Check if coalescing SKBs is legal. */
2914 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2916 if (tcp_skb_pcount(skb) > 1)
2918 if (skb_cloned(skb))
2920 /* Some heuristics for collapsing over SACK'd could be invented */
2921 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2927 /* Collapse packets in the retransmit queue to make to create
2928 * less packets on the wire. This is only done on retransmission.
2930 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2933 struct tcp_sock *tp = tcp_sk(sk);
2934 struct sk_buff *skb = to, *tmp;
2937 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2939 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2942 skb_rbtree_walk_from_safe(skb, tmp) {
2943 if (!tcp_can_collapse(sk, skb))
2946 if (!tcp_skb_can_collapse(to, skb))
2959 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2962 if (!tcp_collapse_retrans(sk, to))
2967 /* This retransmits one SKB. Policy decisions and retransmit queue
2968 * state updates are done by the caller. Returns non-zero if an
2969 * error occurred which prevented the send.
2971 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2973 struct inet_connection_sock *icsk = inet_csk(sk);
2974 struct tcp_sock *tp = tcp_sk(sk);
2975 unsigned int cur_mss;
2979 /* Inconclusive MTU probe */
2980 if (icsk->icsk_mtup.probe_size)
2981 icsk->icsk_mtup.probe_size = 0;
2983 /* Do not sent more than we queued. 1/4 is reserved for possible
2984 * copying overhead: fragmentation, tunneling, mangling etc.
2986 if (refcount_read(&sk->sk_wmem_alloc) >
2987 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2991 if (skb_still_in_host_queue(sk, skb))
2994 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2995 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2999 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3003 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3004 return -EHOSTUNREACH; /* Routing failure or similar. */
3006 cur_mss = tcp_current_mss(sk);
3008 /* If receiver has shrunk his window, and skb is out of
3009 * new window, do not retransmit it. The exception is the
3010 * case, when window is shrunk to zero. In this case
3011 * our retransmit serves as a zero window probe.
3013 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
3014 TCP_SKB_CB(skb)->seq != tp->snd_una)
3017 len = cur_mss * segs;
3018 if (skb->len > len) {
3019 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3020 cur_mss, GFP_ATOMIC))
3021 return -ENOMEM; /* We'll try again later. */
3023 if (skb_unclone(skb, GFP_ATOMIC))
3026 diff = tcp_skb_pcount(skb);
3027 tcp_set_skb_tso_segs(skb, cur_mss);
3028 diff -= tcp_skb_pcount(skb);
3030 tcp_adjust_pcount(sk, skb, diff);
3031 if (skb->len < cur_mss)
3032 tcp_retrans_try_collapse(sk, skb, cur_mss);
3035 /* RFC3168, section 6.1.1.1. ECN fallback */
3036 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3037 tcp_ecn_clear_syn(sk, skb);
3039 /* Update global and local TCP statistics. */
3040 segs = tcp_skb_pcount(skb);
3041 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3042 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3043 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3044 tp->total_retrans += segs;
3045 tp->bytes_retrans += skb->len;
3047 /* make sure skb->data is aligned on arches that require it
3048 * and check if ack-trimming & collapsing extended the headroom
3049 * beyond what csum_start can cover.
3051 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3052 skb_headroom(skb) >= 0xFFFF)) {
3053 struct sk_buff *nskb;
3055 tcp_skb_tsorted_save(skb) {
3056 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3059 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3063 } tcp_skb_tsorted_restore(skb);
3066 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3067 tcp_rate_skb_sent(sk, skb);
3070 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3073 /* To avoid taking spuriously low RTT samples based on a timestamp
3074 * for a transmit that never happened, always mark EVER_RETRANS
3076 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3078 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3079 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3080 TCP_SKB_CB(skb)->seq, segs, err);
3083 trace_tcp_retransmit_skb(sk, skb);
3084 } else if (err != -EBUSY) {
3085 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3090 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3092 struct tcp_sock *tp = tcp_sk(sk);
3093 int err = __tcp_retransmit_skb(sk, skb, segs);
3096 #if FASTRETRANS_DEBUG > 0
3097 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3098 net_dbg_ratelimited("retrans_out leaked\n");
3101 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3102 tp->retrans_out += tcp_skb_pcount(skb);
3105 /* Save stamp of the first (attempted) retransmit. */
3106 if (!tp->retrans_stamp)
3107 tp->retrans_stamp = tcp_skb_timestamp(skb);
3109 if (tp->undo_retrans < 0)
3110 tp->undo_retrans = 0;
3111 tp->undo_retrans += tcp_skb_pcount(skb);
3115 /* This gets called after a retransmit timeout, and the initially
3116 * retransmitted data is acknowledged. It tries to continue
3117 * resending the rest of the retransmit queue, until either
3118 * we've sent it all or the congestion window limit is reached.
3120 void tcp_xmit_retransmit_queue(struct sock *sk)
3122 const struct inet_connection_sock *icsk = inet_csk(sk);
3123 struct sk_buff *skb, *rtx_head, *hole = NULL;
3124 struct tcp_sock *tp = tcp_sk(sk);
3125 bool rearm_timer = false;
3129 if (!tp->packets_out)
3132 rtx_head = tcp_rtx_queue_head(sk);
3133 skb = tp->retransmit_skb_hint ?: rtx_head;
3134 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3135 skb_rbtree_walk_from(skb) {
3139 if (tcp_pacing_check(sk))
3142 /* we could do better than to assign each time */
3144 tp->retransmit_skb_hint = skb;
3146 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3149 sacked = TCP_SKB_CB(skb)->sacked;
3150 /* In case tcp_shift_skb_data() have aggregated large skbs,
3151 * we need to make sure not sending too bigs TSO packets
3153 segs = min_t(int, segs, max_segs);
3155 if (tp->retrans_out >= tp->lost_out) {
3157 } else if (!(sacked & TCPCB_LOST)) {
3158 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3163 if (icsk->icsk_ca_state != TCP_CA_Loss)
3164 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3166 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3169 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3172 if (tcp_small_queue_check(sk, skb, 1))
3175 if (tcp_retransmit_skb(sk, skb, segs))
3178 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3180 if (tcp_in_cwnd_reduction(sk))
3181 tp->prr_out += tcp_skb_pcount(skb);
3183 if (skb == rtx_head &&
3184 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3189 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3190 inet_csk(sk)->icsk_rto,
3194 /* We allow to exceed memory limits for FIN packets to expedite
3195 * connection tear down and (memory) recovery.
3196 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3197 * or even be forced to close flow without any FIN.
3198 * In general, we want to allow one skb per socket to avoid hangs
3199 * with edge trigger epoll()
3201 void sk_forced_mem_schedule(struct sock *sk, int size)
3205 if (size <= sk->sk_forward_alloc)
3207 amt = sk_mem_pages(size);
3208 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3209 sk_memory_allocated_add(sk, amt);
3211 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3212 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3215 /* Send a FIN. The caller locks the socket for us.
3216 * We should try to send a FIN packet really hard, but eventually give up.
3218 void tcp_send_fin(struct sock *sk)
3220 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3221 struct tcp_sock *tp = tcp_sk(sk);
3223 /* Optimization, tack on the FIN if we have one skb in write queue and
3224 * this skb was not yet sent, or we are under memory pressure.
3225 * Note: in the latter case, FIN packet will be sent after a timeout,
3226 * as TCP stack thinks it has already been transmitted.
3229 if (!tskb && tcp_under_memory_pressure(sk))
3230 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3233 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3234 TCP_SKB_CB(tskb)->end_seq++;
3237 /* This means tskb was already sent.
3238 * Pretend we included the FIN on previous transmit.
3239 * We need to set tp->snd_nxt to the value it would have
3240 * if FIN had been sent. This is because retransmit path
3241 * does not change tp->snd_nxt.
3243 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3247 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3251 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3252 skb_reserve(skb, MAX_TCP_HEADER);
3253 sk_forced_mem_schedule(sk, skb->truesize);
3254 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3255 tcp_init_nondata_skb(skb, tp->write_seq,
3256 TCPHDR_ACK | TCPHDR_FIN);
3257 tcp_queue_skb(sk, skb);
3259 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3262 /* We get here when a process closes a file descriptor (either due to
3263 * an explicit close() or as a byproduct of exit()'ing) and there
3264 * was unread data in the receive queue. This behavior is recommended
3265 * by RFC 2525, section 2.17. -DaveM
3267 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3269 struct sk_buff *skb;
3271 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3273 /* NOTE: No TCP options attached and we never retransmit this. */
3274 skb = alloc_skb(MAX_TCP_HEADER, priority);
3276 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3280 /* Reserve space for headers and prepare control bits. */
3281 skb_reserve(skb, MAX_TCP_HEADER);
3282 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3283 TCPHDR_ACK | TCPHDR_RST);
3284 tcp_mstamp_refresh(tcp_sk(sk));
3286 if (tcp_transmit_skb(sk, skb, 0, priority))
3287 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3289 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3290 * skb here is different to the troublesome skb, so use NULL
3292 trace_tcp_send_reset(sk, NULL);
3295 /* Send a crossed SYN-ACK during socket establishment.
3296 * WARNING: This routine must only be called when we have already sent
3297 * a SYN packet that crossed the incoming SYN that caused this routine
3298 * to get called. If this assumption fails then the initial rcv_wnd
3299 * and rcv_wscale values will not be correct.
3301 int tcp_send_synack(struct sock *sk)
3303 struct sk_buff *skb;
3305 skb = tcp_rtx_queue_head(sk);
3306 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3307 pr_err("%s: wrong queue state\n", __func__);
3310 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3311 if (skb_cloned(skb)) {
3312 struct sk_buff *nskb;
3314 tcp_skb_tsorted_save(skb) {
3315 nskb = skb_copy(skb, GFP_ATOMIC);
3316 } tcp_skb_tsorted_restore(skb);
3319 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3320 tcp_highest_sack_replace(sk, skb, nskb);
3321 tcp_rtx_queue_unlink_and_free(skb, sk);
3322 __skb_header_release(nskb);
3323 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3324 sk_wmem_queued_add(sk, nskb->truesize);
3325 sk_mem_charge(sk, nskb->truesize);
3329 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3330 tcp_ecn_send_synack(sk, skb);
3332 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3336 * tcp_make_synack - Prepare a SYN-ACK.
3337 * sk: listener socket
3338 * dst: dst entry attached to the SYNACK
3339 * req: request_sock pointer
3340 * foc: cookie for tcp fast open
3341 * synack_type: Type of synback to prepare
3343 * Allocate one skb and build a SYNACK packet.
3344 * @dst is consumed : Caller should not use it again.
3346 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3347 struct request_sock *req,
3348 struct tcp_fastopen_cookie *foc,
3349 enum tcp_synack_type synack_type)
3351 struct inet_request_sock *ireq = inet_rsk(req);
3352 const struct tcp_sock *tp = tcp_sk(sk);
3353 struct tcp_md5sig_key *md5 = NULL;
3354 struct tcp_out_options opts;
3355 struct sk_buff *skb;
3356 int tcp_header_size;
3361 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3362 if (unlikely(!skb)) {
3366 /* Reserve space for headers. */
3367 skb_reserve(skb, MAX_TCP_HEADER);
3369 switch (synack_type) {
3370 case TCP_SYNACK_NORMAL:
3371 skb_set_owner_w(skb, req_to_sk(req));
3373 case TCP_SYNACK_COOKIE:
3374 /* Under synflood, we do not attach skb to a socket,
3375 * to avoid false sharing.
3378 case TCP_SYNACK_FASTOPEN:
3379 /* sk is a const pointer, because we want to express multiple
3380 * cpu might call us concurrently.
3381 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3383 skb_set_owner_w(skb, (struct sock *)sk);
3386 skb_dst_set(skb, dst);
3388 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3390 memset(&opts, 0, sizeof(opts));
3391 now = tcp_clock_ns();
3392 #ifdef CONFIG_SYN_COOKIES
3393 if (unlikely(req->cookie_ts))
3394 skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3398 skb->skb_mstamp_ns = now;
3399 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3400 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3403 #ifdef CONFIG_TCP_MD5SIG
3405 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3407 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3408 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3409 foc, synack_type) + sizeof(*th);
3411 skb_push(skb, tcp_header_size);
3412 skb_reset_transport_header(skb);
3414 th = (struct tcphdr *)skb->data;
3415 memset(th, 0, sizeof(struct tcphdr));
3418 tcp_ecn_make_synack(req, th);
3419 th->source = htons(ireq->ir_num);
3420 th->dest = ireq->ir_rmt_port;
3421 skb->mark = ireq->ir_mark;
3422 skb->ip_summed = CHECKSUM_PARTIAL;
3423 th->seq = htonl(tcp_rsk(req)->snt_isn);
3424 /* XXX data is queued and acked as is. No buffer/window check */
3425 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3427 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3428 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3429 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3430 th->doff = (tcp_header_size >> 2);
3431 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3433 #ifdef CONFIG_TCP_MD5SIG
3434 /* Okay, we have all we need - do the md5 hash if needed */
3436 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3437 md5, req_to_sk(req), skb);
3441 skb->skb_mstamp_ns = now;
3442 tcp_add_tx_delay(skb, tp);
3446 EXPORT_SYMBOL(tcp_make_synack);
3448 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3450 struct inet_connection_sock *icsk = inet_csk(sk);
3451 const struct tcp_congestion_ops *ca;
3452 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3454 if (ca_key == TCP_CA_UNSPEC)
3458 ca = tcp_ca_find_key(ca_key);
3459 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3460 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3461 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3462 icsk->icsk_ca_ops = ca;
3467 /* Do all connect socket setups that can be done AF independent. */
3468 static void tcp_connect_init(struct sock *sk)
3470 const struct dst_entry *dst = __sk_dst_get(sk);
3471 struct tcp_sock *tp = tcp_sk(sk);
3475 /* We'll fix this up when we get a response from the other end.
3476 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3478 tp->tcp_header_len = sizeof(struct tcphdr);
3479 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3480 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3482 #ifdef CONFIG_TCP_MD5SIG
3483 if (tp->af_specific->md5_lookup(sk, sk))
3484 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3487 /* If user gave his TCP_MAXSEG, record it to clamp */
3488 if (tp->rx_opt.user_mss)
3489 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3492 tcp_sync_mss(sk, dst_mtu(dst));
3494 tcp_ca_dst_init(sk, dst);
3496 if (!tp->window_clamp)
3497 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3498 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3500 tcp_initialize_rcv_mss(sk);
3502 /* limit the window selection if the user enforce a smaller rx buffer */
3503 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3504 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3505 tp->window_clamp = tcp_full_space(sk);
3507 rcv_wnd = tcp_rwnd_init_bpf(sk);
3509 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3511 tcp_select_initial_window(sk, tcp_full_space(sk),
3512 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3515 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3519 tp->rx_opt.rcv_wscale = rcv_wscale;
3520 tp->rcv_ssthresh = tp->rcv_wnd;
3523 sock_reset_flag(sk, SOCK_DONE);
3526 tcp_write_queue_purge(sk);
3527 tp->snd_una = tp->write_seq;
3528 tp->snd_sml = tp->write_seq;
3529 tp->snd_up = tp->write_seq;
3530 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3532 if (likely(!tp->repair))
3535 tp->rcv_tstamp = tcp_jiffies32;
3536 tp->rcv_wup = tp->rcv_nxt;
3537 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3539 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3540 inet_csk(sk)->icsk_retransmits = 0;
3541 tcp_clear_retrans(tp);
3544 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3546 struct tcp_sock *tp = tcp_sk(sk);
3547 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3549 tcb->end_seq += skb->len;
3550 __skb_header_release(skb);
3551 sk_wmem_queued_add(sk, skb->truesize);
3552 sk_mem_charge(sk, skb->truesize);
3553 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3554 tp->packets_out += tcp_skb_pcount(skb);
3557 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3558 * queue a data-only packet after the regular SYN, such that regular SYNs
3559 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3560 * only the SYN sequence, the data are retransmitted in the first ACK.
3561 * If cookie is not cached or other error occurs, falls back to send a
3562 * regular SYN with Fast Open cookie request option.
3564 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3566 struct tcp_sock *tp = tcp_sk(sk);
3567 struct tcp_fastopen_request *fo = tp->fastopen_req;
3569 struct sk_buff *syn_data;
3571 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3572 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3575 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3576 * user-MSS. Reserve maximum option space for middleboxes that add
3577 * private TCP options. The cost is reduced data space in SYN :(
3579 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3581 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3582 MAX_TCP_OPTION_SPACE;
3584 space = min_t(size_t, space, fo->size);
3586 /* limit to order-0 allocations */
3587 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3589 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3592 syn_data->ip_summed = CHECKSUM_PARTIAL;
3593 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3595 int copied = copy_from_iter(skb_put(syn_data, space), space,
3596 &fo->data->msg_iter);
3597 if (unlikely(!copied)) {
3598 tcp_skb_tsorted_anchor_cleanup(syn_data);
3599 kfree_skb(syn_data);
3602 if (copied != space) {
3603 skb_trim(syn_data, copied);
3606 skb_zcopy_set(syn_data, fo->uarg, NULL);
3608 /* No more data pending in inet_wait_for_connect() */
3609 if (space == fo->size)
3613 tcp_connect_queue_skb(sk, syn_data);
3615 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3617 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3619 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3621 /* Now full SYN+DATA was cloned and sent (or not),
3622 * remove the SYN from the original skb (syn_data)
3623 * we keep in write queue in case of a retransmit, as we
3624 * also have the SYN packet (with no data) in the same queue.
3626 TCP_SKB_CB(syn_data)->seq++;
3627 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3629 tp->syn_data = (fo->copied > 0);
3630 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3631 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3635 /* data was not sent, put it in write_queue */
3636 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3637 tp->packets_out -= tcp_skb_pcount(syn_data);
3640 /* Send a regular SYN with Fast Open cookie request option */
3641 if (fo->cookie.len > 0)
3643 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3645 tp->syn_fastopen = 0;
3647 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3651 /* Build a SYN and send it off. */
3652 int tcp_connect(struct sock *sk)
3654 struct tcp_sock *tp = tcp_sk(sk);
3655 struct sk_buff *buff;
3658 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3660 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3661 return -EHOSTUNREACH; /* Routing failure or similar. */
3663 tcp_connect_init(sk);
3665 if (unlikely(tp->repair)) {
3666 tcp_finish_connect(sk, NULL);
3670 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3671 if (unlikely(!buff))
3674 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3675 tcp_mstamp_refresh(tp);
3676 tp->retrans_stamp = tcp_time_stamp(tp);
3677 tcp_connect_queue_skb(sk, buff);
3678 tcp_ecn_send_syn(sk, buff);
3679 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3681 /* Send off SYN; include data in Fast Open. */
3682 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3683 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3684 if (err == -ECONNREFUSED)
3687 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3688 * in order to make this packet get counted in tcpOutSegs.
3690 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3691 tp->pushed_seq = tp->write_seq;
3692 buff = tcp_send_head(sk);
3693 if (unlikely(buff)) {
3694 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3695 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3697 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3699 /* Timer for repeating the SYN until an answer. */
3700 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3701 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3704 EXPORT_SYMBOL(tcp_connect);
3706 /* Send out a delayed ack, the caller does the policy checking
3707 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3710 void tcp_send_delayed_ack(struct sock *sk)
3712 struct inet_connection_sock *icsk = inet_csk(sk);
3713 int ato = icsk->icsk_ack.ato;
3714 unsigned long timeout;
3716 if (ato > TCP_DELACK_MIN) {
3717 const struct tcp_sock *tp = tcp_sk(sk);
3718 int max_ato = HZ / 2;
3720 if (inet_csk_in_pingpong_mode(sk) ||
3721 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3722 max_ato = TCP_DELACK_MAX;
3724 /* Slow path, intersegment interval is "high". */
3726 /* If some rtt estimate is known, use it to bound delayed ack.
3727 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3731 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3738 ato = min(ato, max_ato);
3741 /* Stay within the limit we were given */
3742 timeout = jiffies + ato;
3744 /* Use new timeout only if there wasn't a older one earlier. */
3745 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3746 /* If delack timer was blocked or is about to expire,
3749 if (icsk->icsk_ack.blocked ||
3750 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3755 if (!time_before(timeout, icsk->icsk_ack.timeout))
3756 timeout = icsk->icsk_ack.timeout;
3758 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3759 icsk->icsk_ack.timeout = timeout;
3760 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3763 /* This routine sends an ack and also updates the window. */
3764 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3766 struct sk_buff *buff;
3768 /* If we have been reset, we may not send again. */
3769 if (sk->sk_state == TCP_CLOSE)
3772 /* We are not putting this on the write queue, so
3773 * tcp_transmit_skb() will set the ownership to this
3776 buff = alloc_skb(MAX_TCP_HEADER,
3777 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3778 if (unlikely(!buff)) {
3779 inet_csk_schedule_ack(sk);
3780 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3781 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3782 TCP_DELACK_MAX, TCP_RTO_MAX);
3786 /* Reserve space for headers and prepare control bits. */
3787 skb_reserve(buff, MAX_TCP_HEADER);
3788 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3790 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3792 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3794 skb_set_tcp_pure_ack(buff);
3796 /* Send it off, this clears delayed acks for us. */
3797 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3799 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3801 void tcp_send_ack(struct sock *sk)
3803 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3806 /* This routine sends a packet with an out of date sequence
3807 * number. It assumes the other end will try to ack it.
3809 * Question: what should we make while urgent mode?
3810 * 4.4BSD forces sending single byte of data. We cannot send
3811 * out of window data, because we have SND.NXT==SND.MAX...
3813 * Current solution: to send TWO zero-length segments in urgent mode:
3814 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3815 * out-of-date with SND.UNA-1 to probe window.
3817 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3819 struct tcp_sock *tp = tcp_sk(sk);
3820 struct sk_buff *skb;
3822 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3823 skb = alloc_skb(MAX_TCP_HEADER,
3824 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3828 /* Reserve space for headers and set control bits. */
3829 skb_reserve(skb, MAX_TCP_HEADER);
3830 /* Use a previous sequence. This should cause the other
3831 * end to send an ack. Don't queue or clone SKB, just
3834 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3835 NET_INC_STATS(sock_net(sk), mib);
3836 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3839 /* Called from setsockopt( ... TCP_REPAIR ) */
3840 void tcp_send_window_probe(struct sock *sk)
3842 if (sk->sk_state == TCP_ESTABLISHED) {
3843 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3844 tcp_mstamp_refresh(tcp_sk(sk));
3845 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3849 /* Initiate keepalive or window probe from timer. */
3850 int tcp_write_wakeup(struct sock *sk, int mib)
3852 struct tcp_sock *tp = tcp_sk(sk);
3853 struct sk_buff *skb;
3855 if (sk->sk_state == TCP_CLOSE)
3858 skb = tcp_send_head(sk);
3859 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3861 unsigned int mss = tcp_current_mss(sk);
3862 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3864 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3865 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3867 /* We are probing the opening of a window
3868 * but the window size is != 0
3869 * must have been a result SWS avoidance ( sender )
3871 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3873 seg_size = min(seg_size, mss);
3874 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3875 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3876 skb, seg_size, mss, GFP_ATOMIC))
3878 } else if (!tcp_skb_pcount(skb))
3879 tcp_set_skb_tso_segs(skb, mss);
3881 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3882 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3884 tcp_event_new_data_sent(sk, skb);
3887 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3888 tcp_xmit_probe_skb(sk, 1, mib);
3889 return tcp_xmit_probe_skb(sk, 0, mib);
3893 /* A window probe timeout has occurred. If window is not closed send
3894 * a partial packet else a zero probe.
3896 void tcp_send_probe0(struct sock *sk)
3898 struct inet_connection_sock *icsk = inet_csk(sk);
3899 struct tcp_sock *tp = tcp_sk(sk);
3900 struct net *net = sock_net(sk);
3901 unsigned long timeout;
3904 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3906 if (tp->packets_out || tcp_write_queue_empty(sk)) {
3907 /* Cancel probe timer, if it is not required. */
3908 icsk->icsk_probes_out = 0;
3909 icsk->icsk_backoff = 0;
3913 icsk->icsk_probes_out++;
3915 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3916 icsk->icsk_backoff++;
3917 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
3919 /* If packet was not sent due to local congestion,
3920 * Let senders fight for local resources conservatively.
3922 timeout = TCP_RESOURCE_PROBE_INTERVAL;
3924 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
3927 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3929 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3933 tcp_rsk(req)->txhash = net_tx_rndhash();
3934 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3936 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3937 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3938 if (unlikely(tcp_passive_fastopen(sk)))
3939 tcp_sk(sk)->total_retrans++;
3940 trace_tcp_retransmit_synack(sk, req);
3944 EXPORT_SYMBOL(tcp_rtx_synack);