1 // SPDX-License-Identifier: GPL-2.0-only
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
38 #define pr_fmt(fmt) "TCP: " fmt
41 #include <net/mptcp.h>
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
48 #include <trace/events/tcp.h>
50 /* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
53 void tcp_mstamp_refresh(struct tcp_sock *tp)
55 u64 val = tcp_clock_ns();
57 tp->tcp_clock_cache = val;
58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 int push_one, gfp_t gfp);
64 /* Account for new data that has been sent to the network. */
65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
67 struct inet_connection_sock *icsk = inet_csk(sk);
68 struct tcp_sock *tp = tcp_sk(sk);
69 unsigned int prior_packets = tp->packets_out;
71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
73 __skb_unlink(skb, &sk->sk_write_queue);
74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
76 if (tp->highest_sack == NULL)
77 tp->highest_sack = skb;
79 tp->packets_out += tcp_skb_pcount(skb);
80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
87 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
88 * window scaling factor due to loss of precision.
89 * If window has been shrunk, what should we make? It is not clear at all.
90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
92 * invalid. OK, let's make this for now:
94 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 const struct tcp_sock *tp = tcp_sk(sk);
98 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
99 (tp->rx_opt.wscale_ok &&
100 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
103 return tcp_wnd_end(tp);
106 /* Calculate mss to advertise in SYN segment.
107 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 * 1. It is independent of path mtu.
110 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
111 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
112 * attached devices, because some buggy hosts are confused by
114 * 4. We do not make 3, we advertise MSS, calculated from first
115 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
116 * This may be overridden via information stored in routing table.
117 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
118 * probably even Jumbo".
120 static __u16 tcp_advertise_mss(struct sock *sk)
122 struct tcp_sock *tp = tcp_sk(sk);
123 const struct dst_entry *dst = __sk_dst_get(sk);
124 int mss = tp->advmss;
127 unsigned int metric = dst_metric_advmss(dst);
138 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
139 * This is the first part of cwnd validation mechanism.
141 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 struct tcp_sock *tp = tcp_sk(sk);
144 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
145 u32 cwnd = tp->snd_cwnd;
147 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149 tp->snd_ssthresh = tcp_current_ssthresh(sk);
150 restart_cwnd = min(restart_cwnd, cwnd);
152 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 tp->snd_cwnd = max(cwnd, restart_cwnd);
155 tp->snd_cwnd_stamp = tcp_jiffies32;
156 tp->snd_cwnd_used = 0;
159 /* Congestion state accounting after a packet has been sent. */
160 static void tcp_event_data_sent(struct tcp_sock *tp,
163 struct inet_connection_sock *icsk = inet_csk(sk);
164 const u32 now = tcp_jiffies32;
166 if (tcp_packets_in_flight(tp) == 0)
167 tcp_ca_event(sk, CA_EVENT_TX_START);
169 /* If this is the first data packet sent in response to the
170 * previous received data,
171 * and it is a reply for ato after last received packet,
172 * increase pingpong count.
174 if (before(tp->lsndtime, icsk->icsk_ack.lrcvtime) &&
175 (u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 inet_csk_inc_pingpong_cnt(sk);
181 /* Account for an ACK we sent. */
182 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
185 struct tcp_sock *tp = tcp_sk(sk);
187 if (unlikely(tp->compressed_ack)) {
188 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
190 tp->compressed_ack = 0;
191 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
195 if (unlikely(rcv_nxt != tp->rcv_nxt))
196 return; /* Special ACK sent by DCTCP to reflect ECN */
197 tcp_dec_quickack_mode(sk, pkts);
198 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
201 /* Determine a window scaling and initial window to offer.
202 * Based on the assumption that the given amount of space
203 * will be offered. Store the results in the tp structure.
204 * NOTE: for smooth operation initial space offering should
205 * be a multiple of mss if possible. We assume here that mss >= 1.
206 * This MUST be enforced by all callers.
208 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
209 __u32 *rcv_wnd, __u32 *window_clamp,
210 int wscale_ok, __u8 *rcv_wscale,
213 unsigned int space = (__space < 0 ? 0 : __space);
215 /* If no clamp set the clamp to the max possible scaled window */
216 if (*window_clamp == 0)
217 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
218 space = min(*window_clamp, space);
220 /* Quantize space offering to a multiple of mss if possible. */
222 space = rounddown(space, mss);
224 /* NOTE: offering an initial window larger than 32767
225 * will break some buggy TCP stacks. If the admin tells us
226 * it is likely we could be speaking with such a buggy stack
227 * we will truncate our initial window offering to 32K-1
228 * unless the remote has sent us a window scaling option,
229 * which we interpret as a sign the remote TCP is not
230 * misinterpreting the window field as a signed quantity.
232 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
233 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
235 (*rcv_wnd) = min_t(u32, space, U16_MAX);
238 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
242 /* Set window scaling on max possible window */
243 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
244 space = max_t(u32, space, sysctl_rmem_max);
245 space = min_t(u32, space, *window_clamp);
246 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
249 /* Set the clamp no higher than max representable value */
250 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
252 EXPORT_SYMBOL(tcp_select_initial_window);
254 /* Chose a new window to advertise, update state in tcp_sock for the
255 * socket, and return result with RFC1323 scaling applied. The return
256 * value can be stuffed directly into th->window for an outgoing
259 static u16 tcp_select_window(struct sock *sk)
261 struct tcp_sock *tp = tcp_sk(sk);
262 u32 old_win = tp->rcv_wnd;
263 u32 cur_win = tcp_receive_window(tp);
264 u32 new_win = __tcp_select_window(sk);
266 /* Never shrink the offered window */
267 if (new_win < cur_win) {
268 /* Danger Will Robinson!
269 * Don't update rcv_wup/rcv_wnd here or else
270 * we will not be able to advertise a zero
271 * window in time. --DaveM
273 * Relax Will Robinson.
276 NET_INC_STATS(sock_net(sk),
277 LINUX_MIB_TCPWANTZEROWINDOWADV);
278 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
280 tp->rcv_wnd = new_win;
281 tp->rcv_wup = tp->rcv_nxt;
283 /* Make sure we do not exceed the maximum possible
286 if (!tp->rx_opt.rcv_wscale &&
287 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
288 new_win = min(new_win, MAX_TCP_WINDOW);
290 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
292 /* RFC1323 scaling applied */
293 new_win >>= tp->rx_opt.rcv_wscale;
295 /* If we advertise zero window, disable fast path. */
299 NET_INC_STATS(sock_net(sk),
300 LINUX_MIB_TCPTOZEROWINDOWADV);
301 } else if (old_win == 0) {
302 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
308 /* Packet ECN state for a SYN-ACK */
309 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
311 const struct tcp_sock *tp = tcp_sk(sk);
313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
314 if (!(tp->ecn_flags & TCP_ECN_OK))
315 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
316 else if (tcp_ca_needs_ecn(sk) ||
317 tcp_bpf_ca_needs_ecn(sk))
321 /* Packet ECN state for a SYN. */
322 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
324 struct tcp_sock *tp = tcp_sk(sk);
325 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
326 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
327 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
330 const struct dst_entry *dst = __sk_dst_get(sk);
332 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
339 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
340 tp->ecn_flags = TCP_ECN_OK;
341 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
346 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
348 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
349 /* tp->ecn_flags are cleared at a later point in time when
350 * SYN ACK is ultimatively being received.
352 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
356 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
358 if (inet_rsk(req)->ecn_ok)
362 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
365 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
366 struct tcphdr *th, int tcp_header_len)
368 struct tcp_sock *tp = tcp_sk(sk);
370 if (tp->ecn_flags & TCP_ECN_OK) {
371 /* Not-retransmitted data segment: set ECT and inject CWR. */
372 if (skb->len != tcp_header_len &&
373 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
375 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
376 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
378 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
380 } else if (!tcp_ca_needs_ecn(sk)) {
381 /* ACK or retransmitted segment: clear ECT|CE */
382 INET_ECN_dontxmit(sk);
384 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
389 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
390 * auto increment end seqno.
392 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
394 skb->ip_summed = CHECKSUM_PARTIAL;
396 TCP_SKB_CB(skb)->tcp_flags = flags;
398 tcp_skb_pcount_set(skb, 1);
400 TCP_SKB_CB(skb)->seq = seq;
401 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
403 TCP_SKB_CB(skb)->end_seq = seq;
406 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
408 return tp->snd_una != tp->snd_up;
411 #define OPTION_SACK_ADVERTISE BIT(0)
412 #define OPTION_TS BIT(1)
413 #define OPTION_MD5 BIT(2)
414 #define OPTION_WSCALE BIT(3)
415 #define OPTION_FAST_OPEN_COOKIE BIT(8)
416 #define OPTION_SMC BIT(9)
417 #define OPTION_MPTCP BIT(10)
419 static void smc_options_write(__be32 *ptr, u16 *options)
421 #if IS_ENABLED(CONFIG_SMC)
422 if (static_branch_unlikely(&tcp_have_smc)) {
423 if (unlikely(OPTION_SMC & *options)) {
424 *ptr++ = htonl((TCPOPT_NOP << 24) |
427 (TCPOLEN_EXP_SMC_BASE));
428 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
434 struct tcp_out_options {
435 u16 options; /* bit field of OPTION_* */
436 u16 mss; /* 0 to disable */
437 u8 ws; /* window scale, 0 to disable */
438 u8 num_sack_blocks; /* number of SACK blocks to include */
439 u8 hash_size; /* bytes in hash_location */
440 u8 bpf_opt_len; /* length of BPF hdr option */
441 __u8 *hash_location; /* temporary pointer, overloaded */
442 __u32 tsval, tsecr; /* need to include OPTION_TS */
443 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
444 struct mptcp_out_options mptcp;
447 static void mptcp_options_write(__be32 *ptr, const struct tcp_sock *tp,
448 struct tcp_out_options *opts)
450 #if IS_ENABLED(CONFIG_MPTCP)
451 if (unlikely(OPTION_MPTCP & opts->options))
452 mptcp_write_options(ptr, tp, &opts->mptcp);
456 #ifdef CONFIG_CGROUP_BPF
457 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
458 enum tcp_synack_type synack_type)
461 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
463 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
464 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
469 /* req, syn_skb and synack_type are used when writing synack */
470 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
471 struct request_sock *req,
472 struct sk_buff *syn_skb,
473 enum tcp_synack_type synack_type,
474 struct tcp_out_options *opts,
475 unsigned int *remaining)
477 struct bpf_sock_ops_kern sock_ops;
480 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
481 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
485 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
488 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
490 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
493 /* The listen "sk" cannot be passed here because
494 * it is not locked. It would not make too much
495 * sense to do bpf_setsockopt(listen_sk) based
496 * on individual connection request also.
498 * Thus, "req" is passed here and the cgroup-bpf-progs
499 * of the listen "sk" will be run.
501 * "req" is also used here for fastopen even the "sk" here is
502 * a fullsock "child" sk. It is to keep the behavior
503 * consistent between fastopen and non-fastopen on
504 * the bpf programming side.
506 sock_ops.sk = (struct sock *)req;
507 sock_ops.syn_skb = syn_skb;
509 sock_owned_by_me(sk);
511 sock_ops.is_fullsock = 1;
515 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
516 sock_ops.remaining_opt_len = *remaining;
517 /* tcp_current_mss() does not pass a skb */
519 bpf_skops_init_skb(&sock_ops, skb, 0);
521 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
523 if (err || sock_ops.remaining_opt_len == *remaining)
526 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
527 /* round up to 4 bytes */
528 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
530 *remaining -= opts->bpf_opt_len;
533 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
534 struct request_sock *req,
535 struct sk_buff *syn_skb,
536 enum tcp_synack_type synack_type,
537 struct tcp_out_options *opts)
539 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
540 struct bpf_sock_ops_kern sock_ops;
543 if (likely(!max_opt_len))
546 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
548 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
551 sock_ops.sk = (struct sock *)req;
552 sock_ops.syn_skb = syn_skb;
554 sock_owned_by_me(sk);
556 sock_ops.is_fullsock = 1;
560 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
561 sock_ops.remaining_opt_len = max_opt_len;
562 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
563 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
565 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
570 nr_written = max_opt_len - sock_ops.remaining_opt_len;
572 if (nr_written < max_opt_len)
573 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
574 max_opt_len - nr_written);
577 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
578 struct request_sock *req,
579 struct sk_buff *syn_skb,
580 enum tcp_synack_type synack_type,
581 struct tcp_out_options *opts,
582 unsigned int *remaining)
586 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
587 struct request_sock *req,
588 struct sk_buff *syn_skb,
589 enum tcp_synack_type synack_type,
590 struct tcp_out_options *opts)
595 /* Write previously computed TCP options to the packet.
597 * Beware: Something in the Internet is very sensitive to the ordering of
598 * TCP options, we learned this through the hard way, so be careful here.
599 * Luckily we can at least blame others for their non-compliance but from
600 * inter-operability perspective it seems that we're somewhat stuck with
601 * the ordering which we have been using if we want to keep working with
602 * those broken things (not that it currently hurts anybody as there isn't
603 * particular reason why the ordering would need to be changed).
605 * At least SACK_PERM as the first option is known to lead to a disaster
606 * (but it may well be that other scenarios fail similarly).
608 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
609 struct tcp_out_options *opts)
611 u16 options = opts->options; /* mungable copy */
613 if (unlikely(OPTION_MD5 & options)) {
614 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
615 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
616 /* overload cookie hash location */
617 opts->hash_location = (__u8 *)ptr;
621 if (unlikely(opts->mss)) {
622 *ptr++ = htonl((TCPOPT_MSS << 24) |
623 (TCPOLEN_MSS << 16) |
627 if (likely(OPTION_TS & options)) {
628 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
629 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
630 (TCPOLEN_SACK_PERM << 16) |
631 (TCPOPT_TIMESTAMP << 8) |
633 options &= ~OPTION_SACK_ADVERTISE;
635 *ptr++ = htonl((TCPOPT_NOP << 24) |
637 (TCPOPT_TIMESTAMP << 8) |
640 *ptr++ = htonl(opts->tsval);
641 *ptr++ = htonl(opts->tsecr);
644 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
645 *ptr++ = htonl((TCPOPT_NOP << 24) |
647 (TCPOPT_SACK_PERM << 8) |
651 if (unlikely(OPTION_WSCALE & options)) {
652 *ptr++ = htonl((TCPOPT_NOP << 24) |
653 (TCPOPT_WINDOW << 16) |
654 (TCPOLEN_WINDOW << 8) |
658 if (unlikely(opts->num_sack_blocks)) {
659 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
660 tp->duplicate_sack : tp->selective_acks;
663 *ptr++ = htonl((TCPOPT_NOP << 24) |
666 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
667 TCPOLEN_SACK_PERBLOCK)));
669 for (this_sack = 0; this_sack < opts->num_sack_blocks;
671 *ptr++ = htonl(sp[this_sack].start_seq);
672 *ptr++ = htonl(sp[this_sack].end_seq);
675 tp->rx_opt.dsack = 0;
678 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
679 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
681 u32 len; /* Fast Open option length */
684 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
685 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
686 TCPOPT_FASTOPEN_MAGIC);
687 p += TCPOLEN_EXP_FASTOPEN_BASE;
689 len = TCPOLEN_FASTOPEN_BASE + foc->len;
690 *p++ = TCPOPT_FASTOPEN;
694 memcpy(p, foc->val, foc->len);
695 if ((len & 3) == 2) {
696 p[foc->len] = TCPOPT_NOP;
697 p[foc->len + 1] = TCPOPT_NOP;
699 ptr += (len + 3) >> 2;
702 smc_options_write(ptr, &options);
704 mptcp_options_write(ptr, tp, opts);
707 static void smc_set_option(const struct tcp_sock *tp,
708 struct tcp_out_options *opts,
709 unsigned int *remaining)
711 #if IS_ENABLED(CONFIG_SMC)
712 if (static_branch_unlikely(&tcp_have_smc)) {
714 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
715 opts->options |= OPTION_SMC;
716 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
723 static void smc_set_option_cond(const struct tcp_sock *tp,
724 const struct inet_request_sock *ireq,
725 struct tcp_out_options *opts,
726 unsigned int *remaining)
728 #if IS_ENABLED(CONFIG_SMC)
729 if (static_branch_unlikely(&tcp_have_smc)) {
730 if (tp->syn_smc && ireq->smc_ok) {
731 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
732 opts->options |= OPTION_SMC;
733 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
740 static void mptcp_set_option_cond(const struct request_sock *req,
741 struct tcp_out_options *opts,
742 unsigned int *remaining)
744 if (rsk_is_mptcp(req)) {
747 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
748 if (*remaining >= size) {
749 opts->options |= OPTION_MPTCP;
756 /* Compute TCP options for SYN packets. This is not the final
757 * network wire format yet.
759 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
760 struct tcp_out_options *opts,
761 struct tcp_md5sig_key **md5)
763 struct tcp_sock *tp = tcp_sk(sk);
764 unsigned int remaining = MAX_TCP_OPTION_SPACE;
765 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
768 #ifdef CONFIG_TCP_MD5SIG
769 if (static_branch_unlikely(&tcp_md5_needed) &&
770 rcu_access_pointer(tp->md5sig_info)) {
771 *md5 = tp->af_specific->md5_lookup(sk, sk);
773 opts->options |= OPTION_MD5;
774 remaining -= TCPOLEN_MD5SIG_ALIGNED;
779 /* We always get an MSS option. The option bytes which will be seen in
780 * normal data packets should timestamps be used, must be in the MSS
781 * advertised. But we subtract them from tp->mss_cache so that
782 * calculations in tcp_sendmsg are simpler etc. So account for this
783 * fact here if necessary. If we don't do this correctly, as a
784 * receiver we won't recognize data packets as being full sized when we
785 * should, and thus we won't abide by the delayed ACK rules correctly.
786 * SACKs don't matter, we never delay an ACK when we have any of those
788 opts->mss = tcp_advertise_mss(sk);
789 remaining -= TCPOLEN_MSS_ALIGNED;
791 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
792 opts->options |= OPTION_TS;
793 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
794 opts->tsecr = tp->rx_opt.ts_recent;
795 remaining -= TCPOLEN_TSTAMP_ALIGNED;
797 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
798 opts->ws = tp->rx_opt.rcv_wscale;
799 opts->options |= OPTION_WSCALE;
800 remaining -= TCPOLEN_WSCALE_ALIGNED;
802 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
803 opts->options |= OPTION_SACK_ADVERTISE;
804 if (unlikely(!(OPTION_TS & opts->options)))
805 remaining -= TCPOLEN_SACKPERM_ALIGNED;
808 if (fastopen && fastopen->cookie.len >= 0) {
809 u32 need = fastopen->cookie.len;
811 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
812 TCPOLEN_FASTOPEN_BASE;
813 need = (need + 3) & ~3U; /* Align to 32 bits */
814 if (remaining >= need) {
815 opts->options |= OPTION_FAST_OPEN_COOKIE;
816 opts->fastopen_cookie = &fastopen->cookie;
818 tp->syn_fastopen = 1;
819 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
823 smc_set_option(tp, opts, &remaining);
825 if (sk_is_mptcp(sk)) {
828 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
829 opts->options |= OPTION_MPTCP;
834 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
836 return MAX_TCP_OPTION_SPACE - remaining;
839 /* Set up TCP options for SYN-ACKs. */
840 static unsigned int tcp_synack_options(const struct sock *sk,
841 struct request_sock *req,
842 unsigned int mss, struct sk_buff *skb,
843 struct tcp_out_options *opts,
844 const struct tcp_md5sig_key *md5,
845 struct tcp_fastopen_cookie *foc,
846 enum tcp_synack_type synack_type,
847 struct sk_buff *syn_skb)
849 struct inet_request_sock *ireq = inet_rsk(req);
850 unsigned int remaining = MAX_TCP_OPTION_SPACE;
852 #ifdef CONFIG_TCP_MD5SIG
854 opts->options |= OPTION_MD5;
855 remaining -= TCPOLEN_MD5SIG_ALIGNED;
857 /* We can't fit any SACK blocks in a packet with MD5 + TS
858 * options. There was discussion about disabling SACK
859 * rather than TS in order to fit in better with old,
860 * buggy kernels, but that was deemed to be unnecessary.
862 if (synack_type != TCP_SYNACK_COOKIE)
863 ireq->tstamp_ok &= !ireq->sack_ok;
867 /* We always send an MSS option. */
869 remaining -= TCPOLEN_MSS_ALIGNED;
871 if (likely(ireq->wscale_ok)) {
872 opts->ws = ireq->rcv_wscale;
873 opts->options |= OPTION_WSCALE;
874 remaining -= TCPOLEN_WSCALE_ALIGNED;
876 if (likely(ireq->tstamp_ok)) {
877 opts->options |= OPTION_TS;
878 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
879 opts->tsecr = req->ts_recent;
880 remaining -= TCPOLEN_TSTAMP_ALIGNED;
882 if (likely(ireq->sack_ok)) {
883 opts->options |= OPTION_SACK_ADVERTISE;
884 if (unlikely(!ireq->tstamp_ok))
885 remaining -= TCPOLEN_SACKPERM_ALIGNED;
887 if (foc != NULL && foc->len >= 0) {
890 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
891 TCPOLEN_FASTOPEN_BASE;
892 need = (need + 3) & ~3U; /* Align to 32 bits */
893 if (remaining >= need) {
894 opts->options |= OPTION_FAST_OPEN_COOKIE;
895 opts->fastopen_cookie = foc;
900 mptcp_set_option_cond(req, opts, &remaining);
902 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
904 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
905 synack_type, opts, &remaining);
907 return MAX_TCP_OPTION_SPACE - remaining;
910 /* Compute TCP options for ESTABLISHED sockets. This is not the
911 * final wire format yet.
913 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
914 struct tcp_out_options *opts,
915 struct tcp_md5sig_key **md5)
917 struct tcp_sock *tp = tcp_sk(sk);
918 unsigned int size = 0;
919 unsigned int eff_sacks;
924 #ifdef CONFIG_TCP_MD5SIG
925 if (static_branch_unlikely(&tcp_md5_needed) &&
926 rcu_access_pointer(tp->md5sig_info)) {
927 *md5 = tp->af_specific->md5_lookup(sk, sk);
929 opts->options |= OPTION_MD5;
930 size += TCPOLEN_MD5SIG_ALIGNED;
935 if (likely(tp->rx_opt.tstamp_ok)) {
936 opts->options |= OPTION_TS;
937 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
938 opts->tsecr = tp->rx_opt.ts_recent;
939 size += TCPOLEN_TSTAMP_ALIGNED;
942 /* MPTCP options have precedence over SACK for the limited TCP
943 * option space because a MPTCP connection would be forced to
944 * fall back to regular TCP if a required multipath option is
945 * missing. SACK still gets a chance to use whatever space is
948 if (sk_is_mptcp(sk)) {
949 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
950 unsigned int opt_size = 0;
952 if (mptcp_established_options(sk, skb, &opt_size, remaining,
954 opts->options |= OPTION_MPTCP;
959 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
960 if (unlikely(eff_sacks)) {
961 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
962 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
963 TCPOLEN_SACK_PERBLOCK))
966 opts->num_sack_blocks =
967 min_t(unsigned int, eff_sacks,
968 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
969 TCPOLEN_SACK_PERBLOCK);
971 size += TCPOLEN_SACK_BASE_ALIGNED +
972 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
975 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
976 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
977 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
979 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
981 size = MAX_TCP_OPTION_SPACE - remaining;
988 /* TCP SMALL QUEUES (TSQ)
990 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
991 * to reduce RTT and bufferbloat.
992 * We do this using a special skb destructor (tcp_wfree).
994 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
995 * needs to be reallocated in a driver.
996 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
998 * Since transmit from skb destructor is forbidden, we use a tasklet
999 * to process all sockets that eventually need to send more skbs.
1000 * We use one tasklet per cpu, with its own queue of sockets.
1002 struct tsq_tasklet {
1003 struct tasklet_struct tasklet;
1004 struct list_head head; /* queue of tcp sockets */
1006 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1008 static void tcp_tsq_write(struct sock *sk)
1010 if ((1 << sk->sk_state) &
1011 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1012 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1013 struct tcp_sock *tp = tcp_sk(sk);
1015 if (tp->lost_out > tp->retrans_out &&
1016 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
1017 tcp_mstamp_refresh(tp);
1018 tcp_xmit_retransmit_queue(sk);
1021 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1026 static void tcp_tsq_handler(struct sock *sk)
1029 if (!sock_owned_by_user(sk))
1031 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1036 * One tasklet per cpu tries to send more skbs.
1037 * We run in tasklet context but need to disable irqs when
1038 * transferring tsq->head because tcp_wfree() might
1039 * interrupt us (non NAPI drivers)
1041 static void tcp_tasklet_func(struct tasklet_struct *t)
1043 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet);
1045 unsigned long flags;
1046 struct list_head *q, *n;
1047 struct tcp_sock *tp;
1050 local_irq_save(flags);
1051 list_splice_init(&tsq->head, &list);
1052 local_irq_restore(flags);
1054 list_for_each_safe(q, n, &list) {
1055 tp = list_entry(q, struct tcp_sock, tsq_node);
1056 list_del(&tp->tsq_node);
1058 sk = (struct sock *)tp;
1059 smp_mb__before_atomic();
1060 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1062 tcp_tsq_handler(sk);
1067 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1068 TCPF_WRITE_TIMER_DEFERRED | \
1069 TCPF_DELACK_TIMER_DEFERRED | \
1070 TCPF_MTU_REDUCED_DEFERRED)
1072 * tcp_release_cb - tcp release_sock() callback
1075 * called from release_sock() to perform protocol dependent
1076 * actions before socket release.
1078 void tcp_release_cb(struct sock *sk)
1080 unsigned long flags, nflags;
1082 /* perform an atomic operation only if at least one flag is set */
1084 flags = sk->sk_tsq_flags;
1085 if (!(flags & TCP_DEFERRED_ALL))
1087 nflags = flags & ~TCP_DEFERRED_ALL;
1088 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1090 if (flags & TCPF_TSQ_DEFERRED) {
1094 /* Here begins the tricky part :
1095 * We are called from release_sock() with :
1097 * 2) sk_lock.slock spinlock held
1098 * 3) socket owned by us (sk->sk_lock.owned == 1)
1100 * But following code is meant to be called from BH handlers,
1101 * so we should keep BH disabled, but early release socket ownership
1103 sock_release_ownership(sk);
1105 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1106 tcp_write_timer_handler(sk);
1109 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1110 tcp_delack_timer_handler(sk);
1113 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1114 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1118 EXPORT_SYMBOL(tcp_release_cb);
1120 void __init tcp_tasklet_init(void)
1124 for_each_possible_cpu(i) {
1125 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1127 INIT_LIST_HEAD(&tsq->head);
1128 tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1133 * Write buffer destructor automatically called from kfree_skb.
1134 * We can't xmit new skbs from this context, as we might already
1137 void tcp_wfree(struct sk_buff *skb)
1139 struct sock *sk = skb->sk;
1140 struct tcp_sock *tp = tcp_sk(sk);
1141 unsigned long flags, nval, oval;
1143 /* Keep one reference on sk_wmem_alloc.
1144 * Will be released by sk_free() from here or tcp_tasklet_func()
1146 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1148 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1149 * Wait until our queues (qdisc + devices) are drained.
1151 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1152 * - chance for incoming ACK (processed by another cpu maybe)
1153 * to migrate this flow (skb->ooo_okay will be eventually set)
1155 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1158 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1159 struct tsq_tasklet *tsq;
1162 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1165 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1166 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1170 /* queue this socket to tasklet queue */
1171 local_irq_save(flags);
1172 tsq = this_cpu_ptr(&tsq_tasklet);
1173 empty = list_empty(&tsq->head);
1174 list_add(&tp->tsq_node, &tsq->head);
1176 tasklet_schedule(&tsq->tasklet);
1177 local_irq_restore(flags);
1184 /* Note: Called under soft irq.
1185 * We can call TCP stack right away, unless socket is owned by user.
1187 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1189 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1190 struct sock *sk = (struct sock *)tp;
1192 tcp_tsq_handler(sk);
1195 return HRTIMER_NORESTART;
1198 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1201 struct tcp_sock *tp = tcp_sk(sk);
1203 if (sk->sk_pacing_status != SK_PACING_NONE) {
1204 unsigned long rate = sk->sk_pacing_rate;
1206 /* Original sch_fq does not pace first 10 MSS
1207 * Note that tp->data_segs_out overflows after 2^32 packets,
1208 * this is a minor annoyance.
1210 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1211 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1212 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1214 /* take into account OS jitter */
1215 len_ns -= min_t(u64, len_ns / 2, credit);
1216 tp->tcp_wstamp_ns += len_ns;
1219 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1222 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1223 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1224 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1226 /* This routine actually transmits TCP packets queued in by
1227 * tcp_do_sendmsg(). This is used by both the initial
1228 * transmission and possible later retransmissions.
1229 * All SKB's seen here are completely headerless. It is our
1230 * job to build the TCP header, and pass the packet down to
1231 * IP so it can do the same plus pass the packet off to the
1234 * We are working here with either a clone of the original
1235 * SKB, or a fresh unique copy made by the retransmit engine.
1237 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1238 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1240 const struct inet_connection_sock *icsk = inet_csk(sk);
1241 struct inet_sock *inet;
1242 struct tcp_sock *tp;
1243 struct tcp_skb_cb *tcb;
1244 struct tcp_out_options opts;
1245 unsigned int tcp_options_size, tcp_header_size;
1246 struct sk_buff *oskb = NULL;
1247 struct tcp_md5sig_key *md5;
1252 BUG_ON(!skb || !tcp_skb_pcount(skb));
1254 prior_wstamp = tp->tcp_wstamp_ns;
1255 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1256 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1260 tcp_skb_tsorted_save(oskb) {
1261 if (unlikely(skb_cloned(oskb)))
1262 skb = pskb_copy(oskb, gfp_mask);
1264 skb = skb_clone(oskb, gfp_mask);
1265 } tcp_skb_tsorted_restore(oskb);
1269 /* retransmit skbs might have a non zero value in skb->dev
1270 * because skb->dev is aliased with skb->rbnode.rb_left
1276 tcb = TCP_SKB_CB(skb);
1277 memset(&opts, 0, sizeof(opts));
1279 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1280 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1282 tcp_options_size = tcp_established_options(sk, skb, &opts,
1284 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1285 * at receiver : This slightly improve GRO performance.
1286 * Note that we do not force the PSH flag for non GSO packets,
1287 * because they might be sent under high congestion events,
1288 * and in this case it is better to delay the delivery of 1-MSS
1289 * packets and thus the corresponding ACK packet that would
1290 * release the following packet.
1292 if (tcp_skb_pcount(skb) > 1)
1293 tcb->tcp_flags |= TCPHDR_PSH;
1295 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1297 /* if no packet is in qdisc/device queue, then allow XPS to select
1298 * another queue. We can be called from tcp_tsq_handler()
1299 * which holds one reference to sk.
1301 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1302 * One way to get this would be to set skb->truesize = 2 on them.
1304 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1306 /* If we had to use memory reserve to allocate this skb,
1307 * this might cause drops if packet is looped back :
1308 * Other socket might not have SOCK_MEMALLOC.
1309 * Packets not looped back do not care about pfmemalloc.
1311 skb->pfmemalloc = 0;
1313 skb_push(skb, tcp_header_size);
1314 skb_reset_transport_header(skb);
1318 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1319 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1321 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1323 /* Build TCP header and checksum it. */
1324 th = (struct tcphdr *)skb->data;
1325 th->source = inet->inet_sport;
1326 th->dest = inet->inet_dport;
1327 th->seq = htonl(tcb->seq);
1328 th->ack_seq = htonl(rcv_nxt);
1329 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1335 /* The urg_mode check is necessary during a below snd_una win probe */
1336 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1337 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1338 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1340 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1341 th->urg_ptr = htons(0xFFFF);
1346 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1347 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1348 th->window = htons(tcp_select_window(sk));
1349 tcp_ecn_send(sk, skb, th, tcp_header_size);
1351 /* RFC1323: The window in SYN & SYN/ACK segments
1354 th->window = htons(min(tp->rcv_wnd, 65535U));
1357 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1359 #ifdef CONFIG_TCP_MD5SIG
1360 /* Calculate the MD5 hash, as we have all we need now */
1363 tp->af_specific->calc_md5_hash(opts.hash_location,
1368 /* BPF prog is the last one writing header option */
1369 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1371 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1372 tcp_v6_send_check, tcp_v4_send_check,
1375 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1376 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1378 if (skb->len != tcp_header_size) {
1379 tcp_event_data_sent(tp, sk);
1380 tp->data_segs_out += tcp_skb_pcount(skb);
1381 tp->bytes_sent += skb->len - tcp_header_size;
1384 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1385 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1386 tcp_skb_pcount(skb));
1388 tp->segs_out += tcp_skb_pcount(skb);
1389 skb_set_hash_from_sk(skb, sk);
1390 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1391 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1392 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1394 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1396 /* Cleanup our debris for IP stacks */
1397 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1398 sizeof(struct inet6_skb_parm)));
1400 tcp_add_tx_delay(skb, tp);
1402 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1403 inet6_csk_xmit, ip_queue_xmit,
1404 sk, skb, &inet->cork.fl);
1406 if (unlikely(err > 0)) {
1408 err = net_xmit_eval(err);
1411 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1412 tcp_rate_skb_sent(sk, oskb);
1417 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1420 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1421 tcp_sk(sk)->rcv_nxt);
1424 /* This routine just queues the buffer for sending.
1426 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1427 * otherwise socket can stall.
1429 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1431 struct tcp_sock *tp = tcp_sk(sk);
1433 /* Advance write_seq and place onto the write_queue. */
1434 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1435 __skb_header_release(skb);
1436 tcp_add_write_queue_tail(sk, skb);
1437 sk_wmem_queued_add(sk, skb->truesize);
1438 sk_mem_charge(sk, skb->truesize);
1441 /* Initialize TSO segments for a packet. */
1442 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1444 if (skb->len <= mss_now) {
1445 /* Avoid the costly divide in the normal
1448 tcp_skb_pcount_set(skb, 1);
1449 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1451 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1452 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1456 /* Pcount in the middle of the write queue got changed, we need to do various
1457 * tweaks to fix counters
1459 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1461 struct tcp_sock *tp = tcp_sk(sk);
1463 tp->packets_out -= decr;
1465 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1466 tp->sacked_out -= decr;
1467 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1468 tp->retrans_out -= decr;
1469 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1470 tp->lost_out -= decr;
1472 /* Reno case is special. Sigh... */
1473 if (tcp_is_reno(tp) && decr > 0)
1474 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1476 if (tp->lost_skb_hint &&
1477 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1478 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1479 tp->lost_cnt_hint -= decr;
1481 tcp_verify_left_out(tp);
1484 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1486 return TCP_SKB_CB(skb)->txstamp_ack ||
1487 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1490 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1492 struct skb_shared_info *shinfo = skb_shinfo(skb);
1494 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1495 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1496 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1497 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1499 shinfo->tx_flags &= ~tsflags;
1500 shinfo2->tx_flags |= tsflags;
1501 swap(shinfo->tskey, shinfo2->tskey);
1502 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1503 TCP_SKB_CB(skb)->txstamp_ack = 0;
1507 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1509 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1510 TCP_SKB_CB(skb)->eor = 0;
1513 /* Insert buff after skb on the write or rtx queue of sk. */
1514 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1515 struct sk_buff *buff,
1517 enum tcp_queue tcp_queue)
1519 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1520 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1522 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1525 /* Function to create two new TCP segments. Shrinks the given segment
1526 * to the specified size and appends a new segment with the rest of the
1527 * packet to the list. This won't be called frequently, I hope.
1528 * Remember, these are still headerless SKBs at this point.
1530 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1531 struct sk_buff *skb, u32 len,
1532 unsigned int mss_now, gfp_t gfp)
1534 struct tcp_sock *tp = tcp_sk(sk);
1535 struct sk_buff *buff;
1536 int nsize, old_factor;
1541 if (WARN_ON(len > skb->len))
1544 nsize = skb_headlen(skb) - len;
1548 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1549 * We need some allowance to not penalize applications setting small
1551 * Also allow first and last skb in retransmit queue to be split.
1553 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1554 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1555 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1556 skb != tcp_rtx_queue_head(sk) &&
1557 skb != tcp_rtx_queue_tail(sk))) {
1558 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1562 if (skb_unclone_keeptruesize(skb, gfp))
1565 /* Get a new skb... force flag on. */
1566 buff = tcp_stream_alloc_skb(sk, nsize, gfp, true);
1568 return -ENOMEM; /* We'll just try again later. */
1569 skb_copy_decrypted(buff, skb);
1570 mptcp_skb_ext_copy(buff, skb);
1572 sk_wmem_queued_add(sk, buff->truesize);
1573 sk_mem_charge(sk, buff->truesize);
1574 nlen = skb->len - len - nsize;
1575 buff->truesize += nlen;
1576 skb->truesize -= nlen;
1578 /* Correct the sequence numbers. */
1579 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1580 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1581 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1583 /* PSH and FIN should only be set in the second packet. */
1584 flags = TCP_SKB_CB(skb)->tcp_flags;
1585 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1586 TCP_SKB_CB(buff)->tcp_flags = flags;
1587 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1588 tcp_skb_fragment_eor(skb, buff);
1590 skb_split(skb, buff, len);
1592 skb_set_delivery_time(buff, skb->tstamp, true);
1593 tcp_fragment_tstamp(skb, buff);
1595 old_factor = tcp_skb_pcount(skb);
1597 /* Fix up tso_factor for both original and new SKB. */
1598 tcp_set_skb_tso_segs(skb, mss_now);
1599 tcp_set_skb_tso_segs(buff, mss_now);
1601 /* Update delivered info for the new segment */
1602 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1604 /* If this packet has been sent out already, we must
1605 * adjust the various packet counters.
1607 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1608 int diff = old_factor - tcp_skb_pcount(skb) -
1609 tcp_skb_pcount(buff);
1612 tcp_adjust_pcount(sk, skb, diff);
1615 /* Link BUFF into the send queue. */
1616 __skb_header_release(buff);
1617 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1618 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1619 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1624 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1625 * data is not copied, but immediately discarded.
1627 static int __pskb_trim_head(struct sk_buff *skb, int len)
1629 struct skb_shared_info *shinfo;
1632 eat = min_t(int, len, skb_headlen(skb));
1634 __skb_pull(skb, eat);
1641 shinfo = skb_shinfo(skb);
1642 for (i = 0; i < shinfo->nr_frags; i++) {
1643 int size = skb_frag_size(&shinfo->frags[i]);
1646 skb_frag_unref(skb, i);
1649 shinfo->frags[k] = shinfo->frags[i];
1651 skb_frag_off_add(&shinfo->frags[k], eat);
1652 skb_frag_size_sub(&shinfo->frags[k], eat);
1658 shinfo->nr_frags = k;
1660 skb->data_len -= len;
1661 skb->len = skb->data_len;
1665 /* Remove acked data from a packet in the transmit queue. */
1666 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1670 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1673 delta_truesize = __pskb_trim_head(skb, len);
1675 TCP_SKB_CB(skb)->seq += len;
1677 if (delta_truesize) {
1678 skb->truesize -= delta_truesize;
1679 sk_wmem_queued_add(sk, -delta_truesize);
1680 if (!skb_zcopy_pure(skb))
1681 sk_mem_uncharge(sk, delta_truesize);
1684 /* Any change of skb->len requires recalculation of tso factor. */
1685 if (tcp_skb_pcount(skb) > 1)
1686 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1691 /* Calculate MSS not accounting any TCP options. */
1692 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1694 const struct tcp_sock *tp = tcp_sk(sk);
1695 const struct inet_connection_sock *icsk = inet_csk(sk);
1698 /* Calculate base mss without TCP options:
1699 It is MMS_S - sizeof(tcphdr) of rfc1122
1701 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1703 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1704 if (icsk->icsk_af_ops->net_frag_header_len) {
1705 const struct dst_entry *dst = __sk_dst_get(sk);
1707 if (dst && dst_allfrag(dst))
1708 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1711 /* Clamp it (mss_clamp does not include tcp options) */
1712 if (mss_now > tp->rx_opt.mss_clamp)
1713 mss_now = tp->rx_opt.mss_clamp;
1715 /* Now subtract optional transport overhead */
1716 mss_now -= icsk->icsk_ext_hdr_len;
1718 /* Then reserve room for full set of TCP options and 8 bytes of data */
1719 mss_now = max(mss_now, sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss);
1723 /* Calculate MSS. Not accounting for SACKs here. */
1724 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1726 /* Subtract TCP options size, not including SACKs */
1727 return __tcp_mtu_to_mss(sk, pmtu) -
1728 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1730 EXPORT_SYMBOL(tcp_mtu_to_mss);
1732 /* Inverse of above */
1733 int tcp_mss_to_mtu(struct sock *sk, int mss)
1735 const struct tcp_sock *tp = tcp_sk(sk);
1736 const struct inet_connection_sock *icsk = inet_csk(sk);
1740 tp->tcp_header_len +
1741 icsk->icsk_ext_hdr_len +
1742 icsk->icsk_af_ops->net_header_len;
1744 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1745 if (icsk->icsk_af_ops->net_frag_header_len) {
1746 const struct dst_entry *dst = __sk_dst_get(sk);
1748 if (dst && dst_allfrag(dst))
1749 mtu += icsk->icsk_af_ops->net_frag_header_len;
1753 EXPORT_SYMBOL(tcp_mss_to_mtu);
1755 /* MTU probing init per socket */
1756 void tcp_mtup_init(struct sock *sk)
1758 struct tcp_sock *tp = tcp_sk(sk);
1759 struct inet_connection_sock *icsk = inet_csk(sk);
1760 struct net *net = sock_net(sk);
1762 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1763 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1764 icsk->icsk_af_ops->net_header_len;
1765 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1766 icsk->icsk_mtup.probe_size = 0;
1767 if (icsk->icsk_mtup.enabled)
1768 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1770 EXPORT_SYMBOL(tcp_mtup_init);
1772 /* This function synchronize snd mss to current pmtu/exthdr set.
1774 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1775 for TCP options, but includes only bare TCP header.
1777 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1778 It is minimum of user_mss and mss received with SYN.
1779 It also does not include TCP options.
1781 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1783 tp->mss_cache is current effective sending mss, including
1784 all tcp options except for SACKs. It is evaluated,
1785 taking into account current pmtu, but never exceeds
1786 tp->rx_opt.mss_clamp.
1788 NOTE1. rfc1122 clearly states that advertised MSS
1789 DOES NOT include either tcp or ip options.
1791 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1792 are READ ONLY outside this function. --ANK (980731)
1794 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1796 struct tcp_sock *tp = tcp_sk(sk);
1797 struct inet_connection_sock *icsk = inet_csk(sk);
1800 if (icsk->icsk_mtup.search_high > pmtu)
1801 icsk->icsk_mtup.search_high = pmtu;
1803 mss_now = tcp_mtu_to_mss(sk, pmtu);
1804 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1806 /* And store cached results */
1807 icsk->icsk_pmtu_cookie = pmtu;
1808 if (icsk->icsk_mtup.enabled)
1809 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1810 tp->mss_cache = mss_now;
1814 EXPORT_SYMBOL(tcp_sync_mss);
1816 /* Compute the current effective MSS, taking SACKs and IP options,
1817 * and even PMTU discovery events into account.
1819 unsigned int tcp_current_mss(struct sock *sk)
1821 const struct tcp_sock *tp = tcp_sk(sk);
1822 const struct dst_entry *dst = __sk_dst_get(sk);
1824 unsigned int header_len;
1825 struct tcp_out_options opts;
1826 struct tcp_md5sig_key *md5;
1828 mss_now = tp->mss_cache;
1831 u32 mtu = dst_mtu(dst);
1832 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1833 mss_now = tcp_sync_mss(sk, mtu);
1836 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1837 sizeof(struct tcphdr);
1838 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1839 * some common options. If this is an odd packet (because we have SACK
1840 * blocks etc) then our calculated header_len will be different, and
1841 * we have to adjust mss_now correspondingly */
1842 if (header_len != tp->tcp_header_len) {
1843 int delta = (int) header_len - tp->tcp_header_len;
1850 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1851 * As additional protections, we do not touch cwnd in retransmission phases,
1852 * and if application hit its sndbuf limit recently.
1854 static void tcp_cwnd_application_limited(struct sock *sk)
1856 struct tcp_sock *tp = tcp_sk(sk);
1858 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1859 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1860 /* Limited by application or receiver window. */
1861 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1862 u32 win_used = max(tp->snd_cwnd_used, init_win);
1863 if (win_used < tp->snd_cwnd) {
1864 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1865 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1867 tp->snd_cwnd_used = 0;
1869 tp->snd_cwnd_stamp = tcp_jiffies32;
1872 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1874 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1875 struct tcp_sock *tp = tcp_sk(sk);
1877 /* Track the maximum number of outstanding packets in each
1878 * window, and remember whether we were cwnd-limited then.
1880 if (!before(tp->snd_una, tp->max_packets_seq) ||
1881 tp->packets_out > tp->max_packets_out ||
1883 tp->max_packets_out = tp->packets_out;
1884 tp->max_packets_seq = tp->snd_nxt;
1885 tp->is_cwnd_limited = is_cwnd_limited;
1888 if (tcp_is_cwnd_limited(sk)) {
1889 /* Network is feed fully. */
1890 tp->snd_cwnd_used = 0;
1891 tp->snd_cwnd_stamp = tcp_jiffies32;
1893 /* Network starves. */
1894 if (tp->packets_out > tp->snd_cwnd_used)
1895 tp->snd_cwnd_used = tp->packets_out;
1897 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1898 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1899 !ca_ops->cong_control)
1900 tcp_cwnd_application_limited(sk);
1902 /* The following conditions together indicate the starvation
1903 * is caused by insufficient sender buffer:
1904 * 1) just sent some data (see tcp_write_xmit)
1905 * 2) not cwnd limited (this else condition)
1906 * 3) no more data to send (tcp_write_queue_empty())
1907 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1909 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1910 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1911 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1912 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1916 /* Minshall's variant of the Nagle send check. */
1917 static bool tcp_minshall_check(const struct tcp_sock *tp)
1919 return after(tp->snd_sml, tp->snd_una) &&
1920 !after(tp->snd_sml, tp->snd_nxt);
1923 /* Update snd_sml if this skb is under mss
1924 * Note that a TSO packet might end with a sub-mss segment
1925 * The test is really :
1926 * if ((skb->len % mss) != 0)
1927 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1928 * But we can avoid doing the divide again given we already have
1929 * skb_pcount = skb->len / mss_now
1931 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1932 const struct sk_buff *skb)
1934 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1935 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1938 /* Return false, if packet can be sent now without violation Nagle's rules:
1939 * 1. It is full sized. (provided by caller in %partial bool)
1940 * 2. Or it contains FIN. (already checked by caller)
1941 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1942 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1943 * With Minshall's modification: all sent small packets are ACKed.
1945 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1949 ((nonagle & TCP_NAGLE_CORK) ||
1950 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1953 /* Return how many segs we'd like on a TSO packet,
1954 * depending on current pacing rate, and how close the peer is.
1957 * - For close peers, we rather send bigger packets to reduce
1958 * cpu costs, because occasional losses will be repaired fast.
1959 * - For long distance/rtt flows, we would like to get ACK clocking
1960 * with 1 ACK per ms.
1962 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1963 * in bigger TSO bursts. We we cut the RTT-based allowance in half
1964 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1965 * is below 1500 bytes after 6 * ~500 usec = 3ms.
1967 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1970 unsigned long bytes;
1973 bytes = sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift);
1975 r = tcp_min_rtt(tcp_sk(sk)) >> sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log;
1976 if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
1977 bytes += sk->sk_gso_max_size >> r;
1979 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
1981 return max_t(u32, bytes / mss_now, min_tso_segs);
1984 /* Return the number of segments we want in the skb we are transmitting.
1985 * See if congestion control module wants to decide; otherwise, autosize.
1987 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1989 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1990 u32 min_tso, tso_segs;
1992 min_tso = ca_ops->min_tso_segs ?
1993 ca_ops->min_tso_segs(sk) :
1994 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1996 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1997 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2000 /* Returns the portion of skb which can be sent right away */
2001 static unsigned int tcp_mss_split_point(const struct sock *sk,
2002 const struct sk_buff *skb,
2003 unsigned int mss_now,
2004 unsigned int max_segs,
2007 const struct tcp_sock *tp = tcp_sk(sk);
2008 u32 partial, needed, window, max_len;
2010 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2011 max_len = mss_now * max_segs;
2013 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2016 needed = min(skb->len, window);
2018 if (max_len <= needed)
2021 partial = needed % mss_now;
2022 /* If last segment is not a full MSS, check if Nagle rules allow us
2023 * to include this last segment in this skb.
2024 * Otherwise, we'll split the skb at last MSS boundary
2026 if (tcp_nagle_check(partial != 0, tp, nonagle))
2027 return needed - partial;
2032 /* Can at least one segment of SKB be sent right now, according to the
2033 * congestion window rules? If so, return how many segments are allowed.
2035 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2036 const struct sk_buff *skb)
2038 u32 in_flight, cwnd, halfcwnd;
2040 /* Don't be strict about the congestion window for the final FIN. */
2041 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2042 tcp_skb_pcount(skb) == 1)
2045 in_flight = tcp_packets_in_flight(tp);
2046 cwnd = tp->snd_cwnd;
2047 if (in_flight >= cwnd)
2050 /* For better scheduling, ensure we have at least
2051 * 2 GSO packets in flight.
2053 halfcwnd = max(cwnd >> 1, 1U);
2054 return min(halfcwnd, cwnd - in_flight);
2057 /* Initialize TSO state of a skb.
2058 * This must be invoked the first time we consider transmitting
2059 * SKB onto the wire.
2061 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2063 int tso_segs = tcp_skb_pcount(skb);
2065 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2066 tcp_set_skb_tso_segs(skb, mss_now);
2067 tso_segs = tcp_skb_pcount(skb);
2073 /* Return true if the Nagle test allows this packet to be
2076 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2077 unsigned int cur_mss, int nonagle)
2079 /* Nagle rule does not apply to frames, which sit in the middle of the
2080 * write_queue (they have no chances to get new data).
2082 * This is implemented in the callers, where they modify the 'nonagle'
2083 * argument based upon the location of SKB in the send queue.
2085 if (nonagle & TCP_NAGLE_PUSH)
2088 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2089 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2092 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2098 /* Does at least the first segment of SKB fit into the send window? */
2099 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2100 const struct sk_buff *skb,
2101 unsigned int cur_mss)
2103 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2105 if (skb->len > cur_mss)
2106 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2108 return !after(end_seq, tcp_wnd_end(tp));
2111 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2112 * which is put after SKB on the list. It is very much like
2113 * tcp_fragment() except that it may make several kinds of assumptions
2114 * in order to speed up the splitting operation. In particular, we
2115 * know that all the data is in scatter-gather pages, and that the
2116 * packet has never been sent out before (and thus is not cloned).
2118 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2119 unsigned int mss_now, gfp_t gfp)
2121 int nlen = skb->len - len;
2122 struct sk_buff *buff;
2125 /* All of a TSO frame must be composed of paged data. */
2126 if (skb->len != skb->data_len)
2127 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2128 skb, len, mss_now, gfp);
2130 buff = tcp_stream_alloc_skb(sk, 0, gfp, true);
2131 if (unlikely(!buff))
2133 skb_copy_decrypted(buff, skb);
2134 mptcp_skb_ext_copy(buff, skb);
2136 sk_wmem_queued_add(sk, buff->truesize);
2137 sk_mem_charge(sk, buff->truesize);
2138 buff->truesize += nlen;
2139 skb->truesize -= nlen;
2141 /* Correct the sequence numbers. */
2142 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2143 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2144 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2146 /* PSH and FIN should only be set in the second packet. */
2147 flags = TCP_SKB_CB(skb)->tcp_flags;
2148 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2149 TCP_SKB_CB(buff)->tcp_flags = flags;
2151 tcp_skb_fragment_eor(skb, buff);
2153 skb_split(skb, buff, len);
2154 tcp_fragment_tstamp(skb, buff);
2156 /* Fix up tso_factor for both original and new SKB. */
2157 tcp_set_skb_tso_segs(skb, mss_now);
2158 tcp_set_skb_tso_segs(buff, mss_now);
2160 /* Link BUFF into the send queue. */
2161 __skb_header_release(buff);
2162 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2167 /* Try to defer sending, if possible, in order to minimize the amount
2168 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2170 * This algorithm is from John Heffner.
2172 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2173 bool *is_cwnd_limited,
2174 bool *is_rwnd_limited,
2177 const struct inet_connection_sock *icsk = inet_csk(sk);
2178 u32 send_win, cong_win, limit, in_flight;
2179 struct tcp_sock *tp = tcp_sk(sk);
2180 struct sk_buff *head;
2184 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2187 /* Avoid bursty behavior by allowing defer
2188 * only if the last write was recent (1 ms).
2189 * Note that tp->tcp_wstamp_ns can be in the future if we have
2190 * packets waiting in a qdisc or device for EDT delivery.
2192 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2196 in_flight = tcp_packets_in_flight(tp);
2198 BUG_ON(tcp_skb_pcount(skb) <= 1);
2199 BUG_ON(tp->snd_cwnd <= in_flight);
2201 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2203 /* From in_flight test above, we know that cwnd > in_flight. */
2204 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
2206 limit = min(send_win, cong_win);
2208 /* If a full-sized TSO skb can be sent, do it. */
2209 if (limit >= max_segs * tp->mss_cache)
2212 /* Middle in queue won't get any more data, full sendable already? */
2213 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2216 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2218 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
2220 /* If at least some fraction of a window is available,
2223 chunk /= win_divisor;
2227 /* Different approach, try not to defer past a single
2228 * ACK. Receiver should ACK every other full sized
2229 * frame, so if we have space for more than 3 frames
2232 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2236 /* TODO : use tsorted_sent_queue ? */
2237 head = tcp_rtx_queue_head(sk);
2240 delta = tp->tcp_clock_cache - head->tstamp;
2241 /* If next ACK is likely to come too late (half srtt), do not defer */
2242 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2245 /* Ok, it looks like it is advisable to defer.
2246 * Three cases are tracked :
2247 * 1) We are cwnd-limited
2248 * 2) We are rwnd-limited
2249 * 3) We are application limited.
2251 if (cong_win < send_win) {
2252 if (cong_win <= skb->len) {
2253 *is_cwnd_limited = true;
2257 if (send_win <= skb->len) {
2258 *is_rwnd_limited = true;
2263 /* If this packet won't get more data, do not wait. */
2264 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2265 TCP_SKB_CB(skb)->eor)
2274 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2276 struct inet_connection_sock *icsk = inet_csk(sk);
2277 struct tcp_sock *tp = tcp_sk(sk);
2278 struct net *net = sock_net(sk);
2282 interval = net->ipv4.sysctl_tcp_probe_interval;
2283 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2284 if (unlikely(delta >= interval * HZ)) {
2285 int mss = tcp_current_mss(sk);
2287 /* Update current search range */
2288 icsk->icsk_mtup.probe_size = 0;
2289 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2290 sizeof(struct tcphdr) +
2291 icsk->icsk_af_ops->net_header_len;
2292 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2294 /* Update probe time stamp */
2295 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2299 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2301 struct sk_buff *skb, *next;
2303 skb = tcp_send_head(sk);
2304 tcp_for_write_queue_from_safe(skb, next, sk) {
2305 if (len <= skb->len)
2308 if (unlikely(TCP_SKB_CB(skb)->eor) ||
2309 tcp_has_tx_tstamp(skb) ||
2310 !skb_pure_zcopy_same(skb, next))
2319 /* Create a new MTU probe if we are ready.
2320 * MTU probe is regularly attempting to increase the path MTU by
2321 * deliberately sending larger packets. This discovers routing
2322 * changes resulting in larger path MTUs.
2324 * Returns 0 if we should wait to probe (no cwnd available),
2325 * 1 if a probe was sent,
2328 static int tcp_mtu_probe(struct sock *sk)
2330 struct inet_connection_sock *icsk = inet_csk(sk);
2331 struct tcp_sock *tp = tcp_sk(sk);
2332 struct sk_buff *skb, *nskb, *next;
2333 struct net *net = sock_net(sk);
2340 /* Not currently probing/verifying,
2342 * have enough cwnd, and
2343 * not SACKing (the variable headers throw things off)
2345 if (likely(!icsk->icsk_mtup.enabled ||
2346 icsk->icsk_mtup.probe_size ||
2347 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2348 tp->snd_cwnd < 11 ||
2349 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2352 /* Use binary search for probe_size between tcp_mss_base,
2353 * and current mss_clamp. if (search_high - search_low)
2354 * smaller than a threshold, backoff from probing.
2356 mss_now = tcp_current_mss(sk);
2357 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2358 icsk->icsk_mtup.search_low) >> 1);
2359 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2360 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2361 /* When misfortune happens, we are reprobing actively,
2362 * and then reprobe timer has expired. We stick with current
2363 * probing process by not resetting search range to its orignal.
2365 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2366 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2367 /* Check whether enough time has elaplased for
2368 * another round of probing.
2370 tcp_mtu_check_reprobe(sk);
2374 /* Have enough data in the send queue to probe? */
2375 if (tp->write_seq - tp->snd_nxt < size_needed)
2378 if (tp->snd_wnd < size_needed)
2380 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2383 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2384 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2385 if (!tcp_packets_in_flight(tp))
2391 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2394 /* We're allowed to probe. Build it now. */
2395 nskb = tcp_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2398 sk_wmem_queued_add(sk, nskb->truesize);
2399 sk_mem_charge(sk, nskb->truesize);
2401 skb = tcp_send_head(sk);
2402 skb_copy_decrypted(nskb, skb);
2403 mptcp_skb_ext_copy(nskb, skb);
2405 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2406 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2407 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2409 tcp_insert_write_queue_before(nskb, skb, sk);
2410 tcp_highest_sack_replace(sk, skb, nskb);
2413 tcp_for_write_queue_from_safe(skb, next, sk) {
2414 copy = min_t(int, skb->len, probe_size - len);
2415 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2417 if (skb->len <= copy) {
2418 /* We've eaten all the data from this skb.
2420 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2421 /* If this is the last SKB we copy and eor is set
2422 * we need to propagate it to the new skb.
2424 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2425 tcp_skb_collapse_tstamp(nskb, skb);
2426 tcp_unlink_write_queue(skb, sk);
2427 tcp_wmem_free_skb(sk, skb);
2429 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2430 ~(TCPHDR_FIN|TCPHDR_PSH);
2431 if (!skb_shinfo(skb)->nr_frags) {
2432 skb_pull(skb, copy);
2434 __pskb_trim_head(skb, copy);
2435 tcp_set_skb_tso_segs(skb, mss_now);
2437 TCP_SKB_CB(skb)->seq += copy;
2442 if (len >= probe_size)
2445 tcp_init_tso_segs(nskb, nskb->len);
2447 /* We're ready to send. If this fails, the probe will
2448 * be resegmented into mss-sized pieces by tcp_write_xmit().
2450 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2451 /* Decrement cwnd here because we are sending
2452 * effectively two packets. */
2454 tcp_event_new_data_sent(sk, nskb);
2456 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2457 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2458 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2466 static bool tcp_pacing_check(struct sock *sk)
2468 struct tcp_sock *tp = tcp_sk(sk);
2470 if (!tcp_needs_internal_pacing(sk))
2473 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2476 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2477 hrtimer_start(&tp->pacing_timer,
2478 ns_to_ktime(tp->tcp_wstamp_ns),
2479 HRTIMER_MODE_ABS_PINNED_SOFT);
2485 /* TCP Small Queues :
2486 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2487 * (These limits are doubled for retransmits)
2489 * - better RTT estimation and ACK scheduling
2492 * Alas, some drivers / subsystems require a fair amount
2493 * of queued bytes to ensure line rate.
2494 * One example is wifi aggregation (802.11 AMPDU)
2496 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2497 unsigned int factor)
2499 unsigned long limit;
2501 limit = max_t(unsigned long,
2503 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2504 if (sk->sk_pacing_status == SK_PACING_NONE)
2505 limit = min_t(unsigned long, limit,
2506 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2509 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2510 tcp_sk(sk)->tcp_tx_delay) {
2511 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2513 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2514 * approximate our needs assuming an ~100% skb->truesize overhead.
2515 * USEC_PER_SEC is approximated by 2^20.
2516 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2518 extra_bytes >>= (20 - 1);
2519 limit += extra_bytes;
2521 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2522 /* Always send skb if rtx queue is empty.
2523 * No need to wait for TX completion to call us back,
2524 * after softirq/tasklet schedule.
2525 * This helps when TX completions are delayed too much.
2527 if (tcp_rtx_queue_empty(sk))
2530 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2531 /* It is possible TX completion already happened
2532 * before we set TSQ_THROTTLED, so we must
2533 * test again the condition.
2535 smp_mb__after_atomic();
2536 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2542 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2544 const u32 now = tcp_jiffies32;
2545 enum tcp_chrono old = tp->chrono_type;
2547 if (old > TCP_CHRONO_UNSPEC)
2548 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2549 tp->chrono_start = now;
2550 tp->chrono_type = new;
2553 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2555 struct tcp_sock *tp = tcp_sk(sk);
2557 /* If there are multiple conditions worthy of tracking in a
2558 * chronograph then the highest priority enum takes precedence
2559 * over the other conditions. So that if something "more interesting"
2560 * starts happening, stop the previous chrono and start a new one.
2562 if (type > tp->chrono_type)
2563 tcp_chrono_set(tp, type);
2566 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2568 struct tcp_sock *tp = tcp_sk(sk);
2571 /* There are multiple conditions worthy of tracking in a
2572 * chronograph, so that the highest priority enum takes
2573 * precedence over the other conditions (see tcp_chrono_start).
2574 * If a condition stops, we only stop chrono tracking if
2575 * it's the "most interesting" or current chrono we are
2576 * tracking and starts busy chrono if we have pending data.
2578 if (tcp_rtx_and_write_queues_empty(sk))
2579 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2580 else if (type == tp->chrono_type)
2581 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2584 /* This routine writes packets to the network. It advances the
2585 * send_head. This happens as incoming acks open up the remote
2588 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2589 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2590 * account rare use of URG, this is not a big flaw.
2592 * Send at most one packet when push_one > 0. Temporarily ignore
2593 * cwnd limit to force at most one packet out when push_one == 2.
2595 * Returns true, if no segments are in flight and we have queued segments,
2596 * but cannot send anything now because of SWS or another problem.
2598 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2599 int push_one, gfp_t gfp)
2601 struct tcp_sock *tp = tcp_sk(sk);
2602 struct sk_buff *skb;
2603 unsigned int tso_segs, sent_pkts;
2606 bool is_cwnd_limited = false, is_rwnd_limited = false;
2611 tcp_mstamp_refresh(tp);
2613 /* Do MTU probing. */
2614 result = tcp_mtu_probe(sk);
2617 } else if (result > 0) {
2622 max_segs = tcp_tso_segs(sk, mss_now);
2623 while ((skb = tcp_send_head(sk))) {
2626 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2627 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2628 tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2629 skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2630 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2631 tcp_init_tso_segs(skb, mss_now);
2632 goto repair; /* Skip network transmission */
2635 if (tcp_pacing_check(sk))
2638 tso_segs = tcp_init_tso_segs(skb, mss_now);
2641 cwnd_quota = tcp_cwnd_test(tp, skb);
2644 /* Force out a loss probe pkt. */
2650 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2651 is_rwnd_limited = true;
2655 if (tso_segs == 1) {
2656 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2657 (tcp_skb_is_last(sk, skb) ?
2658 nonagle : TCP_NAGLE_PUSH))))
2662 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2663 &is_rwnd_limited, max_segs))
2668 if (tso_segs > 1 && !tcp_urg_mode(tp))
2669 limit = tcp_mss_split_point(sk, skb, mss_now,
2675 if (skb->len > limit &&
2676 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2679 if (tcp_small_queue_check(sk, skb, 0))
2682 /* Argh, we hit an empty skb(), presumably a thread
2683 * is sleeping in sendmsg()/sk_stream_wait_memory().
2684 * We do not want to send a pure-ack packet and have
2685 * a strange looking rtx queue with empty packet(s).
2687 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2690 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2694 /* Advance the send_head. This one is sent out.
2695 * This call will increment packets_out.
2697 tcp_event_new_data_sent(sk, skb);
2699 tcp_minshall_update(tp, mss_now, skb);
2700 sent_pkts += tcp_skb_pcount(skb);
2706 if (is_rwnd_limited)
2707 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2709 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2711 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2712 if (likely(sent_pkts || is_cwnd_limited))
2713 tcp_cwnd_validate(sk, is_cwnd_limited);
2715 if (likely(sent_pkts)) {
2716 if (tcp_in_cwnd_reduction(sk))
2717 tp->prr_out += sent_pkts;
2719 /* Send one loss probe per tail loss episode. */
2721 tcp_schedule_loss_probe(sk, false);
2724 return !tp->packets_out && !tcp_write_queue_empty(sk);
2727 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2729 struct inet_connection_sock *icsk = inet_csk(sk);
2730 struct tcp_sock *tp = tcp_sk(sk);
2731 u32 timeout, rto_delta_us;
2734 /* Don't do any loss probe on a Fast Open connection before 3WHS
2737 if (rcu_access_pointer(tp->fastopen_rsk))
2740 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2741 /* Schedule a loss probe in 2*RTT for SACK capable connections
2742 * not in loss recovery, that are either limited by cwnd or application.
2744 if ((early_retrans != 3 && early_retrans != 4) ||
2745 !tp->packets_out || !tcp_is_sack(tp) ||
2746 (icsk->icsk_ca_state != TCP_CA_Open &&
2747 icsk->icsk_ca_state != TCP_CA_CWR))
2750 /* Probe timeout is 2*rtt. Add minimum RTO to account
2751 * for delayed ack when there's one outstanding packet. If no RTT
2752 * sample is available then probe after TCP_TIMEOUT_INIT.
2755 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2756 if (tp->packets_out == 1)
2757 timeout += TCP_RTO_MIN;
2759 timeout += TCP_TIMEOUT_MIN;
2761 timeout = TCP_TIMEOUT_INIT;
2764 /* If the RTO formula yields an earlier time, then use that time. */
2765 rto_delta_us = advancing_rto ?
2766 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2767 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2768 if (rto_delta_us > 0)
2769 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2771 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2775 /* Thanks to skb fast clones, we can detect if a prior transmit of
2776 * a packet is still in a qdisc or driver queue.
2777 * In this case, there is very little point doing a retransmit !
2779 static bool skb_still_in_host_queue(struct sock *sk,
2780 const struct sk_buff *skb)
2782 if (unlikely(skb_fclone_busy(sk, skb))) {
2783 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2784 smp_mb__after_atomic();
2785 if (skb_fclone_busy(sk, skb)) {
2786 NET_INC_STATS(sock_net(sk),
2787 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2794 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2795 * retransmit the last segment.
2797 void tcp_send_loss_probe(struct sock *sk)
2799 struct tcp_sock *tp = tcp_sk(sk);
2800 struct sk_buff *skb;
2802 int mss = tcp_current_mss(sk);
2804 /* At most one outstanding TLP */
2805 if (tp->tlp_high_seq)
2808 tp->tlp_retrans = 0;
2809 skb = tcp_send_head(sk);
2810 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2811 pcount = tp->packets_out;
2812 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2813 if (tp->packets_out > pcount)
2817 skb = skb_rb_last(&sk->tcp_rtx_queue);
2818 if (unlikely(!skb)) {
2819 WARN_ONCE(tp->packets_out,
2820 "invalid inflight: %u state %u cwnd %u mss %d\n",
2821 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2822 inet_csk(sk)->icsk_pending = 0;
2826 if (skb_still_in_host_queue(sk, skb))
2829 pcount = tcp_skb_pcount(skb);
2830 if (WARN_ON(!pcount))
2833 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2834 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2835 (pcount - 1) * mss, mss,
2838 skb = skb_rb_next(skb);
2841 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2844 if (__tcp_retransmit_skb(sk, skb, 1))
2847 tp->tlp_retrans = 1;
2850 /* Record snd_nxt for loss detection. */
2851 tp->tlp_high_seq = tp->snd_nxt;
2853 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2854 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2855 inet_csk(sk)->icsk_pending = 0;
2860 /* Push out any pending frames which were held back due to
2861 * TCP_CORK or attempt at coalescing tiny packets.
2862 * The socket must be locked by the caller.
2864 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2867 /* If we are closed, the bytes will have to remain here.
2868 * In time closedown will finish, we empty the write queue and
2869 * all will be happy.
2871 if (unlikely(sk->sk_state == TCP_CLOSE))
2874 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2875 sk_gfp_mask(sk, GFP_ATOMIC)))
2876 tcp_check_probe_timer(sk);
2879 /* Send _single_ skb sitting at the send head. This function requires
2880 * true push pending frames to setup probe timer etc.
2882 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2884 struct sk_buff *skb = tcp_send_head(sk);
2886 BUG_ON(!skb || skb->len < mss_now);
2888 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2891 /* This function returns the amount that we can raise the
2892 * usable window based on the following constraints
2894 * 1. The window can never be shrunk once it is offered (RFC 793)
2895 * 2. We limit memory per socket
2898 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2899 * RECV.NEXT + RCV.WIN fixed until:
2900 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2902 * i.e. don't raise the right edge of the window until you can raise
2903 * it at least MSS bytes.
2905 * Unfortunately, the recommended algorithm breaks header prediction,
2906 * since header prediction assumes th->window stays fixed.
2908 * Strictly speaking, keeping th->window fixed violates the receiver
2909 * side SWS prevention criteria. The problem is that under this rule
2910 * a stream of single byte packets will cause the right side of the
2911 * window to always advance by a single byte.
2913 * Of course, if the sender implements sender side SWS prevention
2914 * then this will not be a problem.
2916 * BSD seems to make the following compromise:
2918 * If the free space is less than the 1/4 of the maximum
2919 * space available and the free space is less than 1/2 mss,
2920 * then set the window to 0.
2921 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2922 * Otherwise, just prevent the window from shrinking
2923 * and from being larger than the largest representable value.
2925 * This prevents incremental opening of the window in the regime
2926 * where TCP is limited by the speed of the reader side taking
2927 * data out of the TCP receive queue. It does nothing about
2928 * those cases where the window is constrained on the sender side
2929 * because the pipeline is full.
2931 * BSD also seems to "accidentally" limit itself to windows that are a
2932 * multiple of MSS, at least until the free space gets quite small.
2933 * This would appear to be a side effect of the mbuf implementation.
2934 * Combining these two algorithms results in the observed behavior
2935 * of having a fixed window size at almost all times.
2937 * Below we obtain similar behavior by forcing the offered window to
2938 * a multiple of the mss when it is feasible to do so.
2940 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2941 * Regular options like TIMESTAMP are taken into account.
2943 u32 __tcp_select_window(struct sock *sk)
2945 struct inet_connection_sock *icsk = inet_csk(sk);
2946 struct tcp_sock *tp = tcp_sk(sk);
2947 /* MSS for the peer's data. Previous versions used mss_clamp
2948 * here. I don't know if the value based on our guesses
2949 * of peer's MSS is better for the performance. It's more correct
2950 * but may be worse for the performance because of rcv_mss
2951 * fluctuations. --SAW 1998/11/1
2953 int mss = icsk->icsk_ack.rcv_mss;
2954 int free_space = tcp_space(sk);
2955 int allowed_space = tcp_full_space(sk);
2956 int full_space, window;
2958 if (sk_is_mptcp(sk))
2959 mptcp_space(sk, &free_space, &allowed_space);
2961 full_space = min_t(int, tp->window_clamp, allowed_space);
2963 if (unlikely(mss > full_space)) {
2968 if (free_space < (full_space >> 1)) {
2969 icsk->icsk_ack.quick = 0;
2971 if (tcp_under_memory_pressure(sk))
2972 tcp_adjust_rcv_ssthresh(sk);
2974 /* free_space might become our new window, make sure we don't
2975 * increase it due to wscale.
2977 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2979 /* if free space is less than mss estimate, or is below 1/16th
2980 * of the maximum allowed, try to move to zero-window, else
2981 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2982 * new incoming data is dropped due to memory limits.
2983 * With large window, mss test triggers way too late in order
2984 * to announce zero window in time before rmem limit kicks in.
2986 if (free_space < (allowed_space >> 4) || free_space < mss)
2990 if (free_space > tp->rcv_ssthresh)
2991 free_space = tp->rcv_ssthresh;
2993 /* Don't do rounding if we are using window scaling, since the
2994 * scaled window will not line up with the MSS boundary anyway.
2996 if (tp->rx_opt.rcv_wscale) {
2997 window = free_space;
2999 /* Advertise enough space so that it won't get scaled away.
3000 * Import case: prevent zero window announcement if
3001 * 1<<rcv_wscale > mss.
3003 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3005 window = tp->rcv_wnd;
3006 /* Get the largest window that is a nice multiple of mss.
3007 * Window clamp already applied above.
3008 * If our current window offering is within 1 mss of the
3009 * free space we just keep it. This prevents the divide
3010 * and multiply from happening most of the time.
3011 * We also don't do any window rounding when the free space
3014 if (window <= free_space - mss || window > free_space)
3015 window = rounddown(free_space, mss);
3016 else if (mss == full_space &&
3017 free_space > window + (full_space >> 1))
3018 window = free_space;
3024 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3025 const struct sk_buff *next_skb)
3027 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3028 const struct skb_shared_info *next_shinfo =
3029 skb_shinfo(next_skb);
3030 struct skb_shared_info *shinfo = skb_shinfo(skb);
3032 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3033 shinfo->tskey = next_shinfo->tskey;
3034 TCP_SKB_CB(skb)->txstamp_ack |=
3035 TCP_SKB_CB(next_skb)->txstamp_ack;
3039 /* Collapses two adjacent SKB's during retransmission. */
3040 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3042 struct tcp_sock *tp = tcp_sk(sk);
3043 struct sk_buff *next_skb = skb_rb_next(skb);
3046 next_skb_size = next_skb->len;
3048 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3050 if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3053 tcp_highest_sack_replace(sk, next_skb, skb);
3055 /* Update sequence range on original skb. */
3056 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3058 /* Merge over control information. This moves PSH/FIN etc. over */
3059 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3061 /* All done, get rid of second SKB and account for it so
3062 * packet counting does not break.
3064 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3065 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3067 /* changed transmit queue under us so clear hints */
3068 tcp_clear_retrans_hints_partial(tp);
3069 if (next_skb == tp->retransmit_skb_hint)
3070 tp->retransmit_skb_hint = skb;
3072 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3074 tcp_skb_collapse_tstamp(skb, next_skb);
3076 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3080 /* Check if coalescing SKBs is legal. */
3081 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3083 if (tcp_skb_pcount(skb) > 1)
3085 if (skb_cloned(skb))
3087 /* Some heuristics for collapsing over SACK'd could be invented */
3088 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3094 /* Collapse packets in the retransmit queue to make to create
3095 * less packets on the wire. This is only done on retransmission.
3097 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3100 struct tcp_sock *tp = tcp_sk(sk);
3101 struct sk_buff *skb = to, *tmp;
3104 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
3106 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3109 skb_rbtree_walk_from_safe(skb, tmp) {
3110 if (!tcp_can_collapse(sk, skb))
3113 if (!tcp_skb_can_collapse(to, skb))
3126 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3129 if (!tcp_collapse_retrans(sk, to))
3134 /* This retransmits one SKB. Policy decisions and retransmit queue
3135 * state updates are done by the caller. Returns non-zero if an
3136 * error occurred which prevented the send.
3138 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3140 struct inet_connection_sock *icsk = inet_csk(sk);
3141 struct tcp_sock *tp = tcp_sk(sk);
3142 unsigned int cur_mss;
3146 /* Inconclusive MTU probe */
3147 if (icsk->icsk_mtup.probe_size)
3148 icsk->icsk_mtup.probe_size = 0;
3150 if (skb_still_in_host_queue(sk, skb))
3153 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3154 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3158 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3162 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3163 return -EHOSTUNREACH; /* Routing failure or similar. */
3165 cur_mss = tcp_current_mss(sk);
3167 /* If receiver has shrunk his window, and skb is out of
3168 * new window, do not retransmit it. The exception is the
3169 * case, when window is shrunk to zero. In this case
3170 * our retransmit serves as a zero window probe.
3172 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
3173 TCP_SKB_CB(skb)->seq != tp->snd_una)
3176 len = cur_mss * segs;
3177 if (skb->len > len) {
3178 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3179 cur_mss, GFP_ATOMIC))
3180 return -ENOMEM; /* We'll try again later. */
3182 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3185 diff = tcp_skb_pcount(skb);
3186 tcp_set_skb_tso_segs(skb, cur_mss);
3187 diff -= tcp_skb_pcount(skb);
3189 tcp_adjust_pcount(sk, skb, diff);
3190 if (skb->len < cur_mss)
3191 tcp_retrans_try_collapse(sk, skb, cur_mss);
3194 /* RFC3168, section 6.1.1.1. ECN fallback */
3195 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3196 tcp_ecn_clear_syn(sk, skb);
3198 /* Update global and local TCP statistics. */
3199 segs = tcp_skb_pcount(skb);
3200 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3201 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3202 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3203 tp->total_retrans += segs;
3204 tp->bytes_retrans += skb->len;
3206 /* make sure skb->data is aligned on arches that require it
3207 * and check if ack-trimming & collapsing extended the headroom
3208 * beyond what csum_start can cover.
3210 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3211 skb_headroom(skb) >= 0xFFFF)) {
3212 struct sk_buff *nskb;
3214 tcp_skb_tsorted_save(skb) {
3215 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3218 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3222 } tcp_skb_tsorted_restore(skb);
3225 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3226 tcp_rate_skb_sent(sk, skb);
3229 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3232 /* To avoid taking spuriously low RTT samples based on a timestamp
3233 * for a transmit that never happened, always mark EVER_RETRANS
3235 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3237 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3238 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3239 TCP_SKB_CB(skb)->seq, segs, err);
3242 trace_tcp_retransmit_skb(sk, skb);
3243 } else if (err != -EBUSY) {
3244 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3249 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3251 struct tcp_sock *tp = tcp_sk(sk);
3252 int err = __tcp_retransmit_skb(sk, skb, segs);
3255 #if FASTRETRANS_DEBUG > 0
3256 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3257 net_dbg_ratelimited("retrans_out leaked\n");
3260 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3261 tp->retrans_out += tcp_skb_pcount(skb);
3264 /* Save stamp of the first (attempted) retransmit. */
3265 if (!tp->retrans_stamp)
3266 tp->retrans_stamp = tcp_skb_timestamp(skb);
3268 if (tp->undo_retrans < 0)
3269 tp->undo_retrans = 0;
3270 tp->undo_retrans += tcp_skb_pcount(skb);
3274 /* This gets called after a retransmit timeout, and the initially
3275 * retransmitted data is acknowledged. It tries to continue
3276 * resending the rest of the retransmit queue, until either
3277 * we've sent it all or the congestion window limit is reached.
3279 void tcp_xmit_retransmit_queue(struct sock *sk)
3281 const struct inet_connection_sock *icsk = inet_csk(sk);
3282 struct sk_buff *skb, *rtx_head, *hole = NULL;
3283 struct tcp_sock *tp = tcp_sk(sk);
3284 bool rearm_timer = false;
3288 if (!tp->packets_out)
3291 rtx_head = tcp_rtx_queue_head(sk);
3292 skb = tp->retransmit_skb_hint ?: rtx_head;
3293 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3294 skb_rbtree_walk_from(skb) {
3298 if (tcp_pacing_check(sk))
3301 /* we could do better than to assign each time */
3303 tp->retransmit_skb_hint = skb;
3305 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3308 sacked = TCP_SKB_CB(skb)->sacked;
3309 /* In case tcp_shift_skb_data() have aggregated large skbs,
3310 * we need to make sure not sending too bigs TSO packets
3312 segs = min_t(int, segs, max_segs);
3314 if (tp->retrans_out >= tp->lost_out) {
3316 } else if (!(sacked & TCPCB_LOST)) {
3317 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3322 if (icsk->icsk_ca_state != TCP_CA_Loss)
3323 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3325 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3328 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3331 if (tcp_small_queue_check(sk, skb, 1))
3334 if (tcp_retransmit_skb(sk, skb, segs))
3337 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3339 if (tcp_in_cwnd_reduction(sk))
3340 tp->prr_out += tcp_skb_pcount(skb);
3342 if (skb == rtx_head &&
3343 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3348 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3349 inet_csk(sk)->icsk_rto,
3353 /* We allow to exceed memory limits for FIN packets to expedite
3354 * connection tear down and (memory) recovery.
3355 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3356 * or even be forced to close flow without any FIN.
3357 * In general, we want to allow one skb per socket to avoid hangs
3358 * with edge trigger epoll()
3360 void sk_forced_mem_schedule(struct sock *sk, int size)
3364 if (size <= sk->sk_forward_alloc)
3366 amt = sk_mem_pages(size);
3367 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3368 sk_memory_allocated_add(sk, amt);
3370 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3371 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3372 gfp_memcg_charge() | __GFP_NOFAIL);
3375 /* Send a FIN. The caller locks the socket for us.
3376 * We should try to send a FIN packet really hard, but eventually give up.
3378 void tcp_send_fin(struct sock *sk)
3380 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3381 struct tcp_sock *tp = tcp_sk(sk);
3383 /* Optimization, tack on the FIN if we have one skb in write queue and
3384 * this skb was not yet sent, or we are under memory pressure.
3385 * Note: in the latter case, FIN packet will be sent after a timeout,
3386 * as TCP stack thinks it has already been transmitted.
3389 if (!tskb && tcp_under_memory_pressure(sk))
3390 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3393 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3394 TCP_SKB_CB(tskb)->end_seq++;
3397 /* This means tskb was already sent.
3398 * Pretend we included the FIN on previous transmit.
3399 * We need to set tp->snd_nxt to the value it would have
3400 * if FIN had been sent. This is because retransmit path
3401 * does not change tp->snd_nxt.
3403 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3407 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3411 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3412 skb_reserve(skb, MAX_TCP_HEADER);
3413 sk_forced_mem_schedule(sk, skb->truesize);
3414 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3415 tcp_init_nondata_skb(skb, tp->write_seq,
3416 TCPHDR_ACK | TCPHDR_FIN);
3417 tcp_queue_skb(sk, skb);
3419 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3422 /* We get here when a process closes a file descriptor (either due to
3423 * an explicit close() or as a byproduct of exit()'ing) and there
3424 * was unread data in the receive queue. This behavior is recommended
3425 * by RFC 2525, section 2.17. -DaveM
3427 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3429 struct sk_buff *skb;
3431 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3433 /* NOTE: No TCP options attached and we never retransmit this. */
3434 skb = alloc_skb(MAX_TCP_HEADER, priority);
3436 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3440 /* Reserve space for headers and prepare control bits. */
3441 skb_reserve(skb, MAX_TCP_HEADER);
3442 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3443 TCPHDR_ACK | TCPHDR_RST);
3444 tcp_mstamp_refresh(tcp_sk(sk));
3446 if (tcp_transmit_skb(sk, skb, 0, priority))
3447 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3449 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3450 * skb here is different to the troublesome skb, so use NULL
3452 trace_tcp_send_reset(sk, NULL);
3455 /* Send a crossed SYN-ACK during socket establishment.
3456 * WARNING: This routine must only be called when we have already sent
3457 * a SYN packet that crossed the incoming SYN that caused this routine
3458 * to get called. If this assumption fails then the initial rcv_wnd
3459 * and rcv_wscale values will not be correct.
3461 int tcp_send_synack(struct sock *sk)
3463 struct sk_buff *skb;
3465 skb = tcp_rtx_queue_head(sk);
3466 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3467 pr_err("%s: wrong queue state\n", __func__);
3470 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3471 if (skb_cloned(skb)) {
3472 struct sk_buff *nskb;
3474 tcp_skb_tsorted_save(skb) {
3475 nskb = skb_copy(skb, GFP_ATOMIC);
3476 } tcp_skb_tsorted_restore(skb);
3479 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3480 tcp_highest_sack_replace(sk, skb, nskb);
3481 tcp_rtx_queue_unlink_and_free(skb, sk);
3482 __skb_header_release(nskb);
3483 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3484 sk_wmem_queued_add(sk, nskb->truesize);
3485 sk_mem_charge(sk, nskb->truesize);
3489 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3490 tcp_ecn_send_synack(sk, skb);
3492 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3496 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3497 * @sk: listener socket
3498 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3499 * should not use it again.
3500 * @req: request_sock pointer
3501 * @foc: cookie for tcp fast open
3502 * @synack_type: Type of synack to prepare
3503 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3505 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3506 struct request_sock *req,
3507 struct tcp_fastopen_cookie *foc,
3508 enum tcp_synack_type synack_type,
3509 struct sk_buff *syn_skb)
3511 struct inet_request_sock *ireq = inet_rsk(req);
3512 const struct tcp_sock *tp = tcp_sk(sk);
3513 struct tcp_md5sig_key *md5 = NULL;
3514 struct tcp_out_options opts;
3515 struct sk_buff *skb;
3516 int tcp_header_size;
3521 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3522 if (unlikely(!skb)) {
3526 /* Reserve space for headers. */
3527 skb_reserve(skb, MAX_TCP_HEADER);
3529 switch (synack_type) {
3530 case TCP_SYNACK_NORMAL:
3531 skb_set_owner_w(skb, req_to_sk(req));
3533 case TCP_SYNACK_COOKIE:
3534 /* Under synflood, we do not attach skb to a socket,
3535 * to avoid false sharing.
3538 case TCP_SYNACK_FASTOPEN:
3539 /* sk is a const pointer, because we want to express multiple
3540 * cpu might call us concurrently.
3541 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3543 skb_set_owner_w(skb, (struct sock *)sk);
3546 skb_dst_set(skb, dst);
3548 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3550 memset(&opts, 0, sizeof(opts));
3551 now = tcp_clock_ns();
3552 #ifdef CONFIG_SYN_COOKIES
3553 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3554 skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3559 skb_set_delivery_time(skb, now, true);
3560 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3561 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3564 #ifdef CONFIG_TCP_MD5SIG
3566 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3568 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3569 /* bpf program will be interested in the tcp_flags */
3570 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3571 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3573 syn_skb) + sizeof(*th);
3575 skb_push(skb, tcp_header_size);
3576 skb_reset_transport_header(skb);
3578 th = (struct tcphdr *)skb->data;
3579 memset(th, 0, sizeof(struct tcphdr));
3582 tcp_ecn_make_synack(req, th);
3583 th->source = htons(ireq->ir_num);
3584 th->dest = ireq->ir_rmt_port;
3585 skb->mark = ireq->ir_mark;
3586 skb->ip_summed = CHECKSUM_PARTIAL;
3587 th->seq = htonl(tcp_rsk(req)->snt_isn);
3588 /* XXX data is queued and acked as is. No buffer/window check */
3589 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3591 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3592 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3593 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3594 th->doff = (tcp_header_size >> 2);
3595 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3597 #ifdef CONFIG_TCP_MD5SIG
3598 /* Okay, we have all we need - do the md5 hash if needed */
3600 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3601 md5, req_to_sk(req), skb);
3605 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3606 synack_type, &opts);
3608 skb_set_delivery_time(skb, now, true);
3609 tcp_add_tx_delay(skb, tp);
3613 EXPORT_SYMBOL(tcp_make_synack);
3615 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3617 struct inet_connection_sock *icsk = inet_csk(sk);
3618 const struct tcp_congestion_ops *ca;
3619 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3621 if (ca_key == TCP_CA_UNSPEC)
3625 ca = tcp_ca_find_key(ca_key);
3626 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3627 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3628 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3629 icsk->icsk_ca_ops = ca;
3634 /* Do all connect socket setups that can be done AF independent. */
3635 static void tcp_connect_init(struct sock *sk)
3637 const struct dst_entry *dst = __sk_dst_get(sk);
3638 struct tcp_sock *tp = tcp_sk(sk);
3642 /* We'll fix this up when we get a response from the other end.
3643 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3645 tp->tcp_header_len = sizeof(struct tcphdr);
3646 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3647 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3649 #ifdef CONFIG_TCP_MD5SIG
3650 if (tp->af_specific->md5_lookup(sk, sk))
3651 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3654 /* If user gave his TCP_MAXSEG, record it to clamp */
3655 if (tp->rx_opt.user_mss)
3656 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3659 tcp_sync_mss(sk, dst_mtu(dst));
3661 tcp_ca_dst_init(sk, dst);
3663 if (!tp->window_clamp)
3664 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3665 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3667 tcp_initialize_rcv_mss(sk);
3669 /* limit the window selection if the user enforce a smaller rx buffer */
3670 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3671 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3672 tp->window_clamp = tcp_full_space(sk);
3674 rcv_wnd = tcp_rwnd_init_bpf(sk);
3676 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3678 tcp_select_initial_window(sk, tcp_full_space(sk),
3679 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3682 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3686 tp->rx_opt.rcv_wscale = rcv_wscale;
3687 tp->rcv_ssthresh = tp->rcv_wnd;
3690 sock_reset_flag(sk, SOCK_DONE);
3693 tcp_write_queue_purge(sk);
3694 tp->snd_una = tp->write_seq;
3695 tp->snd_sml = tp->write_seq;
3696 tp->snd_up = tp->write_seq;
3697 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3699 if (likely(!tp->repair))
3702 tp->rcv_tstamp = tcp_jiffies32;
3703 tp->rcv_wup = tp->rcv_nxt;
3704 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3706 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3707 inet_csk(sk)->icsk_retransmits = 0;
3708 tcp_clear_retrans(tp);
3711 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3713 struct tcp_sock *tp = tcp_sk(sk);
3714 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3716 tcb->end_seq += skb->len;
3717 __skb_header_release(skb);
3718 sk_wmem_queued_add(sk, skb->truesize);
3719 sk_mem_charge(sk, skb->truesize);
3720 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3721 tp->packets_out += tcp_skb_pcount(skb);
3724 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3725 * queue a data-only packet after the regular SYN, such that regular SYNs
3726 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3727 * only the SYN sequence, the data are retransmitted in the first ACK.
3728 * If cookie is not cached or other error occurs, falls back to send a
3729 * regular SYN with Fast Open cookie request option.
3731 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3733 struct inet_connection_sock *icsk = inet_csk(sk);
3734 struct tcp_sock *tp = tcp_sk(sk);
3735 struct tcp_fastopen_request *fo = tp->fastopen_req;
3737 struct sk_buff *syn_data;
3739 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3740 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3743 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3744 * user-MSS. Reserve maximum option space for middleboxes that add
3745 * private TCP options. The cost is reduced data space in SYN :(
3747 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3748 /* Sync mss_cache after updating the mss_clamp */
3749 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3751 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3752 MAX_TCP_OPTION_SPACE;
3754 space = min_t(size_t, space, fo->size);
3756 /* limit to order-0 allocations */
3757 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3759 syn_data = tcp_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3762 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3764 int copied = copy_from_iter(skb_put(syn_data, space), space,
3765 &fo->data->msg_iter);
3766 if (unlikely(!copied)) {
3767 tcp_skb_tsorted_anchor_cleanup(syn_data);
3768 kfree_skb(syn_data);
3771 if (copied != space) {
3772 skb_trim(syn_data, copied);
3775 skb_zcopy_set(syn_data, fo->uarg, NULL);
3777 /* No more data pending in inet_wait_for_connect() */
3778 if (space == fo->size)
3782 tcp_connect_queue_skb(sk, syn_data);
3784 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3786 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3788 skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3790 /* Now full SYN+DATA was cloned and sent (or not),
3791 * remove the SYN from the original skb (syn_data)
3792 * we keep in write queue in case of a retransmit, as we
3793 * also have the SYN packet (with no data) in the same queue.
3795 TCP_SKB_CB(syn_data)->seq++;
3796 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3798 tp->syn_data = (fo->copied > 0);
3799 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3800 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3804 /* data was not sent, put it in write_queue */
3805 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3806 tp->packets_out -= tcp_skb_pcount(syn_data);
3809 /* Send a regular SYN with Fast Open cookie request option */
3810 if (fo->cookie.len > 0)
3812 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3814 tp->syn_fastopen = 0;
3816 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3820 /* Build a SYN and send it off. */
3821 int tcp_connect(struct sock *sk)
3823 struct tcp_sock *tp = tcp_sk(sk);
3824 struct sk_buff *buff;
3827 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3829 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3830 return -EHOSTUNREACH; /* Routing failure or similar. */
3832 tcp_connect_init(sk);
3834 if (unlikely(tp->repair)) {
3835 tcp_finish_connect(sk, NULL);
3839 buff = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3840 if (unlikely(!buff))
3843 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3844 tcp_mstamp_refresh(tp);
3845 tp->retrans_stamp = tcp_time_stamp(tp);
3846 tcp_connect_queue_skb(sk, buff);
3847 tcp_ecn_send_syn(sk, buff);
3848 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3850 /* Send off SYN; include data in Fast Open. */
3851 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3852 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3853 if (err == -ECONNREFUSED)
3856 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3857 * in order to make this packet get counted in tcpOutSegs.
3859 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3860 tp->pushed_seq = tp->write_seq;
3861 buff = tcp_send_head(sk);
3862 if (unlikely(buff)) {
3863 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3864 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3866 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3868 /* Timer for repeating the SYN until an answer. */
3869 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3870 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3873 EXPORT_SYMBOL(tcp_connect);
3875 /* Send out a delayed ack, the caller does the policy checking
3876 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3879 void tcp_send_delayed_ack(struct sock *sk)
3881 struct inet_connection_sock *icsk = inet_csk(sk);
3882 int ato = icsk->icsk_ack.ato;
3883 unsigned long timeout;
3885 if (ato > TCP_DELACK_MIN) {
3886 const struct tcp_sock *tp = tcp_sk(sk);
3887 int max_ato = HZ / 2;
3889 if (inet_csk_in_pingpong_mode(sk) ||
3890 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3891 max_ato = TCP_DELACK_MAX;
3893 /* Slow path, intersegment interval is "high". */
3895 /* If some rtt estimate is known, use it to bound delayed ack.
3896 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3900 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3907 ato = min(ato, max_ato);
3910 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3912 /* Stay within the limit we were given */
3913 timeout = jiffies + ato;
3915 /* Use new timeout only if there wasn't a older one earlier. */
3916 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3917 /* If delack timer is about to expire, send ACK now. */
3918 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3923 if (!time_before(timeout, icsk->icsk_ack.timeout))
3924 timeout = icsk->icsk_ack.timeout;
3926 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3927 icsk->icsk_ack.timeout = timeout;
3928 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3931 /* This routine sends an ack and also updates the window. */
3932 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3934 struct sk_buff *buff;
3936 /* If we have been reset, we may not send again. */
3937 if (sk->sk_state == TCP_CLOSE)
3940 /* We are not putting this on the write queue, so
3941 * tcp_transmit_skb() will set the ownership to this
3944 buff = alloc_skb(MAX_TCP_HEADER,
3945 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3946 if (unlikely(!buff)) {
3947 struct inet_connection_sock *icsk = inet_csk(sk);
3948 unsigned long delay;
3950 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3951 if (delay < TCP_RTO_MAX)
3952 icsk->icsk_ack.retry++;
3953 inet_csk_schedule_ack(sk);
3954 icsk->icsk_ack.ato = TCP_ATO_MIN;
3955 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3959 /* Reserve space for headers and prepare control bits. */
3960 skb_reserve(buff, MAX_TCP_HEADER);
3961 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3963 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3965 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3967 skb_set_tcp_pure_ack(buff);
3969 /* Send it off, this clears delayed acks for us. */
3970 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3972 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3974 void tcp_send_ack(struct sock *sk)
3976 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3979 /* This routine sends a packet with an out of date sequence
3980 * number. It assumes the other end will try to ack it.
3982 * Question: what should we make while urgent mode?
3983 * 4.4BSD forces sending single byte of data. We cannot send
3984 * out of window data, because we have SND.NXT==SND.MAX...
3986 * Current solution: to send TWO zero-length segments in urgent mode:
3987 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3988 * out-of-date with SND.UNA-1 to probe window.
3990 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3992 struct tcp_sock *tp = tcp_sk(sk);
3993 struct sk_buff *skb;
3995 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3996 skb = alloc_skb(MAX_TCP_HEADER,
3997 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4001 /* Reserve space for headers and set control bits. */
4002 skb_reserve(skb, MAX_TCP_HEADER);
4003 /* Use a previous sequence. This should cause the other
4004 * end to send an ack. Don't queue or clone SKB, just
4007 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4008 NET_INC_STATS(sock_net(sk), mib);
4009 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4012 /* Called from setsockopt( ... TCP_REPAIR ) */
4013 void tcp_send_window_probe(struct sock *sk)
4015 if (sk->sk_state == TCP_ESTABLISHED) {
4016 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4017 tcp_mstamp_refresh(tcp_sk(sk));
4018 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4022 /* Initiate keepalive or window probe from timer. */
4023 int tcp_write_wakeup(struct sock *sk, int mib)
4025 struct tcp_sock *tp = tcp_sk(sk);
4026 struct sk_buff *skb;
4028 if (sk->sk_state == TCP_CLOSE)
4031 skb = tcp_send_head(sk);
4032 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4034 unsigned int mss = tcp_current_mss(sk);
4035 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4037 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4038 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4040 /* We are probing the opening of a window
4041 * but the window size is != 0
4042 * must have been a result SWS avoidance ( sender )
4044 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4046 seg_size = min(seg_size, mss);
4047 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4048 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4049 skb, seg_size, mss, GFP_ATOMIC))
4051 } else if (!tcp_skb_pcount(skb))
4052 tcp_set_skb_tso_segs(skb, mss);
4054 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4055 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4057 tcp_event_new_data_sent(sk, skb);
4060 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4061 tcp_xmit_probe_skb(sk, 1, mib);
4062 return tcp_xmit_probe_skb(sk, 0, mib);
4066 /* A window probe timeout has occurred. If window is not closed send
4067 * a partial packet else a zero probe.
4069 void tcp_send_probe0(struct sock *sk)
4071 struct inet_connection_sock *icsk = inet_csk(sk);
4072 struct tcp_sock *tp = tcp_sk(sk);
4073 struct net *net = sock_net(sk);
4074 unsigned long timeout;
4077 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4079 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4080 /* Cancel probe timer, if it is not required. */
4081 icsk->icsk_probes_out = 0;
4082 icsk->icsk_backoff = 0;
4083 icsk->icsk_probes_tstamp = 0;
4087 icsk->icsk_probes_out++;
4089 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
4090 icsk->icsk_backoff++;
4091 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4093 /* If packet was not sent due to local congestion,
4094 * Let senders fight for local resources conservatively.
4096 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4099 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4100 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4103 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4105 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4109 /* Paired with WRITE_ONCE() in sock_setsockopt() */
4110 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4111 tcp_rsk(req)->txhash = net_tx_rndhash();
4112 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4115 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4116 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4117 if (unlikely(tcp_passive_fastopen(sk)))
4118 tcp_sk(sk)->total_retrans++;
4119 trace_tcp_retransmit_synack(sk, req);
4123 EXPORT_SYMBOL(tcp_rtx_synack);