Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[platform/kernel/linux-rpi.git] / net / ipv4 / tcp_nv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TCP NV: TCP with Congestion Avoidance
4  *
5  * TCP-NV is a successor of TCP-Vegas that has been developed to
6  * deal with the issues that occur in modern networks.
7  * Like TCP-Vegas, TCP-NV supports true congestion avoidance,
8  * the ability to detect congestion before packet losses occur.
9  * When congestion (queue buildup) starts to occur, TCP-NV
10  * predicts what the cwnd size should be for the current
11  * throughput and it reduces the cwnd proportionally to
12  * the difference between the current cwnd and the predicted cwnd.
13  *
14  * NV is only recommeneded for traffic within a data center, and when
15  * all the flows are NV (at least those within the data center). This
16  * is due to the inherent unfairness between flows using losses to
17  * detect congestion (congestion control) and those that use queue
18  * buildup to detect congestion (congestion avoidance).
19  *
20  * Note: High NIC coalescence values may lower the performance of NV
21  * due to the increased noise in RTT values. In particular, we have
22  * seen issues with rx-frames values greater than 8.
23  *
24  * TODO:
25  * 1) Add mechanism to deal with reverse congestion.
26  */
27
28 #include <linux/module.h>
29 #include <linux/math64.h>
30 #include <net/tcp.h>
31 #include <linux/inet_diag.h>
32
33 /* TCP NV parameters
34  *
35  * nv_pad               Max number of queued packets allowed in network
36  * nv_pad_buffer        Do not grow cwnd if this closed to nv_pad
37  * nv_reset_period      How often (in) seconds)to reset min_rtt
38  * nv_min_cwnd          Don't decrease cwnd below this if there are no losses
39  * nv_cong_dec_mult     Decrease cwnd by X% (30%) of congestion when detected
40  * nv_ssthresh_factor   On congestion set ssthresh to this * <desired cwnd> / 8
41  * nv_rtt_factor        RTT averaging factor
42  * nv_loss_dec_factor   Decrease cwnd to this (80%) when losses occur
43  * nv_dec_eval_min_calls        Wait this many RTT measurements before dec cwnd
44  * nv_inc_eval_min_calls        Wait this many RTT measurements before inc cwnd
45  * nv_ssthresh_eval_min_calls   Wait this many RTT measurements before stopping
46  *                              slow-start due to congestion
47  * nv_stop_rtt_cnt      Only grow cwnd for this many RTTs after non-congestion
48  * nv_rtt_min_cnt       Wait these many RTTs before making congesion decision
49  * nv_cwnd_growth_rate_neg
50  * nv_cwnd_growth_rate_pos
51  *      How quickly to double growth rate (not rate) of cwnd when not
52  *      congested. One value (nv_cwnd_growth_rate_neg) for when
53  *      rate < 1 pkt/RTT (after losses). The other (nv_cwnd_growth_rate_pos)
54  *      otherwise.
55  */
56
57 static int nv_pad __read_mostly = 10;
58 static int nv_pad_buffer __read_mostly = 2;
59 static int nv_reset_period __read_mostly = 5; /* in seconds */
60 static int nv_min_cwnd __read_mostly = 2;
61 static int nv_cong_dec_mult __read_mostly = 30 * 128 / 100; /* = 30% */
62 static int nv_ssthresh_factor __read_mostly = 8; /* = 1 */
63 static int nv_rtt_factor __read_mostly = 128; /* = 1/2*old + 1/2*new */
64 static int nv_loss_dec_factor __read_mostly = 819; /* => 80% */
65 static int nv_cwnd_growth_rate_neg __read_mostly = 8;
66 static int nv_cwnd_growth_rate_pos __read_mostly; /* 0 => fixed like Reno */
67 static int nv_dec_eval_min_calls __read_mostly = 60;
68 static int nv_inc_eval_min_calls __read_mostly = 20;
69 static int nv_ssthresh_eval_min_calls __read_mostly = 30;
70 static int nv_stop_rtt_cnt __read_mostly = 10;
71 static int nv_rtt_min_cnt __read_mostly = 2;
72
73 module_param(nv_pad, int, 0644);
74 MODULE_PARM_DESC(nv_pad, "max queued packets allowed in network");
75 module_param(nv_reset_period, int, 0644);
76 MODULE_PARM_DESC(nv_reset_period, "nv_min_rtt reset period (secs)");
77 module_param(nv_min_cwnd, int, 0644);
78 MODULE_PARM_DESC(nv_min_cwnd, "NV will not decrease cwnd below this value"
79                  " without losses");
80
81 /* TCP NV Parameters */
82 struct tcpnv {
83         unsigned long nv_min_rtt_reset_jiffies;  /* when to switch to
84                                                   * nv_min_rtt_new */
85         s8  cwnd_growth_factor; /* Current cwnd growth factor,
86                                  * < 0 => less than 1 packet/RTT */
87         u8  available8;
88         u16 available16;
89         u8  nv_allow_cwnd_growth:1, /* whether cwnd can grow */
90                 nv_reset:1,         /* whether to reset values */
91                 nv_catchup:1;       /* whether we are growing because
92                                      * of temporary cwnd decrease */
93         u8  nv_eval_call_cnt;   /* call count since last eval */
94         u8  nv_min_cwnd;        /* nv won't make a ca decision if cwnd is
95                                  * smaller than this. It may grow to handle
96                                  * TSO, LRO and interrupt coalescence because
97                                  * with these a small cwnd cannot saturate
98                                  * the link. Note that this is different from
99                                  * the file local nv_min_cwnd */
100         u8  nv_rtt_cnt;         /* RTTs without making ca decision */;
101         u32 nv_last_rtt;        /* last rtt */
102         u32 nv_min_rtt;         /* active min rtt. Used to determine slope */
103         u32 nv_min_rtt_new;     /* min rtt for future use */
104         u32 nv_base_rtt;        /* If non-zero it represents the threshold for
105                                  * congestion */
106         u32 nv_lower_bound_rtt; /* Used in conjunction with nv_base_rtt. It is
107                                  * set to 80% of nv_base_rtt. It helps reduce
108                                  * unfairness between flows */
109         u32 nv_rtt_max_rate;    /* max rate seen during current RTT */
110         u32 nv_rtt_start_seq;   /* current RTT ends when packet arrives
111                                  * acking beyond nv_rtt_start_seq */
112         u32 nv_last_snd_una;    /* Previous value of tp->snd_una. It is
113                                  * used to determine bytes acked since last
114                                  * call to bictcp_acked */
115         u32 nv_no_cong_cnt;     /* Consecutive no congestion decisions */
116 };
117
118 #define NV_INIT_RTT       U32_MAX
119 #define NV_MIN_CWND       4
120 #define NV_MIN_CWND_GROW  2
121 #define NV_TSO_CWND_BOUND 80
122
123 static inline void tcpnv_reset(struct tcpnv *ca, struct sock *sk)
124 {
125         struct tcp_sock *tp = tcp_sk(sk);
126
127         ca->nv_reset = 0;
128         ca->nv_no_cong_cnt = 0;
129         ca->nv_rtt_cnt = 0;
130         ca->nv_last_rtt = 0;
131         ca->nv_rtt_max_rate = 0;
132         ca->nv_rtt_start_seq = tp->snd_una;
133         ca->nv_eval_call_cnt = 0;
134         ca->nv_last_snd_una = tp->snd_una;
135 }
136
137 static void tcpnv_init(struct sock *sk)
138 {
139         struct tcpnv *ca = inet_csk_ca(sk);
140         int base_rtt;
141
142         tcpnv_reset(ca, sk);
143
144         /* See if base_rtt is available from socket_ops bpf program.
145          * It is meant to be used in environments, such as communication
146          * within a datacenter, where we have reasonable estimates of
147          * RTTs
148          */
149         base_rtt = tcp_call_bpf(sk, BPF_SOCK_OPS_BASE_RTT, 0, NULL);
150         if (base_rtt > 0) {
151                 ca->nv_base_rtt = base_rtt;
152                 ca->nv_lower_bound_rtt = (base_rtt * 205) >> 8; /* 80% */
153         } else {
154                 ca->nv_base_rtt = 0;
155                 ca->nv_lower_bound_rtt = 0;
156         }
157
158         ca->nv_allow_cwnd_growth = 1;
159         ca->nv_min_rtt_reset_jiffies = jiffies + 2 * HZ;
160         ca->nv_min_rtt = NV_INIT_RTT;
161         ca->nv_min_rtt_new = NV_INIT_RTT;
162         ca->nv_min_cwnd = NV_MIN_CWND;
163         ca->nv_catchup = 0;
164         ca->cwnd_growth_factor = 0;
165 }
166
167 /* If provided, apply upper (base_rtt) and lower (lower_bound_rtt)
168  * bounds to RTT.
169  */
170 inline u32 nv_get_bounded_rtt(struct tcpnv *ca, u32 val)
171 {
172         if (ca->nv_lower_bound_rtt > 0 && val < ca->nv_lower_bound_rtt)
173                 return ca->nv_lower_bound_rtt;
174         else if (ca->nv_base_rtt > 0 && val > ca->nv_base_rtt)
175                 return ca->nv_base_rtt;
176         else
177                 return val;
178 }
179
180 static void tcpnv_cong_avoid(struct sock *sk, u32 ack, u32 acked)
181 {
182         struct tcp_sock *tp = tcp_sk(sk);
183         struct tcpnv *ca = inet_csk_ca(sk);
184         u32 cnt;
185
186         if (!tcp_is_cwnd_limited(sk))
187                 return;
188
189         /* Only grow cwnd if NV has not detected congestion */
190         if (!ca->nv_allow_cwnd_growth)
191                 return;
192
193         if (tcp_in_slow_start(tp)) {
194                 acked = tcp_slow_start(tp, acked);
195                 if (!acked)
196                         return;
197         }
198
199         if (ca->cwnd_growth_factor < 0) {
200                 cnt = tcp_snd_cwnd(tp) << -ca->cwnd_growth_factor;
201                 tcp_cong_avoid_ai(tp, cnt, acked);
202         } else {
203                 cnt = max(4U, tcp_snd_cwnd(tp) >> ca->cwnd_growth_factor);
204                 tcp_cong_avoid_ai(tp, cnt, acked);
205         }
206 }
207
208 static u32 tcpnv_recalc_ssthresh(struct sock *sk)
209 {
210         const struct tcp_sock *tp = tcp_sk(sk);
211
212         return max((tcp_snd_cwnd(tp) * nv_loss_dec_factor) >> 10, 2U);
213 }
214
215 static void tcpnv_state(struct sock *sk, u8 new_state)
216 {
217         struct tcpnv *ca = inet_csk_ca(sk);
218
219         if (new_state == TCP_CA_Open && ca->nv_reset) {
220                 tcpnv_reset(ca, sk);
221         } else if (new_state == TCP_CA_Loss || new_state == TCP_CA_CWR ||
222                 new_state == TCP_CA_Recovery) {
223                 ca->nv_reset = 1;
224                 ca->nv_allow_cwnd_growth = 0;
225                 if (new_state == TCP_CA_Loss) {
226                         /* Reset cwnd growth factor to Reno value */
227                         if (ca->cwnd_growth_factor > 0)
228                                 ca->cwnd_growth_factor = 0;
229                         /* Decrease growth rate if allowed */
230                         if (nv_cwnd_growth_rate_neg > 0 &&
231                             ca->cwnd_growth_factor > -8)
232                                 ca->cwnd_growth_factor--;
233                 }
234         }
235 }
236
237 /* Do congestion avoidance calculations for TCP-NV
238  */
239 static void tcpnv_acked(struct sock *sk, const struct ack_sample *sample)
240 {
241         const struct inet_connection_sock *icsk = inet_csk(sk);
242         struct tcp_sock *tp = tcp_sk(sk);
243         struct tcpnv *ca = inet_csk_ca(sk);
244         unsigned long now = jiffies;
245         u64 rate64;
246         u32 rate, max_win, cwnd_by_slope;
247         u32 avg_rtt;
248         u32 bytes_acked = 0;
249
250         /* Some calls are for duplicates without timetamps */
251         if (sample->rtt_us < 0)
252                 return;
253
254         /* If not in TCP_CA_Open or TCP_CA_Disorder states, skip. */
255         if (icsk->icsk_ca_state != TCP_CA_Open &&
256             icsk->icsk_ca_state != TCP_CA_Disorder)
257                 return;
258
259         /* Stop cwnd growth if we were in catch up mode */
260         if (ca->nv_catchup && tcp_snd_cwnd(tp) >= nv_min_cwnd) {
261                 ca->nv_catchup = 0;
262                 ca->nv_allow_cwnd_growth = 0;
263         }
264
265         bytes_acked = tp->snd_una - ca->nv_last_snd_una;
266         ca->nv_last_snd_una = tp->snd_una;
267
268         if (sample->in_flight == 0)
269                 return;
270
271         /* Calculate moving average of RTT */
272         if (nv_rtt_factor > 0) {
273                 if (ca->nv_last_rtt > 0) {
274                         avg_rtt = (((u64)sample->rtt_us) * nv_rtt_factor +
275                                    ((u64)ca->nv_last_rtt)
276                                    * (256 - nv_rtt_factor)) >> 8;
277                 } else {
278                         avg_rtt = sample->rtt_us;
279                         ca->nv_min_rtt = avg_rtt << 1;
280                 }
281                 ca->nv_last_rtt = avg_rtt;
282         } else {
283                 avg_rtt = sample->rtt_us;
284         }
285
286         /* rate in 100's bits per second */
287         rate64 = ((u64)sample->in_flight) * 80000;
288         do_div(rate64, avg_rtt ?: 1);
289         rate = (u32)rate64;
290
291         /* Remember the maximum rate seen during this RTT
292          * Note: It may be more than one RTT. This function should be
293          *       called at least nv_dec_eval_min_calls times.
294          */
295         if (ca->nv_rtt_max_rate < rate)
296                 ca->nv_rtt_max_rate = rate;
297
298         /* We have valid information, increment counter */
299         if (ca->nv_eval_call_cnt < 255)
300                 ca->nv_eval_call_cnt++;
301
302         /* Apply bounds to rtt. Only used to update min_rtt */
303         avg_rtt = nv_get_bounded_rtt(ca, avg_rtt);
304
305         /* update min rtt if necessary */
306         if (avg_rtt < ca->nv_min_rtt)
307                 ca->nv_min_rtt = avg_rtt;
308
309         /* update future min_rtt if necessary */
310         if (avg_rtt < ca->nv_min_rtt_new)
311                 ca->nv_min_rtt_new = avg_rtt;
312
313         /* nv_min_rtt is updated with the minimum (possibley averaged) rtt
314          * seen in the last sysctl_tcp_nv_reset_period seconds (i.e. a
315          * warm reset). This new nv_min_rtt will be continued to be updated
316          * and be used for another sysctl_tcp_nv_reset_period seconds,
317          * when it will be updated again.
318          * In practice we introduce some randomness, so the actual period used
319          * is chosen randomly from the range:
320          *   [sysctl_tcp_nv_reset_period*3/4, sysctl_tcp_nv_reset_period*5/4)
321          */
322         if (time_after_eq(now, ca->nv_min_rtt_reset_jiffies)) {
323                 unsigned char rand;
324
325                 ca->nv_min_rtt = ca->nv_min_rtt_new;
326                 ca->nv_min_rtt_new = NV_INIT_RTT;
327                 get_random_bytes(&rand, 1);
328                 ca->nv_min_rtt_reset_jiffies =
329                         now + ((nv_reset_period * (384 + rand) * HZ) >> 9);
330                 /* Every so often we decrease ca->nv_min_cwnd in case previous
331                  *  value is no longer accurate.
332                  */
333                 ca->nv_min_cwnd = max(ca->nv_min_cwnd / 2, NV_MIN_CWND);
334         }
335
336         /* Once per RTT check if we need to do congestion avoidance */
337         if (before(ca->nv_rtt_start_seq, tp->snd_una)) {
338                 ca->nv_rtt_start_seq = tp->snd_nxt;
339                 if (ca->nv_rtt_cnt < 0xff)
340                         /* Increase counter for RTTs without CA decision */
341                         ca->nv_rtt_cnt++;
342
343                 /* If this function is only called once within an RTT
344                  * the cwnd is probably too small (in some cases due to
345                  * tso, lro or interrupt coalescence), so we increase
346                  * ca->nv_min_cwnd.
347                  */
348                 if (ca->nv_eval_call_cnt == 1 &&
349                     bytes_acked >= (ca->nv_min_cwnd - 1) * tp->mss_cache &&
350                     ca->nv_min_cwnd < (NV_TSO_CWND_BOUND + 1)) {
351                         ca->nv_min_cwnd = min(ca->nv_min_cwnd
352                                               + NV_MIN_CWND_GROW,
353                                               NV_TSO_CWND_BOUND + 1);
354                         ca->nv_rtt_start_seq = tp->snd_nxt +
355                                 ca->nv_min_cwnd * tp->mss_cache;
356                         ca->nv_eval_call_cnt = 0;
357                         ca->nv_allow_cwnd_growth = 1;
358                         return;
359                 }
360
361                 /* Find the ideal cwnd for current rate from slope
362                  * slope = 80000.0 * mss / nv_min_rtt
363                  * cwnd_by_slope = nv_rtt_max_rate / slope
364                  */
365                 cwnd_by_slope = (u32)
366                         div64_u64(((u64)ca->nv_rtt_max_rate) * ca->nv_min_rtt,
367                                   80000ULL * tp->mss_cache);
368                 max_win = cwnd_by_slope + nv_pad;
369
370                 /* If cwnd > max_win, decrease cwnd
371                  * if cwnd < max_win, grow cwnd
372                  * else leave the same
373                  */
374                 if (tcp_snd_cwnd(tp) > max_win) {
375                         /* there is congestion, check that it is ok
376                          * to make a CA decision
377                          * 1. We should have at least nv_dec_eval_min_calls
378                          *    data points before making a CA  decision
379                          * 2. We only make a congesion decision after
380                          *    nv_rtt_min_cnt RTTs
381                          */
382                         if (ca->nv_rtt_cnt < nv_rtt_min_cnt) {
383                                 return;
384                         } else if (tp->snd_ssthresh == TCP_INFINITE_SSTHRESH) {
385                                 if (ca->nv_eval_call_cnt <
386                                     nv_ssthresh_eval_min_calls)
387                                         return;
388                                 /* otherwise we will decrease cwnd */
389                         } else if (ca->nv_eval_call_cnt <
390                                    nv_dec_eval_min_calls) {
391                                 if (ca->nv_allow_cwnd_growth &&
392                                     ca->nv_rtt_cnt > nv_stop_rtt_cnt)
393                                         ca->nv_allow_cwnd_growth = 0;
394                                 return;
395                         }
396
397                         /* We have enough data to determine we are congested */
398                         ca->nv_allow_cwnd_growth = 0;
399                         tp->snd_ssthresh =
400                                 (nv_ssthresh_factor * max_win) >> 3;
401                         if (tcp_snd_cwnd(tp) - max_win > 2) {
402                                 /* gap > 2, we do exponential cwnd decrease */
403                                 int dec;
404
405                                 dec = max(2U, ((tcp_snd_cwnd(tp) - max_win) *
406                                                nv_cong_dec_mult) >> 7);
407                                 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - dec);
408                         } else if (nv_cong_dec_mult > 0) {
409                                 tcp_snd_cwnd_set(tp, max_win);
410                         }
411                         if (ca->cwnd_growth_factor > 0)
412                                 ca->cwnd_growth_factor = 0;
413                         ca->nv_no_cong_cnt = 0;
414                 } else if (tcp_snd_cwnd(tp) <= max_win - nv_pad_buffer) {
415                         /* There is no congestion, grow cwnd if allowed*/
416                         if (ca->nv_eval_call_cnt < nv_inc_eval_min_calls)
417                                 return;
418
419                         ca->nv_allow_cwnd_growth = 1;
420                         ca->nv_no_cong_cnt++;
421                         if (ca->cwnd_growth_factor < 0 &&
422                             nv_cwnd_growth_rate_neg > 0 &&
423                             ca->nv_no_cong_cnt > nv_cwnd_growth_rate_neg) {
424                                 ca->cwnd_growth_factor++;
425                                 ca->nv_no_cong_cnt = 0;
426                         } else if (ca->cwnd_growth_factor >= 0 &&
427                                    nv_cwnd_growth_rate_pos > 0 &&
428                                    ca->nv_no_cong_cnt >
429                                    nv_cwnd_growth_rate_pos) {
430                                 ca->cwnd_growth_factor++;
431                                 ca->nv_no_cong_cnt = 0;
432                         }
433                 } else {
434                         /* cwnd is in-between, so do nothing */
435                         return;
436                 }
437
438                 /* update state */
439                 ca->nv_eval_call_cnt = 0;
440                 ca->nv_rtt_cnt = 0;
441                 ca->nv_rtt_max_rate = 0;
442
443                 /* Don't want to make cwnd < nv_min_cwnd
444                  * (it wasn't before, if it is now is because nv
445                  *  decreased it).
446                  */
447                 if (tcp_snd_cwnd(tp) < nv_min_cwnd)
448                         tcp_snd_cwnd_set(tp, nv_min_cwnd);
449         }
450 }
451
452 /* Extract info for Tcp socket info provided via netlink */
453 static size_t tcpnv_get_info(struct sock *sk, u32 ext, int *attr,
454                              union tcp_cc_info *info)
455 {
456         const struct tcpnv *ca = inet_csk_ca(sk);
457
458         if (ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
459                 info->vegas.tcpv_enabled = 1;
460                 info->vegas.tcpv_rttcnt = ca->nv_rtt_cnt;
461                 info->vegas.tcpv_rtt = ca->nv_last_rtt;
462                 info->vegas.tcpv_minrtt = ca->nv_min_rtt;
463
464                 *attr = INET_DIAG_VEGASINFO;
465                 return sizeof(struct tcpvegas_info);
466         }
467         return 0;
468 }
469
470 static struct tcp_congestion_ops tcpnv __read_mostly = {
471         .init           = tcpnv_init,
472         .ssthresh       = tcpnv_recalc_ssthresh,
473         .cong_avoid     = tcpnv_cong_avoid,
474         .set_state      = tcpnv_state,
475         .undo_cwnd      = tcp_reno_undo_cwnd,
476         .pkts_acked     = tcpnv_acked,
477         .get_info       = tcpnv_get_info,
478
479         .owner          = THIS_MODULE,
480         .name           = "nv",
481 };
482
483 static int __init tcpnv_register(void)
484 {
485         BUILD_BUG_ON(sizeof(struct tcpnv) > ICSK_CA_PRIV_SIZE);
486
487         return tcp_register_congestion_control(&tcpnv);
488 }
489
490 static void __exit tcpnv_unregister(void)
491 {
492         tcp_unregister_congestion_control(&tcpnv);
493 }
494
495 module_init(tcpnv_register);
496 module_exit(tcpnv_unregister);
497
498 MODULE_AUTHOR("Lawrence Brakmo");
499 MODULE_LICENSE("GPL");
500 MODULE_DESCRIPTION("TCP NV");
501 MODULE_VERSION("1.0");