2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * IPv4 specific functions
13 * linux/ipv4/tcp_input.c
14 * linux/ipv4/tcp_output.c
16 * See tcp.c for author information
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
26 * David S. Miller : New socket lookup architecture.
27 * This code is dedicated to John Dyson.
28 * David S. Miller : Change semantics of established hash,
29 * half is devoted to TIME_WAIT sockets
30 * and the rest go in the other half.
31 * Andi Kleen : Add support for syncookies and fixed
32 * some bugs: ip options weren't passed to
33 * the TCP layer, missed a check for an
35 * Andi Kleen : Implemented fast path mtu discovery.
36 * Fixed many serious bugs in the
37 * request_sock handling and moved
38 * most of it into the af independent code.
39 * Added tail drop and some other bugfixes.
40 * Added new listen semantics.
41 * Mike McLagan : Routing by source
42 * Juan Jose Ciarlante: ip_dynaddr bits
43 * Andi Kleen: various fixes.
44 * Vitaly E. Lavrov : Transparent proxy revived after year
46 * Andi Kleen : Fix new listen.
47 * Andi Kleen : Fix accept error reporting.
48 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
49 * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind
50 * a single port at the same time.
54 #include <linux/bottom_half.h>
55 #include <linux/types.h>
56 #include <linux/fcntl.h>
57 #include <linux/module.h>
58 #include <linux/random.h>
59 #include <linux/cache.h>
60 #include <linux/jhash.h>
61 #include <linux/init.h>
62 #include <linux/times.h>
64 #include <net/net_namespace.h>
66 #include <net/inet_hashtables.h>
68 #include <net/transp_v6.h>
70 #include <net/inet_common.h>
71 #include <net/timewait_sock.h>
73 #include <net/netdma.h>
75 #include <linux/inet.h>
76 #include <linux/ipv6.h>
77 #include <linux/stddef.h>
78 #include <linux/proc_fs.h>
79 #include <linux/seq_file.h>
81 #include <linux/crypto.h>
82 #include <linux/scatterlist.h>
84 int sysctl_tcp_tw_reuse __read_mostly;
85 int sysctl_tcp_low_latency __read_mostly;
88 #ifdef CONFIG_TCP_MD5SIG
89 static struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk,
91 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
92 __be32 daddr, __be32 saddr, struct tcphdr *th);
95 struct tcp_md5sig_key *tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
101 struct inet_hashinfo tcp_hashinfo;
103 static inline __u32 tcp_v4_init_sequence(struct sk_buff *skb)
105 return secure_tcp_sequence_number(ip_hdr(skb)->daddr,
108 tcp_hdr(skb)->source);
111 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp)
113 const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw);
114 struct tcp_sock *tp = tcp_sk(sk);
116 /* With PAWS, it is safe from the viewpoint
117 of data integrity. Even without PAWS it is safe provided sequence
118 spaces do not overlap i.e. at data rates <= 80Mbit/sec.
120 Actually, the idea is close to VJ's one, only timestamp cache is
121 held not per host, but per port pair and TW bucket is used as state
124 If TW bucket has been already destroyed we fall back to VJ's scheme
125 and use initial timestamp retrieved from peer table.
127 if (tcptw->tw_ts_recent_stamp &&
128 (twp == NULL || (sysctl_tcp_tw_reuse &&
129 get_seconds() - tcptw->tw_ts_recent_stamp > 1))) {
130 tp->write_seq = tcptw->tw_snd_nxt + 65535 + 2;
131 if (tp->write_seq == 0)
133 tp->rx_opt.ts_recent = tcptw->tw_ts_recent;
134 tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
142 EXPORT_SYMBOL_GPL(tcp_twsk_unique);
144 /* This will initiate an outgoing connection. */
145 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
147 struct inet_sock *inet = inet_sk(sk);
148 struct tcp_sock *tp = tcp_sk(sk);
149 struct sockaddr_in *usin = (struct sockaddr_in *)uaddr;
151 __be32 daddr, nexthop;
155 if (addr_len < sizeof(struct sockaddr_in))
158 if (usin->sin_family != AF_INET)
159 return -EAFNOSUPPORT;
161 nexthop = daddr = usin->sin_addr.s_addr;
162 if (inet->opt && inet->opt->srr) {
165 nexthop = inet->opt->faddr;
168 tmp = ip_route_connect(&rt, nexthop, inet->inet_saddr,
169 RT_CONN_FLAGS(sk), sk->sk_bound_dev_if,
171 inet->inet_sport, usin->sin_port, sk, 1);
173 if (tmp == -ENETUNREACH)
174 IP_INC_STATS_BH(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
178 if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) {
183 if (!inet->opt || !inet->opt->srr)
186 if (!inet->inet_saddr)
187 inet->inet_saddr = rt->rt_src;
188 inet->inet_rcv_saddr = inet->inet_saddr;
190 if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) {
191 /* Reset inherited state */
192 tp->rx_opt.ts_recent = 0;
193 tp->rx_opt.ts_recent_stamp = 0;
197 if (tcp_death_row.sysctl_tw_recycle &&
198 !tp->rx_opt.ts_recent_stamp && rt->rt_dst == daddr) {
199 struct inet_peer *peer = rt_get_peer(rt);
201 * VJ's idea. We save last timestamp seen from
202 * the destination in peer table, when entering state
203 * TIME-WAIT * and initialize rx_opt.ts_recent from it,
204 * when trying new connection.
207 (u32)get_seconds() - peer->tcp_ts_stamp <= TCP_PAWS_MSL) {
208 tp->rx_opt.ts_recent_stamp = peer->tcp_ts_stamp;
209 tp->rx_opt.ts_recent = peer->tcp_ts;
213 inet->inet_dport = usin->sin_port;
214 inet->inet_daddr = daddr;
216 inet_csk(sk)->icsk_ext_hdr_len = 0;
218 inet_csk(sk)->icsk_ext_hdr_len = inet->opt->optlen;
220 tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT;
222 /* Socket identity is still unknown (sport may be zero).
223 * However we set state to SYN-SENT and not releasing socket
224 * lock select source port, enter ourselves into the hash tables and
225 * complete initialization after this.
227 tcp_set_state(sk, TCP_SYN_SENT);
228 err = inet_hash_connect(&tcp_death_row, sk);
232 err = ip_route_newports(&rt, IPPROTO_TCP,
233 inet->inet_sport, inet->inet_dport, sk);
237 /* OK, now commit destination to socket. */
238 sk->sk_gso_type = SKB_GSO_TCPV4;
239 sk_setup_caps(sk, &rt->u.dst);
242 tp->write_seq = secure_tcp_sequence_number(inet->inet_saddr,
247 inet->inet_id = tp->write_seq ^ jiffies;
249 err = tcp_connect(sk);
258 * This unhashes the socket and releases the local port,
261 tcp_set_state(sk, TCP_CLOSE);
263 sk->sk_route_caps = 0;
264 inet->inet_dport = 0;
269 * This routine does path mtu discovery as defined in RFC1191.
271 static void do_pmtu_discovery(struct sock *sk, struct iphdr *iph, u32 mtu)
273 struct dst_entry *dst;
274 struct inet_sock *inet = inet_sk(sk);
276 /* We are not interested in TCP_LISTEN and open_requests (SYN-ACKs
277 * send out by Linux are always <576bytes so they should go through
280 if (sk->sk_state == TCP_LISTEN)
283 /* We don't check in the destentry if pmtu discovery is forbidden
284 * on this route. We just assume that no packet_to_big packets
285 * are send back when pmtu discovery is not active.
286 * There is a small race when the user changes this flag in the
287 * route, but I think that's acceptable.
289 if ((dst = __sk_dst_check(sk, 0)) == NULL)
292 dst->ops->update_pmtu(dst, mtu);
294 /* Something is about to be wrong... Remember soft error
295 * for the case, if this connection will not able to recover.
297 if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst))
298 sk->sk_err_soft = EMSGSIZE;
302 if (inet->pmtudisc != IP_PMTUDISC_DONT &&
303 inet_csk(sk)->icsk_pmtu_cookie > mtu) {
304 tcp_sync_mss(sk, mtu);
306 /* Resend the TCP packet because it's
307 * clear that the old packet has been
308 * dropped. This is the new "fast" path mtu
311 tcp_simple_retransmit(sk);
312 } /* else let the usual retransmit timer handle it */
316 * This routine is called by the ICMP module when it gets some
317 * sort of error condition. If err < 0 then the socket should
318 * be closed and the error returned to the user. If err > 0
319 * it's just the icmp type << 8 | icmp code. After adjustment
320 * header points to the first 8 bytes of the tcp header. We need
321 * to find the appropriate port.
323 * The locking strategy used here is very "optimistic". When
324 * someone else accesses the socket the ICMP is just dropped
325 * and for some paths there is no check at all.
326 * A more general error queue to queue errors for later handling
327 * is probably better.
331 void tcp_v4_err(struct sk_buff *icmp_skb, u32 info)
333 struct iphdr *iph = (struct iphdr *)icmp_skb->data;
334 struct tcphdr *th = (struct tcphdr *)(icmp_skb->data + (iph->ihl << 2));
335 struct inet_connection_sock *icsk;
337 struct inet_sock *inet;
338 const int type = icmp_hdr(icmp_skb)->type;
339 const int code = icmp_hdr(icmp_skb)->code;
345 struct net *net = dev_net(icmp_skb->dev);
347 if (icmp_skb->len < (iph->ihl << 2) + 8) {
348 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
352 sk = inet_lookup(net, &tcp_hashinfo, iph->daddr, th->dest,
353 iph->saddr, th->source, inet_iif(icmp_skb));
355 ICMP_INC_STATS_BH(net, ICMP_MIB_INERRORS);
358 if (sk->sk_state == TCP_TIME_WAIT) {
359 inet_twsk_put(inet_twsk(sk));
364 /* If too many ICMPs get dropped on busy
365 * servers this needs to be solved differently.
367 if (sock_owned_by_user(sk))
368 NET_INC_STATS_BH(net, LINUX_MIB_LOCKDROPPEDICMPS);
370 if (sk->sk_state == TCP_CLOSE)
375 seq = ntohl(th->seq);
376 if (sk->sk_state != TCP_LISTEN &&
377 !between(seq, tp->snd_una, tp->snd_nxt)) {
378 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
383 case ICMP_SOURCE_QUENCH:
384 /* Just silently ignore these. */
386 case ICMP_PARAMETERPROB:
389 case ICMP_DEST_UNREACH:
390 if (code > NR_ICMP_UNREACH)
393 if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */
394 if (!sock_owned_by_user(sk))
395 do_pmtu_discovery(sk, iph, info);
399 err = icmp_err_convert[code].errno;
400 /* check if icmp_skb allows revert of backoff
401 * (see draft-zimmermann-tcp-lcd) */
402 if (code != ICMP_NET_UNREACH && code != ICMP_HOST_UNREACH)
404 if (seq != tp->snd_una || !icsk->icsk_retransmits ||
408 icsk->icsk_backoff--;
409 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp) <<
413 skb = tcp_write_queue_head(sk);
416 remaining = icsk->icsk_rto - min(icsk->icsk_rto,
417 tcp_time_stamp - TCP_SKB_CB(skb)->when);
420 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
421 remaining, TCP_RTO_MAX);
422 } else if (sock_owned_by_user(sk)) {
423 /* RTO revert clocked out retransmission,
424 * but socket is locked. Will defer. */
425 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
428 /* RTO revert clocked out retransmission.
429 * Will retransmit now */
430 tcp_retransmit_timer(sk);
434 case ICMP_TIME_EXCEEDED:
441 switch (sk->sk_state) {
442 struct request_sock *req, **prev;
444 if (sock_owned_by_user(sk))
447 req = inet_csk_search_req(sk, &prev, th->dest,
448 iph->daddr, iph->saddr);
452 /* ICMPs are not backlogged, hence we cannot get
453 an established socket here.
457 if (seq != tcp_rsk(req)->snt_isn) {
458 NET_INC_STATS_BH(net, LINUX_MIB_OUTOFWINDOWICMPS);
463 * Still in SYN_RECV, just remove it silently.
464 * There is no good way to pass the error to the newly
465 * created socket, and POSIX does not want network
466 * errors returned from accept().
468 inet_csk_reqsk_queue_drop(sk, req, prev);
472 case TCP_SYN_RECV: /* Cannot happen.
473 It can f.e. if SYNs crossed.
475 if (!sock_owned_by_user(sk)) {
478 sk->sk_error_report(sk);
482 sk->sk_err_soft = err;
487 /* If we've already connected we will keep trying
488 * until we time out, or the user gives up.
490 * rfc1122 4.2.3.9 allows to consider as hard errors
491 * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too,
492 * but it is obsoleted by pmtu discovery).
494 * Note, that in modern internet, where routing is unreliable
495 * and in each dark corner broken firewalls sit, sending random
496 * errors ordered by their masters even this two messages finally lose
497 * their original sense (even Linux sends invalid PORT_UNREACHs)
499 * Now we are in compliance with RFCs.
504 if (!sock_owned_by_user(sk) && inet->recverr) {
506 sk->sk_error_report(sk);
507 } else { /* Only an error on timeout */
508 sk->sk_err_soft = err;
516 /* This routine computes an IPv4 TCP checksum. */
517 void tcp_v4_send_check(struct sock *sk, int len, struct sk_buff *skb)
519 struct inet_sock *inet = inet_sk(sk);
520 struct tcphdr *th = tcp_hdr(skb);
522 if (skb->ip_summed == CHECKSUM_PARTIAL) {
523 th->check = ~tcp_v4_check(len, inet->inet_saddr,
524 inet->inet_daddr, 0);
525 skb->csum_start = skb_transport_header(skb) - skb->head;
526 skb->csum_offset = offsetof(struct tcphdr, check);
528 th->check = tcp_v4_check(len, inet->inet_saddr,
536 int tcp_v4_gso_send_check(struct sk_buff *skb)
538 const struct iphdr *iph;
541 if (!pskb_may_pull(skb, sizeof(*th)))
548 th->check = ~tcp_v4_check(skb->len, iph->saddr, iph->daddr, 0);
549 skb->csum_start = skb_transport_header(skb) - skb->head;
550 skb->csum_offset = offsetof(struct tcphdr, check);
551 skb->ip_summed = CHECKSUM_PARTIAL;
556 * This routine will send an RST to the other tcp.
558 * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.)
560 * Answer: if a packet caused RST, it is not for a socket
561 * existing in our system, if it is matched to a socket,
562 * it is just duplicate segment or bug in other side's TCP.
563 * So that we build reply only basing on parameters
564 * arrived with segment.
565 * Exception: precedence violation. We do not implement it in any case.
568 static void tcp_v4_send_reset(struct sock *sk, struct sk_buff *skb)
570 struct tcphdr *th = tcp_hdr(skb);
573 #ifdef CONFIG_TCP_MD5SIG
574 __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)];
577 struct ip_reply_arg arg;
578 #ifdef CONFIG_TCP_MD5SIG
579 struct tcp_md5sig_key *key;
583 /* Never send a reset in response to a reset. */
587 if (skb_rtable(skb)->rt_type != RTN_LOCAL)
590 /* Swap the send and the receive. */
591 memset(&rep, 0, sizeof(rep));
592 rep.th.dest = th->source;
593 rep.th.source = th->dest;
594 rep.th.doff = sizeof(struct tcphdr) / 4;
598 rep.th.seq = th->ack_seq;
601 rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin +
602 skb->len - (th->doff << 2));
605 memset(&arg, 0, sizeof(arg));
606 arg.iov[0].iov_base = (unsigned char *)&rep;
607 arg.iov[0].iov_len = sizeof(rep.th);
609 #ifdef CONFIG_TCP_MD5SIG
610 key = sk ? tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr) : NULL;
612 rep.opt[0] = htonl((TCPOPT_NOP << 24) |
614 (TCPOPT_MD5SIG << 8) |
616 /* Update length and the length the header thinks exists */
617 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
618 rep.th.doff = arg.iov[0].iov_len / 4;
620 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1],
621 key, ip_hdr(skb)->saddr,
622 ip_hdr(skb)->daddr, &rep.th);
625 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
626 ip_hdr(skb)->saddr, /* XXX */
627 arg.iov[0].iov_len, IPPROTO_TCP, 0);
628 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
629 arg.flags = (sk && inet_sk(sk)->transparent) ? IP_REPLY_ARG_NOSRCCHECK : 0;
631 net = dev_net(skb_dst(skb)->dev);
632 ip_send_reply(net->ipv4.tcp_sock, skb,
633 &arg, arg.iov[0].iov_len);
635 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
636 TCP_INC_STATS_BH(net, TCP_MIB_OUTRSTS);
639 /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states
640 outside socket context is ugly, certainly. What can I do?
643 static void tcp_v4_send_ack(struct sk_buff *skb, u32 seq, u32 ack,
644 u32 win, u32 ts, int oif,
645 struct tcp_md5sig_key *key,
648 struct tcphdr *th = tcp_hdr(skb);
651 __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2)
652 #ifdef CONFIG_TCP_MD5SIG
653 + (TCPOLEN_MD5SIG_ALIGNED >> 2)
657 struct ip_reply_arg arg;
658 struct net *net = dev_net(skb_dst(skb)->dev);
660 memset(&rep.th, 0, sizeof(struct tcphdr));
661 memset(&arg, 0, sizeof(arg));
663 arg.iov[0].iov_base = (unsigned char *)&rep;
664 arg.iov[0].iov_len = sizeof(rep.th);
666 rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
667 (TCPOPT_TIMESTAMP << 8) |
669 rep.opt[1] = htonl(tcp_time_stamp);
670 rep.opt[2] = htonl(ts);
671 arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED;
674 /* Swap the send and the receive. */
675 rep.th.dest = th->source;
676 rep.th.source = th->dest;
677 rep.th.doff = arg.iov[0].iov_len / 4;
678 rep.th.seq = htonl(seq);
679 rep.th.ack_seq = htonl(ack);
681 rep.th.window = htons(win);
683 #ifdef CONFIG_TCP_MD5SIG
685 int offset = (ts) ? 3 : 0;
687 rep.opt[offset++] = htonl((TCPOPT_NOP << 24) |
689 (TCPOPT_MD5SIG << 8) |
691 arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED;
692 rep.th.doff = arg.iov[0].iov_len/4;
694 tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset],
695 key, ip_hdr(skb)->saddr,
696 ip_hdr(skb)->daddr, &rep.th);
699 arg.flags = reply_flags;
700 arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr,
701 ip_hdr(skb)->saddr, /* XXX */
702 arg.iov[0].iov_len, IPPROTO_TCP, 0);
703 arg.csumoffset = offsetof(struct tcphdr, check) / 2;
705 arg.bound_dev_if = oif;
707 ip_send_reply(net->ipv4.tcp_sock, skb,
708 &arg, arg.iov[0].iov_len);
710 TCP_INC_STATS_BH(net, TCP_MIB_OUTSEGS);
713 static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb)
715 struct inet_timewait_sock *tw = inet_twsk(sk);
716 struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
718 tcp_v4_send_ack(skb, tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt,
719 tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale,
722 tcp_twsk_md5_key(tcptw),
723 tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0
729 static void tcp_v4_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
730 struct request_sock *req)
732 tcp_v4_send_ack(skb, tcp_rsk(req)->snt_isn + 1,
733 tcp_rsk(req)->rcv_isn + 1, req->rcv_wnd,
736 tcp_v4_md5_do_lookup(sk, ip_hdr(skb)->daddr),
737 inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0);
741 * Send a SYN-ACK after having received a SYN.
742 * This still operates on a request_sock only, not on a big
745 static int __tcp_v4_send_synack(struct sock *sk, struct dst_entry *dst,
746 struct request_sock *req,
747 struct request_values *rvp)
749 const struct inet_request_sock *ireq = inet_rsk(req);
751 struct sk_buff * skb;
753 /* First, grab a route. */
754 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
757 skb = tcp_make_synack(sk, dst, req, rvp);
760 struct tcphdr *th = tcp_hdr(skb);
762 th->check = tcp_v4_check(skb->len,
765 csum_partial(th, skb->len,
768 err = ip_build_and_send_pkt(skb, sk, ireq->loc_addr,
771 err = net_xmit_eval(err);
778 static int tcp_v4_send_synack(struct sock *sk, struct request_sock *req,
779 struct request_values *rvp)
781 return __tcp_v4_send_synack(sk, NULL, req, rvp);
785 * IPv4 request_sock destructor.
787 static void tcp_v4_reqsk_destructor(struct request_sock *req)
789 kfree(inet_rsk(req)->opt);
792 #ifdef CONFIG_SYN_COOKIES
793 static void syn_flood_warning(struct sk_buff *skb)
795 static unsigned long warntime;
797 if (time_after(jiffies, (warntime + HZ * 60))) {
800 "possible SYN flooding on port %d. Sending cookies.\n",
801 ntohs(tcp_hdr(skb)->dest));
807 * Save and compile IPv4 options into the request_sock if needed.
809 static struct ip_options *tcp_v4_save_options(struct sock *sk,
812 struct ip_options *opt = &(IPCB(skb)->opt);
813 struct ip_options *dopt = NULL;
815 if (opt && opt->optlen) {
816 int opt_size = optlength(opt);
817 dopt = kmalloc(opt_size, GFP_ATOMIC);
819 if (ip_options_echo(dopt, skb)) {
828 #ifdef CONFIG_TCP_MD5SIG
830 * RFC2385 MD5 checksumming requires a mapping of
831 * IP address->MD5 Key.
832 * We need to maintain these in the sk structure.
835 /* Find the Key structure for an address. */
836 static struct tcp_md5sig_key *
837 tcp_v4_md5_do_lookup(struct sock *sk, __be32 addr)
839 struct tcp_sock *tp = tcp_sk(sk);
842 if (!tp->md5sig_info || !tp->md5sig_info->entries4)
844 for (i = 0; i < tp->md5sig_info->entries4; i++) {
845 if (tp->md5sig_info->keys4[i].addr == addr)
846 return &tp->md5sig_info->keys4[i].base;
851 struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
852 struct sock *addr_sk)
854 return tcp_v4_md5_do_lookup(sk, inet_sk(addr_sk)->inet_daddr);
857 EXPORT_SYMBOL(tcp_v4_md5_lookup);
859 static struct tcp_md5sig_key *tcp_v4_reqsk_md5_lookup(struct sock *sk,
860 struct request_sock *req)
862 return tcp_v4_md5_do_lookup(sk, inet_rsk(req)->rmt_addr);
865 /* This can be called on a newly created socket, from other files */
866 int tcp_v4_md5_do_add(struct sock *sk, __be32 addr,
867 u8 *newkey, u8 newkeylen)
869 /* Add Key to the list */
870 struct tcp_md5sig_key *key;
871 struct tcp_sock *tp = tcp_sk(sk);
872 struct tcp4_md5sig_key *keys;
874 key = tcp_v4_md5_do_lookup(sk, addr);
876 /* Pre-existing entry - just update that one. */
879 key->keylen = newkeylen;
881 struct tcp_md5sig_info *md5sig;
883 if (!tp->md5sig_info) {
884 tp->md5sig_info = kzalloc(sizeof(*tp->md5sig_info),
886 if (!tp->md5sig_info) {
890 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
892 if (tcp_alloc_md5sig_pool(sk) == NULL) {
896 md5sig = tp->md5sig_info;
898 if (md5sig->alloced4 == md5sig->entries4) {
899 keys = kmalloc((sizeof(*keys) *
900 (md5sig->entries4 + 1)), GFP_ATOMIC);
903 tcp_free_md5sig_pool();
907 if (md5sig->entries4)
908 memcpy(keys, md5sig->keys4,
909 sizeof(*keys) * md5sig->entries4);
911 /* Free old key list, and reference new one */
912 kfree(md5sig->keys4);
913 md5sig->keys4 = keys;
917 md5sig->keys4[md5sig->entries4 - 1].addr = addr;
918 md5sig->keys4[md5sig->entries4 - 1].base.key = newkey;
919 md5sig->keys4[md5sig->entries4 - 1].base.keylen = newkeylen;
924 EXPORT_SYMBOL(tcp_v4_md5_do_add);
926 static int tcp_v4_md5_add_func(struct sock *sk, struct sock *addr_sk,
927 u8 *newkey, u8 newkeylen)
929 return tcp_v4_md5_do_add(sk, inet_sk(addr_sk)->inet_daddr,
933 int tcp_v4_md5_do_del(struct sock *sk, __be32 addr)
935 struct tcp_sock *tp = tcp_sk(sk);
938 for (i = 0; i < tp->md5sig_info->entries4; i++) {
939 if (tp->md5sig_info->keys4[i].addr == addr) {
941 kfree(tp->md5sig_info->keys4[i].base.key);
942 tp->md5sig_info->entries4--;
944 if (tp->md5sig_info->entries4 == 0) {
945 kfree(tp->md5sig_info->keys4);
946 tp->md5sig_info->keys4 = NULL;
947 tp->md5sig_info->alloced4 = 0;
948 } else if (tp->md5sig_info->entries4 != i) {
949 /* Need to do some manipulation */
950 memmove(&tp->md5sig_info->keys4[i],
951 &tp->md5sig_info->keys4[i+1],
952 (tp->md5sig_info->entries4 - i) *
953 sizeof(struct tcp4_md5sig_key));
955 tcp_free_md5sig_pool();
962 EXPORT_SYMBOL(tcp_v4_md5_do_del);
964 static void tcp_v4_clear_md5_list(struct sock *sk)
966 struct tcp_sock *tp = tcp_sk(sk);
968 /* Free each key, then the set of key keys,
969 * the crypto element, and then decrement our
970 * hold on the last resort crypto.
972 if (tp->md5sig_info->entries4) {
974 for (i = 0; i < tp->md5sig_info->entries4; i++)
975 kfree(tp->md5sig_info->keys4[i].base.key);
976 tp->md5sig_info->entries4 = 0;
977 tcp_free_md5sig_pool();
979 if (tp->md5sig_info->keys4) {
980 kfree(tp->md5sig_info->keys4);
981 tp->md5sig_info->keys4 = NULL;
982 tp->md5sig_info->alloced4 = 0;
986 static int tcp_v4_parse_md5_keys(struct sock *sk, char __user *optval,
989 struct tcp_md5sig cmd;
990 struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr;
993 if (optlen < sizeof(cmd))
996 if (copy_from_user(&cmd, optval, sizeof(cmd)))
999 if (sin->sin_family != AF_INET)
1002 if (!cmd.tcpm_key || !cmd.tcpm_keylen) {
1003 if (!tcp_sk(sk)->md5sig_info)
1005 return tcp_v4_md5_do_del(sk, sin->sin_addr.s_addr);
1008 if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN)
1011 if (!tcp_sk(sk)->md5sig_info) {
1012 struct tcp_sock *tp = tcp_sk(sk);
1013 struct tcp_md5sig_info *p;
1015 p = kzalloc(sizeof(*p), sk->sk_allocation);
1019 tp->md5sig_info = p;
1020 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1023 newkey = kmemdup(cmd.tcpm_key, cmd.tcpm_keylen, sk->sk_allocation);
1026 return tcp_v4_md5_do_add(sk, sin->sin_addr.s_addr,
1027 newkey, cmd.tcpm_keylen);
1030 static int tcp_v4_md5_hash_pseudoheader(struct tcp_md5sig_pool *hp,
1031 __be32 daddr, __be32 saddr, int nbytes)
1033 struct tcp4_pseudohdr *bp;
1034 struct scatterlist sg;
1036 bp = &hp->md5_blk.ip4;
1039 * 1. the TCP pseudo-header (in the order: source IP address,
1040 * destination IP address, zero-padded protocol number, and
1046 bp->protocol = IPPROTO_TCP;
1047 bp->len = cpu_to_be16(nbytes);
1049 sg_init_one(&sg, bp, sizeof(*bp));
1050 return crypto_hash_update(&hp->md5_desc, &sg, sizeof(*bp));
1053 static int tcp_v4_md5_hash_hdr(char *md5_hash, struct tcp_md5sig_key *key,
1054 __be32 daddr, __be32 saddr, struct tcphdr *th)
1056 struct tcp_md5sig_pool *hp;
1057 struct hash_desc *desc;
1059 hp = tcp_get_md5sig_pool();
1061 goto clear_hash_noput;
1062 desc = &hp->md5_desc;
1064 if (crypto_hash_init(desc))
1066 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, th->doff << 2))
1068 if (tcp_md5_hash_header(hp, th))
1070 if (tcp_md5_hash_key(hp, key))
1072 if (crypto_hash_final(desc, md5_hash))
1075 tcp_put_md5sig_pool();
1079 tcp_put_md5sig_pool();
1081 memset(md5_hash, 0, 16);
1085 int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1086 struct sock *sk, struct request_sock *req,
1087 struct sk_buff *skb)
1089 struct tcp_md5sig_pool *hp;
1090 struct hash_desc *desc;
1091 struct tcphdr *th = tcp_hdr(skb);
1092 __be32 saddr, daddr;
1095 saddr = inet_sk(sk)->inet_saddr;
1096 daddr = inet_sk(sk)->inet_daddr;
1098 saddr = inet_rsk(req)->loc_addr;
1099 daddr = inet_rsk(req)->rmt_addr;
1101 const struct iphdr *iph = ip_hdr(skb);
1106 hp = tcp_get_md5sig_pool();
1108 goto clear_hash_noput;
1109 desc = &hp->md5_desc;
1111 if (crypto_hash_init(desc))
1114 if (tcp_v4_md5_hash_pseudoheader(hp, daddr, saddr, skb->len))
1116 if (tcp_md5_hash_header(hp, th))
1118 if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2))
1120 if (tcp_md5_hash_key(hp, key))
1122 if (crypto_hash_final(desc, md5_hash))
1125 tcp_put_md5sig_pool();
1129 tcp_put_md5sig_pool();
1131 memset(md5_hash, 0, 16);
1135 EXPORT_SYMBOL(tcp_v4_md5_hash_skb);
1137 static int tcp_v4_inbound_md5_hash(struct sock *sk, struct sk_buff *skb)
1140 * This gets called for each TCP segment that arrives
1141 * so we want to be efficient.
1142 * We have 3 drop cases:
1143 * o No MD5 hash and one expected.
1144 * o MD5 hash and we're not expecting one.
1145 * o MD5 hash and its wrong.
1147 __u8 *hash_location = NULL;
1148 struct tcp_md5sig_key *hash_expected;
1149 const struct iphdr *iph = ip_hdr(skb);
1150 struct tcphdr *th = tcp_hdr(skb);
1152 unsigned char newhash[16];
1154 hash_expected = tcp_v4_md5_do_lookup(sk, iph->saddr);
1155 hash_location = tcp_parse_md5sig_option(th);
1157 /* We've parsed the options - do we have a hash? */
1158 if (!hash_expected && !hash_location)
1161 if (hash_expected && !hash_location) {
1162 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
1166 if (!hash_expected && hash_location) {
1167 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
1171 /* Okay, so this is hash_expected and hash_location -
1172 * so we need to calculate the checksum.
1174 genhash = tcp_v4_md5_hash_skb(newhash,
1178 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
1179 if (net_ratelimit()) {
1180 printk(KERN_INFO "MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s\n",
1181 &iph->saddr, ntohs(th->source),
1182 &iph->daddr, ntohs(th->dest),
1183 genhash ? " tcp_v4_calc_md5_hash failed" : "");
1192 struct request_sock_ops tcp_request_sock_ops __read_mostly = {
1194 .obj_size = sizeof(struct tcp_request_sock),
1195 .rtx_syn_ack = tcp_v4_send_synack,
1196 .send_ack = tcp_v4_reqsk_send_ack,
1197 .destructor = tcp_v4_reqsk_destructor,
1198 .send_reset = tcp_v4_send_reset,
1201 #ifdef CONFIG_TCP_MD5SIG
1202 static const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = {
1203 .md5_lookup = tcp_v4_reqsk_md5_lookup,
1204 .calc_md5_hash = tcp_v4_md5_hash_skb,
1208 static struct timewait_sock_ops tcp_timewait_sock_ops = {
1209 .twsk_obj_size = sizeof(struct tcp_timewait_sock),
1210 .twsk_unique = tcp_twsk_unique,
1211 .twsk_destructor= tcp_twsk_destructor,
1214 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb)
1216 struct tcp_extend_values tmp_ext;
1217 struct tcp_options_received tmp_opt;
1219 struct request_sock *req;
1220 struct inet_request_sock *ireq;
1221 struct tcp_sock *tp = tcp_sk(sk);
1222 struct dst_entry *dst = NULL;
1223 __be32 saddr = ip_hdr(skb)->saddr;
1224 __be32 daddr = ip_hdr(skb)->daddr;
1225 __u32 isn = TCP_SKB_CB(skb)->when;
1226 #ifdef CONFIG_SYN_COOKIES
1227 int want_cookie = 0;
1229 #define want_cookie 0 /* Argh, why doesn't gcc optimize this :( */
1232 /* Never answer to SYNs send to broadcast or multicast */
1233 if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST))
1236 /* TW buckets are converted to open requests without
1237 * limitations, they conserve resources and peer is
1238 * evidently real one.
1240 if (inet_csk_reqsk_queue_is_full(sk) && !isn) {
1241 #ifdef CONFIG_SYN_COOKIES
1242 if (sysctl_tcp_syncookies) {
1249 /* Accept backlog is full. If we have already queued enough
1250 * of warm entries in syn queue, drop request. It is better than
1251 * clogging syn queue with openreqs with exponentially increasing
1254 if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1)
1257 req = inet_reqsk_alloc(&tcp_request_sock_ops);
1261 #ifdef CONFIG_TCP_MD5SIG
1262 tcp_rsk(req)->af_specific = &tcp_request_sock_ipv4_ops;
1265 ireq = inet_rsk(req);
1266 ireq->loc_addr = daddr;
1267 ireq->rmt_addr = saddr;
1268 ireq->no_srccheck = inet_sk(sk)->transparent;
1269 ireq->opt = tcp_v4_save_options(sk, skb);
1271 dst = inet_csk_route_req(sk, req);
1275 tcp_clear_options(&tmp_opt);
1276 tmp_opt.mss_clamp = TCP_MSS_DEFAULT;
1277 tmp_opt.user_mss = tp->rx_opt.user_mss;
1278 tcp_parse_options(skb, &tmp_opt, &hash_location, 0, dst);
1280 if (tmp_opt.cookie_plus > 0 &&
1281 tmp_opt.saw_tstamp &&
1282 !tp->rx_opt.cookie_out_never &&
1283 (sysctl_tcp_cookie_size > 0 ||
1284 (tp->cookie_values != NULL &&
1285 tp->cookie_values->cookie_desired > 0))) {
1287 u32 *mess = &tmp_ext.cookie_bakery[COOKIE_DIGEST_WORDS];
1288 int l = tmp_opt.cookie_plus - TCPOLEN_COOKIE_BASE;
1290 if (tcp_cookie_generator(&tmp_ext.cookie_bakery[0]) != 0)
1291 goto drop_and_release;
1293 /* Secret recipe starts with IP addresses */
1297 /* plus variable length Initiator Cookie */
1300 *c++ ^= *hash_location++;
1302 #ifdef CONFIG_SYN_COOKIES
1303 want_cookie = 0; /* not our kind of cookie */
1305 tmp_ext.cookie_out_never = 0; /* false */
1306 tmp_ext.cookie_plus = tmp_opt.cookie_plus;
1307 } else if (!tp->rx_opt.cookie_in_always) {
1308 /* redundant indications, but ensure initialization. */
1309 tmp_ext.cookie_out_never = 1; /* true */
1310 tmp_ext.cookie_plus = 0;
1312 goto drop_and_release;
1314 tmp_ext.cookie_in_always = tp->rx_opt.cookie_in_always;
1316 if (want_cookie && !tmp_opt.saw_tstamp)
1317 tcp_clear_options(&tmp_opt);
1319 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
1320 tcp_openreq_init(req, &tmp_opt, skb);
1322 if (security_inet_conn_request(sk, skb, req))
1323 goto drop_and_release;
1326 TCP_ECN_create_request(req, tcp_hdr(skb));
1329 #ifdef CONFIG_SYN_COOKIES
1330 syn_flood_warning(skb);
1331 req->cookie_ts = tmp_opt.tstamp_ok;
1333 isn = cookie_v4_init_sequence(sk, skb, &req->mss);
1335 struct inet_peer *peer = NULL;
1337 /* VJ's idea. We save last timestamp seen
1338 * from the destination in peer table, when entering
1339 * state TIME-WAIT, and check against it before
1340 * accepting new connection request.
1342 * If "isn" is not zero, this request hit alive
1343 * timewait bucket, so that all the necessary checks
1344 * are made in the function processing timewait state.
1346 if (tmp_opt.saw_tstamp &&
1347 tcp_death_row.sysctl_tw_recycle &&
1348 (peer = rt_get_peer((struct rtable *)dst)) != NULL &&
1349 peer->v4daddr == saddr) {
1350 if ((u32)get_seconds() - peer->tcp_ts_stamp < TCP_PAWS_MSL &&
1351 (s32)(peer->tcp_ts - req->ts_recent) >
1353 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
1354 goto drop_and_release;
1357 /* Kill the following clause, if you dislike this way. */
1358 else if (!sysctl_tcp_syncookies &&
1359 (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
1360 (sysctl_max_syn_backlog >> 2)) &&
1361 (!peer || !peer->tcp_ts_stamp) &&
1362 (!dst || !dst_metric(dst, RTAX_RTT))) {
1363 /* Without syncookies last quarter of
1364 * backlog is filled with destinations,
1365 * proven to be alive.
1366 * It means that we continue to communicate
1367 * to destinations, already remembered
1368 * to the moment of synflood.
1370 LIMIT_NETDEBUG(KERN_DEBUG "TCP: drop open request from %pI4/%u\n",
1371 &saddr, ntohs(tcp_hdr(skb)->source));
1372 goto drop_and_release;
1375 isn = tcp_v4_init_sequence(skb);
1377 tcp_rsk(req)->snt_isn = isn;
1379 if (__tcp_v4_send_synack(sk, dst, req,
1380 (struct request_values *)&tmp_ext) ||
1384 inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
1397 * The three way handshake has completed - we got a valid synack -
1398 * now create the new socket.
1400 struct sock *tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
1401 struct request_sock *req,
1402 struct dst_entry *dst)
1404 struct inet_request_sock *ireq;
1405 struct inet_sock *newinet;
1406 struct tcp_sock *newtp;
1408 #ifdef CONFIG_TCP_MD5SIG
1409 struct tcp_md5sig_key *key;
1412 if (sk_acceptq_is_full(sk))
1415 if (!dst && (dst = inet_csk_route_req(sk, req)) == NULL)
1418 newsk = tcp_create_openreq_child(sk, req, skb);
1422 newsk->sk_gso_type = SKB_GSO_TCPV4;
1423 sk_setup_caps(newsk, dst);
1425 newtp = tcp_sk(newsk);
1426 newinet = inet_sk(newsk);
1427 ireq = inet_rsk(req);
1428 newinet->inet_daddr = ireq->rmt_addr;
1429 newinet->inet_rcv_saddr = ireq->loc_addr;
1430 newinet->inet_saddr = ireq->loc_addr;
1431 newinet->opt = ireq->opt;
1433 newinet->mc_index = inet_iif(skb);
1434 newinet->mc_ttl = ip_hdr(skb)->ttl;
1435 inet_csk(newsk)->icsk_ext_hdr_len = 0;
1437 inet_csk(newsk)->icsk_ext_hdr_len = newinet->opt->optlen;
1438 newinet->inet_id = newtp->write_seq ^ jiffies;
1440 tcp_mtup_init(newsk);
1441 tcp_sync_mss(newsk, dst_mtu(dst));
1442 newtp->advmss = dst_metric(dst, RTAX_ADVMSS);
1443 if (tcp_sk(sk)->rx_opt.user_mss &&
1444 tcp_sk(sk)->rx_opt.user_mss < newtp->advmss)
1445 newtp->advmss = tcp_sk(sk)->rx_opt.user_mss;
1447 tcp_initialize_rcv_mss(newsk);
1449 #ifdef CONFIG_TCP_MD5SIG
1450 /* Copy over the MD5 key from the original socket */
1451 key = tcp_v4_md5_do_lookup(sk, newinet->inet_daddr);
1454 * We're using one, so create a matching key
1455 * on the newsk structure. If we fail to get
1456 * memory, then we end up not copying the key
1459 char *newkey = kmemdup(key->key, key->keylen, GFP_ATOMIC);
1461 tcp_v4_md5_do_add(newsk, newinet->inet_daddr,
1462 newkey, key->keylen);
1463 newsk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1467 __inet_hash_nolisten(newsk);
1468 __inet_inherit_port(sk, newsk);
1473 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
1475 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_LISTENDROPS);
1480 static struct sock *tcp_v4_hnd_req(struct sock *sk, struct sk_buff *skb)
1482 struct tcphdr *th = tcp_hdr(skb);
1483 const struct iphdr *iph = ip_hdr(skb);
1485 struct request_sock **prev;
1486 /* Find possible connection requests. */
1487 struct request_sock *req = inet_csk_search_req(sk, &prev, th->source,
1488 iph->saddr, iph->daddr);
1490 return tcp_check_req(sk, skb, req, prev);
1492 nsk = inet_lookup_established(sock_net(sk), &tcp_hashinfo, iph->saddr,
1493 th->source, iph->daddr, th->dest, inet_iif(skb));
1496 if (nsk->sk_state != TCP_TIME_WAIT) {
1500 inet_twsk_put(inet_twsk(nsk));
1504 #ifdef CONFIG_SYN_COOKIES
1505 if (!th->rst && !th->syn && th->ack)
1506 sk = cookie_v4_check(sk, skb, &(IPCB(skb)->opt));
1511 static __sum16 tcp_v4_checksum_init(struct sk_buff *skb)
1513 const struct iphdr *iph = ip_hdr(skb);
1515 if (skb->ip_summed == CHECKSUM_COMPLETE) {
1516 if (!tcp_v4_check(skb->len, iph->saddr,
1517 iph->daddr, skb->csum)) {
1518 skb->ip_summed = CHECKSUM_UNNECESSARY;
1523 skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1524 skb->len, IPPROTO_TCP, 0);
1526 if (skb->len <= 76) {
1527 return __skb_checksum_complete(skb);
1533 /* The socket must have it's spinlock held when we get
1536 * We have a potential double-lock case here, so even when
1537 * doing backlog processing we use the BH locking scheme.
1538 * This is because we cannot sleep with the original spinlock
1541 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb)
1544 #ifdef CONFIG_TCP_MD5SIG
1546 * We really want to reject the packet as early as possible
1548 * o We're expecting an MD5'd packet and this is no MD5 tcp option
1549 * o There is an MD5 option and we're not expecting one
1551 if (tcp_v4_inbound_md5_hash(sk, skb))
1555 if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */
1556 TCP_CHECK_TIMER(sk);
1557 if (tcp_rcv_established(sk, skb, tcp_hdr(skb), skb->len)) {
1561 TCP_CHECK_TIMER(sk);
1565 if (skb->len < tcp_hdrlen(skb) || tcp_checksum_complete(skb))
1568 if (sk->sk_state == TCP_LISTEN) {
1569 struct sock *nsk = tcp_v4_hnd_req(sk, skb);
1574 if (tcp_child_process(sk, nsk, skb)) {
1582 TCP_CHECK_TIMER(sk);
1583 if (tcp_rcv_state_process(sk, skb, tcp_hdr(skb), skb->len)) {
1587 TCP_CHECK_TIMER(sk);
1591 tcp_v4_send_reset(rsk, skb);
1594 /* Be careful here. If this function gets more complicated and
1595 * gcc suffers from register pressure on the x86, sk (in %ebx)
1596 * might be destroyed here. This current version compiles correctly,
1597 * but you have been warned.
1602 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
1610 int tcp_v4_rcv(struct sk_buff *skb)
1612 const struct iphdr *iph;
1616 struct net *net = dev_net(skb->dev);
1618 if (skb->pkt_type != PACKET_HOST)
1621 /* Count it even if it's bad */
1622 TCP_INC_STATS_BH(net, TCP_MIB_INSEGS);
1624 if (!pskb_may_pull(skb, sizeof(struct tcphdr)))
1629 if (th->doff < sizeof(struct tcphdr) / 4)
1631 if (!pskb_may_pull(skb, th->doff * 4))
1634 /* An explanation is required here, I think.
1635 * Packet length and doff are validated by header prediction,
1636 * provided case of th->doff==0 is eliminated.
1637 * So, we defer the checks. */
1638 if (!skb_csum_unnecessary(skb) && tcp_v4_checksum_init(skb))
1643 TCP_SKB_CB(skb)->seq = ntohl(th->seq);
1644 TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin +
1645 skb->len - th->doff * 4);
1646 TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq);
1647 TCP_SKB_CB(skb)->when = 0;
1648 TCP_SKB_CB(skb)->flags = iph->tos;
1649 TCP_SKB_CB(skb)->sacked = 0;
1651 sk = __inet_lookup_skb(&tcp_hashinfo, skb, th->source, th->dest);
1656 if (sk->sk_state == TCP_TIME_WAIT)
1659 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1660 goto discard_and_relse;
1663 if (sk_filter(sk, skb))
1664 goto discard_and_relse;
1668 bh_lock_sock_nested(sk);
1670 if (!sock_owned_by_user(sk)) {
1671 #ifdef CONFIG_NET_DMA
1672 struct tcp_sock *tp = tcp_sk(sk);
1673 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
1674 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
1675 if (tp->ucopy.dma_chan)
1676 ret = tcp_v4_do_rcv(sk, skb);
1680 if (!tcp_prequeue(sk, skb))
1681 ret = tcp_v4_do_rcv(sk, skb);
1684 sk_add_backlog(sk, skb);
1692 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1695 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1697 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1699 tcp_v4_send_reset(NULL, skb);
1703 /* Discard frame. */
1712 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) {
1713 inet_twsk_put(inet_twsk(sk));
1717 if (skb->len < (th->doff << 2) || tcp_checksum_complete(skb)) {
1718 TCP_INC_STATS_BH(net, TCP_MIB_INERRS);
1719 inet_twsk_put(inet_twsk(sk));
1722 switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) {
1724 struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev),
1726 iph->daddr, th->dest,
1729 inet_twsk_deschedule(inet_twsk(sk), &tcp_death_row);
1730 inet_twsk_put(inet_twsk(sk));
1734 /* Fall through to ACK */
1737 tcp_v4_timewait_ack(sk, skb);
1741 case TCP_TW_SUCCESS:;
1746 /* VJ's idea. Save last timestamp seen from this destination
1747 * and hold it at least for normal timewait interval to use for duplicate
1748 * segment detection in subsequent connections, before they enter synchronized
1752 int tcp_v4_remember_stamp(struct sock *sk)
1754 struct inet_sock *inet = inet_sk(sk);
1755 struct tcp_sock *tp = tcp_sk(sk);
1756 struct rtable *rt = (struct rtable *)__sk_dst_get(sk);
1757 struct inet_peer *peer = NULL;
1760 if (!rt || rt->rt_dst != inet->inet_daddr) {
1761 peer = inet_getpeer(inet->inet_daddr, 1);
1765 rt_bind_peer(rt, 1);
1770 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
1771 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1772 peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
1773 peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
1774 peer->tcp_ts = tp->rx_opt.ts_recent;
1784 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw)
1786 struct inet_peer *peer = inet_getpeer(tw->tw_daddr, 1);
1789 const struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
1791 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
1792 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
1793 peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
1794 peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
1795 peer->tcp_ts = tcptw->tw_ts_recent;
1804 const struct inet_connection_sock_af_ops ipv4_specific = {
1805 .queue_xmit = ip_queue_xmit,
1806 .send_check = tcp_v4_send_check,
1807 .rebuild_header = inet_sk_rebuild_header,
1808 .conn_request = tcp_v4_conn_request,
1809 .syn_recv_sock = tcp_v4_syn_recv_sock,
1810 .remember_stamp = tcp_v4_remember_stamp,
1811 .net_header_len = sizeof(struct iphdr),
1812 .setsockopt = ip_setsockopt,
1813 .getsockopt = ip_getsockopt,
1814 .addr2sockaddr = inet_csk_addr2sockaddr,
1815 .sockaddr_len = sizeof(struct sockaddr_in),
1816 .bind_conflict = inet_csk_bind_conflict,
1817 #ifdef CONFIG_COMPAT
1818 .compat_setsockopt = compat_ip_setsockopt,
1819 .compat_getsockopt = compat_ip_getsockopt,
1823 #ifdef CONFIG_TCP_MD5SIG
1824 static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = {
1825 .md5_lookup = tcp_v4_md5_lookup,
1826 .calc_md5_hash = tcp_v4_md5_hash_skb,
1827 .md5_add = tcp_v4_md5_add_func,
1828 .md5_parse = tcp_v4_parse_md5_keys,
1832 /* NOTE: A lot of things set to zero explicitly by call to
1833 * sk_alloc() so need not be done here.
1835 static int tcp_v4_init_sock(struct sock *sk)
1837 struct inet_connection_sock *icsk = inet_csk(sk);
1838 struct tcp_sock *tp = tcp_sk(sk);
1840 skb_queue_head_init(&tp->out_of_order_queue);
1841 tcp_init_xmit_timers(sk);
1842 tcp_prequeue_init(tp);
1844 icsk->icsk_rto = TCP_TIMEOUT_INIT;
1845 tp->mdev = TCP_TIMEOUT_INIT;
1847 /* So many TCP implementations out there (incorrectly) count the
1848 * initial SYN frame in their delayed-ACK and congestion control
1849 * algorithms that we must have the following bandaid to talk
1850 * efficiently to them. -DaveM
1854 /* See draft-stevens-tcpca-spec-01 for discussion of the
1855 * initialization of these values.
1857 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
1858 tp->snd_cwnd_clamp = ~0;
1859 tp->mss_cache = TCP_MSS_DEFAULT;
1861 tp->reordering = sysctl_tcp_reordering;
1862 icsk->icsk_ca_ops = &tcp_init_congestion_ops;
1864 sk->sk_state = TCP_CLOSE;
1866 sk->sk_write_space = sk_stream_write_space;
1867 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
1869 icsk->icsk_af_ops = &ipv4_specific;
1870 icsk->icsk_sync_mss = tcp_sync_mss;
1871 #ifdef CONFIG_TCP_MD5SIG
1872 tp->af_specific = &tcp_sock_ipv4_specific;
1875 /* TCP Cookie Transactions */
1876 if (sysctl_tcp_cookie_size > 0) {
1877 /* Default, cookies without s_data_payload. */
1879 kzalloc(sizeof(*tp->cookie_values),
1881 if (tp->cookie_values != NULL)
1882 kref_init(&tp->cookie_values->kref);
1884 /* Presumed zeroed, in order of appearance:
1885 * cookie_in_always, cookie_out_never,
1886 * s_data_constant, s_data_in, s_data_out
1888 sk->sk_sndbuf = sysctl_tcp_wmem[1];
1889 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
1892 percpu_counter_inc(&tcp_sockets_allocated);
1898 void tcp_v4_destroy_sock(struct sock *sk)
1900 struct tcp_sock *tp = tcp_sk(sk);
1902 tcp_clear_xmit_timers(sk);
1904 tcp_cleanup_congestion_control(sk);
1906 /* Cleanup up the write buffer. */
1907 tcp_write_queue_purge(sk);
1909 /* Cleans up our, hopefully empty, out_of_order_queue. */
1910 __skb_queue_purge(&tp->out_of_order_queue);
1912 #ifdef CONFIG_TCP_MD5SIG
1913 /* Clean up the MD5 key list, if any */
1914 if (tp->md5sig_info) {
1915 tcp_v4_clear_md5_list(sk);
1916 kfree(tp->md5sig_info);
1917 tp->md5sig_info = NULL;
1921 #ifdef CONFIG_NET_DMA
1922 /* Cleans up our sk_async_wait_queue */
1923 __skb_queue_purge(&sk->sk_async_wait_queue);
1926 /* Clean prequeue, it must be empty really */
1927 __skb_queue_purge(&tp->ucopy.prequeue);
1929 /* Clean up a referenced TCP bind bucket. */
1930 if (inet_csk(sk)->icsk_bind_hash)
1934 * If sendmsg cached page exists, toss it.
1936 if (sk->sk_sndmsg_page) {
1937 __free_page(sk->sk_sndmsg_page);
1938 sk->sk_sndmsg_page = NULL;
1941 /* TCP Cookie Transactions */
1942 if (tp->cookie_values != NULL) {
1943 kref_put(&tp->cookie_values->kref,
1944 tcp_cookie_values_release);
1945 tp->cookie_values = NULL;
1948 percpu_counter_dec(&tcp_sockets_allocated);
1951 EXPORT_SYMBOL(tcp_v4_destroy_sock);
1953 #ifdef CONFIG_PROC_FS
1954 /* Proc filesystem TCP sock list dumping. */
1956 static inline struct inet_timewait_sock *tw_head(struct hlist_nulls_head *head)
1958 return hlist_nulls_empty(head) ? NULL :
1959 list_entry(head->first, struct inet_timewait_sock, tw_node);
1962 static inline struct inet_timewait_sock *tw_next(struct inet_timewait_sock *tw)
1964 return !is_a_nulls(tw->tw_node.next) ?
1965 hlist_nulls_entry(tw->tw_node.next, typeof(*tw), tw_node) : NULL;
1968 static void *listening_get_next(struct seq_file *seq, void *cur)
1970 struct inet_connection_sock *icsk;
1971 struct hlist_nulls_node *node;
1972 struct sock *sk = cur;
1973 struct inet_listen_hashbucket *ilb;
1974 struct tcp_iter_state *st = seq->private;
1975 struct net *net = seq_file_net(seq);
1979 ilb = &tcp_hashinfo.listening_hash[0];
1980 spin_lock_bh(&ilb->lock);
1981 sk = sk_nulls_head(&ilb->head);
1984 ilb = &tcp_hashinfo.listening_hash[st->bucket];
1987 if (st->state == TCP_SEQ_STATE_OPENREQ) {
1988 struct request_sock *req = cur;
1990 icsk = inet_csk(st->syn_wait_sk);
1994 if (req->rsk_ops->family == st->family) {
2000 if (++st->sbucket >= icsk->icsk_accept_queue.listen_opt->nr_table_entries)
2003 req = icsk->icsk_accept_queue.listen_opt->syn_table[st->sbucket];
2005 sk = sk_next(st->syn_wait_sk);
2006 st->state = TCP_SEQ_STATE_LISTENING;
2007 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2009 icsk = inet_csk(sk);
2010 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2011 if (reqsk_queue_len(&icsk->icsk_accept_queue))
2013 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2017 sk_nulls_for_each_from(sk, node) {
2018 if (sk->sk_family == st->family && net_eq(sock_net(sk), net)) {
2022 icsk = inet_csk(sk);
2023 read_lock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2024 if (reqsk_queue_len(&icsk->icsk_accept_queue)) {
2026 st->uid = sock_i_uid(sk);
2027 st->syn_wait_sk = sk;
2028 st->state = TCP_SEQ_STATE_OPENREQ;
2032 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2034 spin_unlock_bh(&ilb->lock);
2035 if (++st->bucket < INET_LHTABLE_SIZE) {
2036 ilb = &tcp_hashinfo.listening_hash[st->bucket];
2037 spin_lock_bh(&ilb->lock);
2038 sk = sk_nulls_head(&ilb->head);
2046 static void *listening_get_idx(struct seq_file *seq, loff_t *pos)
2048 void *rc = listening_get_next(seq, NULL);
2050 while (rc && *pos) {
2051 rc = listening_get_next(seq, rc);
2057 static inline int empty_bucket(struct tcp_iter_state *st)
2059 return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain) &&
2060 hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].twchain);
2063 static void *established_get_first(struct seq_file *seq)
2065 struct tcp_iter_state *st = seq->private;
2066 struct net *net = seq_file_net(seq);
2069 for (st->bucket = 0; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) {
2071 struct hlist_nulls_node *node;
2072 struct inet_timewait_sock *tw;
2073 spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket);
2075 /* Lockless fast path for the common case of empty buckets */
2076 if (empty_bucket(st))
2080 sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) {
2081 if (sk->sk_family != st->family ||
2082 !net_eq(sock_net(sk), net)) {
2088 st->state = TCP_SEQ_STATE_TIME_WAIT;
2089 inet_twsk_for_each(tw, node,
2090 &tcp_hashinfo.ehash[st->bucket].twchain) {
2091 if (tw->tw_family != st->family ||
2092 !net_eq(twsk_net(tw), net)) {
2098 spin_unlock_bh(lock);
2099 st->state = TCP_SEQ_STATE_ESTABLISHED;
2105 static void *established_get_next(struct seq_file *seq, void *cur)
2107 struct sock *sk = cur;
2108 struct inet_timewait_sock *tw;
2109 struct hlist_nulls_node *node;
2110 struct tcp_iter_state *st = seq->private;
2111 struct net *net = seq_file_net(seq);
2115 if (st->state == TCP_SEQ_STATE_TIME_WAIT) {
2119 while (tw && (tw->tw_family != st->family || !net_eq(twsk_net(tw), net))) {
2126 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2127 st->state = TCP_SEQ_STATE_ESTABLISHED;
2129 /* Look for next non empty bucket */
2130 while (++st->bucket <= tcp_hashinfo.ehash_mask &&
2133 if (st->bucket > tcp_hashinfo.ehash_mask)
2136 spin_lock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2137 sk = sk_nulls_head(&tcp_hashinfo.ehash[st->bucket].chain);
2139 sk = sk_nulls_next(sk);
2141 sk_nulls_for_each_from(sk, node) {
2142 if (sk->sk_family == st->family && net_eq(sock_net(sk), net))
2146 st->state = TCP_SEQ_STATE_TIME_WAIT;
2147 tw = tw_head(&tcp_hashinfo.ehash[st->bucket].twchain);
2155 static void *established_get_idx(struct seq_file *seq, loff_t pos)
2157 void *rc = established_get_first(seq);
2160 rc = established_get_next(seq, rc);
2166 static void *tcp_get_idx(struct seq_file *seq, loff_t pos)
2169 struct tcp_iter_state *st = seq->private;
2171 st->state = TCP_SEQ_STATE_LISTENING;
2172 rc = listening_get_idx(seq, &pos);
2175 st->state = TCP_SEQ_STATE_ESTABLISHED;
2176 rc = established_get_idx(seq, pos);
2182 static void *tcp_seq_start(struct seq_file *seq, loff_t *pos)
2184 struct tcp_iter_state *st = seq->private;
2185 st->state = TCP_SEQ_STATE_LISTENING;
2187 return *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN;
2190 static void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2193 struct tcp_iter_state *st;
2195 if (v == SEQ_START_TOKEN) {
2196 rc = tcp_get_idx(seq, 0);
2201 switch (st->state) {
2202 case TCP_SEQ_STATE_OPENREQ:
2203 case TCP_SEQ_STATE_LISTENING:
2204 rc = listening_get_next(seq, v);
2206 st->state = TCP_SEQ_STATE_ESTABLISHED;
2207 rc = established_get_first(seq);
2210 case TCP_SEQ_STATE_ESTABLISHED:
2211 case TCP_SEQ_STATE_TIME_WAIT:
2212 rc = established_get_next(seq, v);
2220 static void tcp_seq_stop(struct seq_file *seq, void *v)
2222 struct tcp_iter_state *st = seq->private;
2224 switch (st->state) {
2225 case TCP_SEQ_STATE_OPENREQ:
2227 struct inet_connection_sock *icsk = inet_csk(st->syn_wait_sk);
2228 read_unlock_bh(&icsk->icsk_accept_queue.syn_wait_lock);
2230 case TCP_SEQ_STATE_LISTENING:
2231 if (v != SEQ_START_TOKEN)
2232 spin_unlock_bh(&tcp_hashinfo.listening_hash[st->bucket].lock);
2234 case TCP_SEQ_STATE_TIME_WAIT:
2235 case TCP_SEQ_STATE_ESTABLISHED:
2237 spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket));
2242 static int tcp_seq_open(struct inode *inode, struct file *file)
2244 struct tcp_seq_afinfo *afinfo = PDE(inode)->data;
2245 struct tcp_iter_state *s;
2248 err = seq_open_net(inode, file, &afinfo->seq_ops,
2249 sizeof(struct tcp_iter_state));
2253 s = ((struct seq_file *)file->private_data)->private;
2254 s->family = afinfo->family;
2258 int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo)
2261 struct proc_dir_entry *p;
2263 afinfo->seq_fops.open = tcp_seq_open;
2264 afinfo->seq_fops.read = seq_read;
2265 afinfo->seq_fops.llseek = seq_lseek;
2266 afinfo->seq_fops.release = seq_release_net;
2268 afinfo->seq_ops.start = tcp_seq_start;
2269 afinfo->seq_ops.next = tcp_seq_next;
2270 afinfo->seq_ops.stop = tcp_seq_stop;
2272 p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2273 &afinfo->seq_fops, afinfo);
2279 void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo)
2281 proc_net_remove(net, afinfo->name);
2284 static void get_openreq4(struct sock *sk, struct request_sock *req,
2285 struct seq_file *f, int i, int uid, int *len)
2287 const struct inet_request_sock *ireq = inet_rsk(req);
2288 int ttd = req->expires - jiffies;
2290 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2291 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %u %d %p%n",
2294 ntohs(inet_sk(sk)->inet_sport),
2296 ntohs(ireq->rmt_port),
2298 0, 0, /* could print option size, but that is af dependent. */
2299 1, /* timers active (only the expire timer) */
2300 jiffies_to_clock_t(ttd),
2303 0, /* non standard timer */
2304 0, /* open_requests have no inode */
2305 atomic_read(&sk->sk_refcnt),
2310 static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i, int *len)
2313 unsigned long timer_expires;
2314 struct tcp_sock *tp = tcp_sk(sk);
2315 const struct inet_connection_sock *icsk = inet_csk(sk);
2316 struct inet_sock *inet = inet_sk(sk);
2317 __be32 dest = inet->inet_daddr;
2318 __be32 src = inet->inet_rcv_saddr;
2319 __u16 destp = ntohs(inet->inet_dport);
2320 __u16 srcp = ntohs(inet->inet_sport);
2323 if (icsk->icsk_pending == ICSK_TIME_RETRANS) {
2325 timer_expires = icsk->icsk_timeout;
2326 } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) {
2328 timer_expires = icsk->icsk_timeout;
2329 } else if (timer_pending(&sk->sk_timer)) {
2331 timer_expires = sk->sk_timer.expires;
2334 timer_expires = jiffies;
2337 if (sk->sk_state == TCP_LISTEN)
2338 rx_queue = sk->sk_ack_backlog;
2341 * because we dont lock socket, we might find a transient negative value
2343 rx_queue = max_t(int, tp->rcv_nxt - tp->copied_seq, 0);
2345 seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX "
2346 "%08X %5d %8d %lu %d %p %lu %lu %u %u %d%n",
2347 i, src, srcp, dest, destp, sk->sk_state,
2348 tp->write_seq - tp->snd_una,
2351 jiffies_to_clock_t(timer_expires - jiffies),
2352 icsk->icsk_retransmits,
2354 icsk->icsk_probes_out,
2356 atomic_read(&sk->sk_refcnt), sk,
2357 jiffies_to_clock_t(icsk->icsk_rto),
2358 jiffies_to_clock_t(icsk->icsk_ack.ato),
2359 (icsk->icsk_ack.quick << 1) | icsk->icsk_ack.pingpong,
2361 tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh,
2365 static void get_timewait4_sock(struct inet_timewait_sock *tw,
2366 struct seq_file *f, int i, int *len)
2370 int ttd = tw->tw_ttd - jiffies;
2375 dest = tw->tw_daddr;
2376 src = tw->tw_rcv_saddr;
2377 destp = ntohs(tw->tw_dport);
2378 srcp = ntohs(tw->tw_sport);
2380 seq_printf(f, "%4d: %08X:%04X %08X:%04X"
2381 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %p%n",
2382 i, src, srcp, dest, destp, tw->tw_substate, 0, 0,
2383 3, jiffies_to_clock_t(ttd), 0, 0, 0, 0,
2384 atomic_read(&tw->tw_refcnt), tw, len);
2389 static int tcp4_seq_show(struct seq_file *seq, void *v)
2391 struct tcp_iter_state *st;
2394 if (v == SEQ_START_TOKEN) {
2395 seq_printf(seq, "%-*s\n", TMPSZ - 1,
2396 " sl local_address rem_address st tx_queue "
2397 "rx_queue tr tm->when retrnsmt uid timeout "
2403 switch (st->state) {
2404 case TCP_SEQ_STATE_LISTENING:
2405 case TCP_SEQ_STATE_ESTABLISHED:
2406 get_tcp4_sock(v, seq, st->num, &len);
2408 case TCP_SEQ_STATE_OPENREQ:
2409 get_openreq4(st->syn_wait_sk, v, seq, st->num, st->uid, &len);
2411 case TCP_SEQ_STATE_TIME_WAIT:
2412 get_timewait4_sock(v, seq, st->num, &len);
2415 seq_printf(seq, "%*s\n", TMPSZ - 1 - len, "");
2420 static struct tcp_seq_afinfo tcp4_seq_afinfo = {
2424 .owner = THIS_MODULE,
2427 .show = tcp4_seq_show,
2431 static int tcp4_proc_init_net(struct net *net)
2433 return tcp_proc_register(net, &tcp4_seq_afinfo);
2436 static void tcp4_proc_exit_net(struct net *net)
2438 tcp_proc_unregister(net, &tcp4_seq_afinfo);
2441 static struct pernet_operations tcp4_net_ops = {
2442 .init = tcp4_proc_init_net,
2443 .exit = tcp4_proc_exit_net,
2446 int __init tcp4_proc_init(void)
2448 return register_pernet_subsys(&tcp4_net_ops);
2451 void tcp4_proc_exit(void)
2453 unregister_pernet_subsys(&tcp4_net_ops);
2455 #endif /* CONFIG_PROC_FS */
2457 struct sk_buff **tcp4_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2459 struct iphdr *iph = skb_gro_network_header(skb);
2461 switch (skb->ip_summed) {
2462 case CHECKSUM_COMPLETE:
2463 if (!tcp_v4_check(skb_gro_len(skb), iph->saddr, iph->daddr,
2465 skb->ip_summed = CHECKSUM_UNNECESSARY;
2471 NAPI_GRO_CB(skb)->flush = 1;
2475 return tcp_gro_receive(head, skb);
2477 EXPORT_SYMBOL(tcp4_gro_receive);
2479 int tcp4_gro_complete(struct sk_buff *skb)
2481 struct iphdr *iph = ip_hdr(skb);
2482 struct tcphdr *th = tcp_hdr(skb);
2484 th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
2485 iph->saddr, iph->daddr, 0);
2486 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2488 return tcp_gro_complete(skb);
2490 EXPORT_SYMBOL(tcp4_gro_complete);
2492 struct proto tcp_prot = {
2494 .owner = THIS_MODULE,
2496 .connect = tcp_v4_connect,
2497 .disconnect = tcp_disconnect,
2498 .accept = inet_csk_accept,
2500 .init = tcp_v4_init_sock,
2501 .destroy = tcp_v4_destroy_sock,
2502 .shutdown = tcp_shutdown,
2503 .setsockopt = tcp_setsockopt,
2504 .getsockopt = tcp_getsockopt,
2505 .recvmsg = tcp_recvmsg,
2506 .backlog_rcv = tcp_v4_do_rcv,
2508 .unhash = inet_unhash,
2509 .get_port = inet_csk_get_port,
2510 .enter_memory_pressure = tcp_enter_memory_pressure,
2511 .sockets_allocated = &tcp_sockets_allocated,
2512 .orphan_count = &tcp_orphan_count,
2513 .memory_allocated = &tcp_memory_allocated,
2514 .memory_pressure = &tcp_memory_pressure,
2515 .sysctl_mem = sysctl_tcp_mem,
2516 .sysctl_wmem = sysctl_tcp_wmem,
2517 .sysctl_rmem = sysctl_tcp_rmem,
2518 .max_header = MAX_TCP_HEADER,
2519 .obj_size = sizeof(struct tcp_sock),
2520 .slab_flags = SLAB_DESTROY_BY_RCU,
2521 .twsk_prot = &tcp_timewait_sock_ops,
2522 .rsk_prot = &tcp_request_sock_ops,
2523 .h.hashinfo = &tcp_hashinfo,
2524 #ifdef CONFIG_COMPAT
2525 .compat_setsockopt = compat_tcp_setsockopt,
2526 .compat_getsockopt = compat_tcp_getsockopt,
2531 static int __net_init tcp_sk_init(struct net *net)
2533 return inet_ctl_sock_create(&net->ipv4.tcp_sock,
2534 PF_INET, SOCK_RAW, IPPROTO_TCP, net);
2537 static void __net_exit tcp_sk_exit(struct net *net)
2539 inet_ctl_sock_destroy(net->ipv4.tcp_sock);
2542 static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list)
2544 inet_twsk_purge(&tcp_hashinfo, &tcp_death_row, AF_INET);
2547 static struct pernet_operations __net_initdata tcp_sk_ops = {
2548 .init = tcp_sk_init,
2549 .exit = tcp_sk_exit,
2550 .exit_batch = tcp_sk_exit_batch,
2553 void __init tcp_v4_init(void)
2555 inet_hashinfo_init(&tcp_hashinfo);
2556 if (register_pernet_subsys(&tcp_sk_ops))
2557 panic("Failed to create the TCP control socket.\n");
2560 EXPORT_SYMBOL(ipv4_specific);
2561 EXPORT_SYMBOL(tcp_hashinfo);
2562 EXPORT_SYMBOL(tcp_prot);
2563 EXPORT_SYMBOL(tcp_v4_conn_request);
2564 EXPORT_SYMBOL(tcp_v4_connect);
2565 EXPORT_SYMBOL(tcp_v4_do_rcv);
2566 EXPORT_SYMBOL(tcp_v4_remember_stamp);
2567 EXPORT_SYMBOL(tcp_v4_send_check);
2568 EXPORT_SYMBOL(tcp_v4_syn_recv_sock);
2570 #ifdef CONFIG_PROC_FS
2571 EXPORT_SYMBOL(tcp_proc_register);
2572 EXPORT_SYMBOL(tcp_proc_unregister);
2574 EXPORT_SYMBOL(sysctl_tcp_low_latency);