1 // SPDX-License-Identifier: GPL-2.0
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Pedro Roque : Fast Retransmit/Recovery.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
57 * J Hadi Salim: ECN support
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
103 #define FLAG_DSACK_TLP 0x20000 /* DSACK for tail loss probe */
105 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
110 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
113 #define REXMIT_NONE 0 /* no loss recovery to do */
114 #define REXMIT_LOST 1 /* retransmit packets marked lost */
115 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
117 #if IS_ENABLED(CONFIG_TLS_DEVICE)
118 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
120 void clean_acked_data_enable(struct inet_connection_sock *icsk,
121 void (*cad)(struct sock *sk, u32 ack_seq))
123 icsk->icsk_clean_acked = cad;
124 static_branch_deferred_inc(&clean_acked_data_enabled);
126 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
128 void clean_acked_data_disable(struct inet_connection_sock *icsk)
130 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131 icsk->icsk_clean_acked = NULL;
133 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
135 void clean_acked_data_flush(void)
137 static_key_deferred_flush(&clean_acked_data_enabled);
139 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
142 #ifdef CONFIG_CGROUP_BPF
143 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
145 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150 struct bpf_sock_ops_kern sock_ops;
152 if (likely(!unknown_opt && !parse_all_opt))
155 /* The skb will be handled in the
156 * bpf_skops_established() or
157 * bpf_skops_write_hdr_opt().
159 switch (sk->sk_state) {
166 sock_owned_by_me(sk);
168 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170 sock_ops.is_fullsock = 1;
172 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
174 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
177 static void bpf_skops_established(struct sock *sk, int bpf_op,
180 struct bpf_sock_ops_kern sock_ops;
182 sock_owned_by_me(sk);
184 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185 sock_ops.op = bpf_op;
186 sock_ops.is_fullsock = 1;
188 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
190 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
192 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
195 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
199 static void bpf_skops_established(struct sock *sk, int bpf_op,
205 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
208 static bool __once __read_mostly;
211 struct net_device *dev;
216 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217 if (!dev || len >= dev->mtu)
218 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219 dev ? dev->name : "Unknown driver");
224 /* Adapt the MSS value used to make delayed ack decision to the
227 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
229 struct inet_connection_sock *icsk = inet_csk(sk);
230 const unsigned int lss = icsk->icsk_ack.last_seg_size;
233 icsk->icsk_ack.last_seg_size = 0;
235 /* skb->len may jitter because of SACKs, even if peer
236 * sends good full-sized frames.
238 len = skb_shinfo(skb)->gso_size ? : skb->len;
239 if (len >= icsk->icsk_ack.rcv_mss) {
240 /* Note: divides are still a bit expensive.
241 * For the moment, only adjust scaling_ratio
242 * when we update icsk_ack.rcv_mss.
244 if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245 u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
247 do_div(val, skb->truesize);
248 tcp_sk(sk)->scaling_ratio = val ? val : 1;
250 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
252 /* Account for possibly-removed options */
253 if (unlikely(len > icsk->icsk_ack.rcv_mss +
254 MAX_TCP_OPTION_SPACE))
255 tcp_gro_dev_warn(sk, skb, len);
256 /* If the skb has a len of exactly 1*MSS and has the PSH bit
257 * set then it is likely the end of an application write. So
258 * more data may not be arriving soon, and yet the data sender
259 * may be waiting for an ACK if cwnd-bound or using TX zero
260 * copy. So we set ICSK_ACK_PUSHED here so that
261 * tcp_cleanup_rbuf() will send an ACK immediately if the app
262 * reads all of the data and is not ping-pong. If len > MSS
263 * then this logic does not matter (and does not hurt) because
264 * tcp_cleanup_rbuf() will always ACK immediately if the app
265 * reads data and there is more than an MSS of unACKed data.
267 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
268 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
270 /* Otherwise, we make more careful check taking into account,
271 * that SACKs block is variable.
273 * "len" is invariant segment length, including TCP header.
275 len += skb->data - skb_transport_header(skb);
276 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
277 /* If PSH is not set, packet should be
278 * full sized, provided peer TCP is not badly broken.
279 * This observation (if it is correct 8)) allows
280 * to handle super-low mtu links fairly.
282 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
283 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
284 /* Subtract also invariant (if peer is RFC compliant),
285 * tcp header plus fixed timestamp option length.
286 * Resulting "len" is MSS free of SACK jitter.
288 len -= tcp_sk(sk)->tcp_header_len;
289 icsk->icsk_ack.last_seg_size = len;
291 icsk->icsk_ack.rcv_mss = len;
295 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
296 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
297 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
301 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
303 struct inet_connection_sock *icsk = inet_csk(sk);
304 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
308 quickacks = min(quickacks, max_quickacks);
309 if (quickacks > icsk->icsk_ack.quick)
310 icsk->icsk_ack.quick = quickacks;
313 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
315 struct inet_connection_sock *icsk = inet_csk(sk);
317 tcp_incr_quickack(sk, max_quickacks);
318 inet_csk_exit_pingpong_mode(sk);
319 icsk->icsk_ack.ato = TCP_ATO_MIN;
322 /* Send ACKs quickly, if "quick" count is not exhausted
323 * and the session is not interactive.
326 static bool tcp_in_quickack_mode(struct sock *sk)
328 const struct inet_connection_sock *icsk = inet_csk(sk);
329 const struct dst_entry *dst = __sk_dst_get(sk);
331 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
332 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
335 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
337 if (tp->ecn_flags & TCP_ECN_OK)
338 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
341 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
343 if (tcp_hdr(skb)->cwr) {
344 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
346 /* If the sender is telling us it has entered CWR, then its
347 * cwnd may be very low (even just 1 packet), so we should ACK
350 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
351 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
355 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
357 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
360 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
362 struct tcp_sock *tp = tcp_sk(sk);
364 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
365 case INET_ECN_NOT_ECT:
366 /* Funny extension: if ECT is not set on a segment,
367 * and we already seen ECT on a previous segment,
368 * it is probably a retransmit.
370 if (tp->ecn_flags & TCP_ECN_SEEN)
371 tcp_enter_quickack_mode(sk, 2);
374 if (tcp_ca_needs_ecn(sk))
375 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
377 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
378 /* Better not delay acks, sender can have a very low cwnd */
379 tcp_enter_quickack_mode(sk, 2);
380 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
382 tp->ecn_flags |= TCP_ECN_SEEN;
385 if (tcp_ca_needs_ecn(sk))
386 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
387 tp->ecn_flags |= TCP_ECN_SEEN;
392 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
394 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
395 __tcp_ecn_check_ce(sk, skb);
398 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
400 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
401 tp->ecn_flags &= ~TCP_ECN_OK;
404 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
406 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
407 tp->ecn_flags &= ~TCP_ECN_OK;
410 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
412 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
417 /* Buffer size and advertised window tuning.
419 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
422 static void tcp_sndbuf_expand(struct sock *sk)
424 const struct tcp_sock *tp = tcp_sk(sk);
425 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
429 /* Worst case is non GSO/TSO : each frame consumes one skb
430 * and skb->head is kmalloced using power of two area of memory
432 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
434 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
436 per_mss = roundup_pow_of_two(per_mss) +
437 SKB_DATA_ALIGN(sizeof(struct sk_buff));
439 nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
440 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
442 /* Fast Recovery (RFC 5681 3.2) :
443 * Cubic needs 1.7 factor, rounded to 2 to include
444 * extra cushion (application might react slowly to EPOLLOUT)
446 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
447 sndmem *= nr_segs * per_mss;
449 if (sk->sk_sndbuf < sndmem)
450 WRITE_ONCE(sk->sk_sndbuf,
451 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
454 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
456 * All tcp_full_space() is split to two parts: "network" buffer, allocated
457 * forward and advertised in receiver window (tp->rcv_wnd) and
458 * "application buffer", required to isolate scheduling/application
459 * latencies from network.
460 * window_clamp is maximal advertised window. It can be less than
461 * tcp_full_space(), in this case tcp_full_space() - window_clamp
462 * is reserved for "application" buffer. The less window_clamp is
463 * the smoother our behaviour from viewpoint of network, but the lower
464 * throughput and the higher sensitivity of the connection to losses. 8)
466 * rcv_ssthresh is more strict window_clamp used at "slow start"
467 * phase to predict further behaviour of this connection.
468 * It is used for two goals:
469 * - to enforce header prediction at sender, even when application
470 * requires some significant "application buffer". It is check #1.
471 * - to prevent pruning of receive queue because of misprediction
472 * of receiver window. Check #2.
474 * The scheme does not work when sender sends good segments opening
475 * window and then starts to feed us spaghetti. But it should work
476 * in common situations. Otherwise, we have to rely on queue collapsing.
479 /* Slow part of check#2. */
480 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
481 unsigned int skbtruesize)
483 const struct tcp_sock *tp = tcp_sk(sk);
485 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
486 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
488 while (tp->rcv_ssthresh <= window) {
489 if (truesize <= skb->len)
490 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
498 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
499 * can play nice with us, as sk_buff and skb->head might be either
500 * freed or shared with up to MAX_SKB_FRAGS segments.
501 * Only give a boost to drivers using page frag(s) to hold the frame(s),
502 * and if no payload was pulled in skb->head before reaching us.
504 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
506 u32 truesize = skb->truesize;
508 if (adjust && !skb_headlen(skb)) {
509 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
510 /* paranoid check, some drivers might be buggy */
511 if (unlikely((int)truesize < (int)skb->len))
512 truesize = skb->truesize;
517 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
520 struct tcp_sock *tp = tcp_sk(sk);
523 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
529 if (!tcp_under_memory_pressure(sk)) {
530 unsigned int truesize = truesize_adjust(adjust, skb);
533 /* Check #2. Increase window, if skb with such overhead
534 * will fit to rcvbuf in future.
536 if (tcp_win_from_space(sk, truesize) <= skb->len)
537 incr = 2 * tp->advmss;
539 incr = __tcp_grow_window(sk, skb, truesize);
542 incr = max_t(int, incr, 2 * skb->len);
543 tp->rcv_ssthresh += min(room, incr);
544 inet_csk(sk)->icsk_ack.quick |= 1;
548 * Adjust rcv_ssthresh according to reserved mem
550 tcp_adjust_rcv_ssthresh(sk);
554 /* 3. Try to fixup all. It is made immediately after connection enters
557 static void tcp_init_buffer_space(struct sock *sk)
559 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
560 struct tcp_sock *tp = tcp_sk(sk);
563 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
564 tcp_sndbuf_expand(sk);
566 tcp_mstamp_refresh(tp);
567 tp->rcvq_space.time = tp->tcp_mstamp;
568 tp->rcvq_space.seq = tp->copied_seq;
570 maxwin = tcp_full_space(sk);
572 if (tp->window_clamp >= maxwin) {
573 tp->window_clamp = maxwin;
575 if (tcp_app_win && maxwin > 4 * tp->advmss)
576 tp->window_clamp = max(maxwin -
577 (maxwin >> tcp_app_win),
581 /* Force reservation of one segment. */
583 tp->window_clamp > 2 * tp->advmss &&
584 tp->window_clamp + tp->advmss > maxwin)
585 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
587 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
588 tp->snd_cwnd_stamp = tcp_jiffies32;
589 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
590 (u32)TCP_INIT_CWND * tp->advmss);
593 /* 4. Recalculate window clamp after socket hit its memory bounds. */
594 static void tcp_clamp_window(struct sock *sk)
596 struct tcp_sock *tp = tcp_sk(sk);
597 struct inet_connection_sock *icsk = inet_csk(sk);
598 struct net *net = sock_net(sk);
601 icsk->icsk_ack.quick = 0;
602 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
604 if (sk->sk_rcvbuf < rmem2 &&
605 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
606 !tcp_under_memory_pressure(sk) &&
607 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
608 WRITE_ONCE(sk->sk_rcvbuf,
609 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
611 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
612 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
615 /* Initialize RCV_MSS value.
616 * RCV_MSS is an our guess about MSS used by the peer.
617 * We haven't any direct information about the MSS.
618 * It's better to underestimate the RCV_MSS rather than overestimate.
619 * Overestimations make us ACKing less frequently than needed.
620 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
622 void tcp_initialize_rcv_mss(struct sock *sk)
624 const struct tcp_sock *tp = tcp_sk(sk);
625 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
627 hint = min(hint, tp->rcv_wnd / 2);
628 hint = min(hint, TCP_MSS_DEFAULT);
629 hint = max(hint, TCP_MIN_MSS);
631 inet_csk(sk)->icsk_ack.rcv_mss = hint;
633 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
635 /* Receiver "autotuning" code.
637 * The algorithm for RTT estimation w/o timestamps is based on
638 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
639 * <https://public.lanl.gov/radiant/pubs.html#DRS>
641 * More detail on this code can be found at
642 * <http://staff.psc.edu/jheffner/>,
643 * though this reference is out of date. A new paper
646 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
648 u32 new_sample = tp->rcv_rtt_est.rtt_us;
651 if (new_sample != 0) {
652 /* If we sample in larger samples in the non-timestamp
653 * case, we could grossly overestimate the RTT especially
654 * with chatty applications or bulk transfer apps which
655 * are stalled on filesystem I/O.
657 * Also, since we are only going for a minimum in the
658 * non-timestamp case, we do not smooth things out
659 * else with timestamps disabled convergence takes too
663 m -= (new_sample >> 3);
671 /* No previous measure. */
675 tp->rcv_rtt_est.rtt_us = new_sample;
678 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
682 if (tp->rcv_rtt_est.time == 0)
684 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
686 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
689 tcp_rcv_rtt_update(tp, delta_us, 1);
692 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
693 tp->rcv_rtt_est.time = tp->tcp_mstamp;
696 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
697 const struct sk_buff *skb)
699 struct tcp_sock *tp = tcp_sk(sk);
701 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
703 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
705 if (TCP_SKB_CB(skb)->end_seq -
706 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
707 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
710 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
713 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
714 tcp_rcv_rtt_update(tp, delta_us, 0);
720 * This function should be called every time data is copied to user space.
721 * It calculates the appropriate TCP receive buffer space.
723 void tcp_rcv_space_adjust(struct sock *sk)
725 struct tcp_sock *tp = tcp_sk(sk);
729 trace_tcp_rcv_space_adjust(sk);
731 tcp_mstamp_refresh(tp);
732 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
733 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
736 /* Number of bytes copied to user in last RTT */
737 copied = tp->copied_seq - tp->rcvq_space.seq;
738 if (copied <= tp->rcvq_space.space)
742 * copied = bytes received in previous RTT, our base window
743 * To cope with packet losses, we need a 2x factor
744 * To cope with slow start, and sender growing its cwin by 100 %
745 * every RTT, we need a 4x factor, because the ACK we are sending
746 * now is for the next RTT, not the current one :
747 * <prev RTT . ><current RTT .. ><next RTT .... >
750 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
751 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
755 /* minimal window to cope with packet losses, assuming
756 * steady state. Add some cushion because of small variations.
758 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
760 /* Accommodate for sender rate increase (eg. slow start) */
761 grow = rcvwin * (copied - tp->rcvq_space.space);
762 do_div(grow, tp->rcvq_space.space);
763 rcvwin += (grow << 1);
765 rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
766 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
767 if (rcvbuf > sk->sk_rcvbuf) {
768 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
770 /* Make the window clamp follow along. */
771 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
774 tp->rcvq_space.space = copied;
777 tp->rcvq_space.seq = tp->copied_seq;
778 tp->rcvq_space.time = tp->tcp_mstamp;
781 /* There is something which you must keep in mind when you analyze the
782 * behavior of the tp->ato delayed ack timeout interval. When a
783 * connection starts up, we want to ack as quickly as possible. The
784 * problem is that "good" TCP's do slow start at the beginning of data
785 * transmission. The means that until we send the first few ACK's the
786 * sender will sit on his end and only queue most of his data, because
787 * he can only send snd_cwnd unacked packets at any given time. For
788 * each ACK we send, he increments snd_cwnd and transmits more of his
791 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
793 struct tcp_sock *tp = tcp_sk(sk);
794 struct inet_connection_sock *icsk = inet_csk(sk);
797 inet_csk_schedule_ack(sk);
799 tcp_measure_rcv_mss(sk, skb);
801 tcp_rcv_rtt_measure(tp);
805 if (!icsk->icsk_ack.ato) {
806 /* The _first_ data packet received, initialize
807 * delayed ACK engine.
809 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
810 icsk->icsk_ack.ato = TCP_ATO_MIN;
812 int m = now - icsk->icsk_ack.lrcvtime;
814 if (m <= TCP_ATO_MIN / 2) {
815 /* The fastest case is the first. */
816 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
817 } else if (m < icsk->icsk_ack.ato) {
818 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
819 if (icsk->icsk_ack.ato > icsk->icsk_rto)
820 icsk->icsk_ack.ato = icsk->icsk_rto;
821 } else if (m > icsk->icsk_rto) {
822 /* Too long gap. Apparently sender failed to
823 * restart window, so that we send ACKs quickly.
825 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
828 icsk->icsk_ack.lrcvtime = now;
830 tcp_ecn_check_ce(sk, skb);
833 tcp_grow_window(sk, skb, true);
836 /* Called to compute a smoothed rtt estimate. The data fed to this
837 * routine either comes from timestamps, or from segments that were
838 * known _not_ to have been retransmitted [see Karn/Partridge
839 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
840 * piece by Van Jacobson.
841 * NOTE: the next three routines used to be one big routine.
842 * To save cycles in the RFC 1323 implementation it was better to break
843 * it up into three procedures. -- erics
845 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
847 struct tcp_sock *tp = tcp_sk(sk);
848 long m = mrtt_us; /* RTT */
849 u32 srtt = tp->srtt_us;
851 /* The following amusing code comes from Jacobson's
852 * article in SIGCOMM '88. Note that rtt and mdev
853 * are scaled versions of rtt and mean deviation.
854 * This is designed to be as fast as possible
855 * m stands for "measurement".
857 * On a 1990 paper the rto value is changed to:
858 * RTO = rtt + 4 * mdev
860 * Funny. This algorithm seems to be very broken.
861 * These formulae increase RTO, when it should be decreased, increase
862 * too slowly, when it should be increased quickly, decrease too quickly
863 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
864 * does not matter how to _calculate_ it. Seems, it was trap
865 * that VJ failed to avoid. 8)
868 m -= (srtt >> 3); /* m is now error in rtt est */
869 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
871 m = -m; /* m is now abs(error) */
872 m -= (tp->mdev_us >> 2); /* similar update on mdev */
873 /* This is similar to one of Eifel findings.
874 * Eifel blocks mdev updates when rtt decreases.
875 * This solution is a bit different: we use finer gain
876 * for mdev in this case (alpha*beta).
877 * Like Eifel it also prevents growth of rto,
878 * but also it limits too fast rto decreases,
879 * happening in pure Eifel.
884 m -= (tp->mdev_us >> 2); /* similar update on mdev */
886 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
887 if (tp->mdev_us > tp->mdev_max_us) {
888 tp->mdev_max_us = tp->mdev_us;
889 if (tp->mdev_max_us > tp->rttvar_us)
890 tp->rttvar_us = tp->mdev_max_us;
892 if (after(tp->snd_una, tp->rtt_seq)) {
893 if (tp->mdev_max_us < tp->rttvar_us)
894 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
895 tp->rtt_seq = tp->snd_nxt;
896 tp->mdev_max_us = tcp_rto_min_us(sk);
901 /* no previous measure. */
902 srtt = m << 3; /* take the measured time to be rtt */
903 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
904 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
905 tp->mdev_max_us = tp->rttvar_us;
906 tp->rtt_seq = tp->snd_nxt;
910 tp->srtt_us = max(1U, srtt);
913 static void tcp_update_pacing_rate(struct sock *sk)
915 const struct tcp_sock *tp = tcp_sk(sk);
918 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
919 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
921 /* current rate is (cwnd * mss) / srtt
922 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
923 * In Congestion Avoidance phase, set it to 120 % the current rate.
925 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
926 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
927 * end of slow start and should slow down.
929 if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
930 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
932 rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
934 rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
936 if (likely(tp->srtt_us))
937 do_div(rate, tp->srtt_us);
939 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
940 * without any lock. We want to make sure compiler wont store
941 * intermediate values in this location.
943 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
944 sk->sk_max_pacing_rate));
947 /* Calculate rto without backoff. This is the second half of Van Jacobson's
948 * routine referred to above.
950 static void tcp_set_rto(struct sock *sk)
952 const struct tcp_sock *tp = tcp_sk(sk);
953 /* Old crap is replaced with new one. 8)
956 * 1. If rtt variance happened to be less 50msec, it is hallucination.
957 * It cannot be less due to utterly erratic ACK generation made
958 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
959 * to do with delayed acks, because at cwnd>2 true delack timeout
960 * is invisible. Actually, Linux-2.4 also generates erratic
961 * ACKs in some circumstances.
963 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
965 /* 2. Fixups made earlier cannot be right.
966 * If we do not estimate RTO correctly without them,
967 * all the algo is pure shit and should be replaced
968 * with correct one. It is exactly, which we pretend to do.
971 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
972 * guarantees that rto is higher.
977 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
979 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
982 cwnd = TCP_INIT_CWND;
983 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
986 struct tcp_sacktag_state {
987 /* Timestamps for earliest and latest never-retransmitted segment
988 * that was SACKed. RTO needs the earliest RTT to stay conservative,
989 * but congestion control should still get an accurate delay signal.
996 unsigned int mss_now;
997 struct rate_sample *rate;
1000 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1001 * and spurious retransmission information if this DSACK is unlikely caused by
1003 * - DSACKed sequence range is larger than maximum receiver's window.
1004 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1006 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1007 u32 end_seq, struct tcp_sacktag_state *state)
1009 u32 seq_len, dup_segs = 1;
1011 if (!before(start_seq, end_seq))
1014 seq_len = end_seq - start_seq;
1015 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1016 if (seq_len > tp->max_window)
1018 if (seq_len > tp->mss_cache)
1019 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1020 else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1021 state->flag |= FLAG_DSACK_TLP;
1023 tp->dsack_dups += dup_segs;
1024 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1025 if (tp->dsack_dups > tp->total_retrans)
1028 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1029 /* We increase the RACK ordering window in rounds where we receive
1030 * DSACKs that may have been due to reordering causing RACK to trigger
1031 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1032 * without having seen reordering, or that match TLP probes (TLP
1033 * is timer-driven, not triggered by RACK).
1035 if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1036 tp->rack.dsack_seen = 1;
1038 state->flag |= FLAG_DSACKING_ACK;
1039 /* A spurious retransmission is delivered */
1040 state->sack_delivered += dup_segs;
1045 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1046 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1047 * distance is approximated in full-mss packet distance ("reordering").
1049 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1052 struct tcp_sock *tp = tcp_sk(sk);
1053 const u32 mss = tp->mss_cache;
1056 fack = tcp_highest_sack_seq(tp);
1057 if (!before(low_seq, fack))
1060 metric = fack - low_seq;
1061 if ((metric > tp->reordering * mss) && mss) {
1062 #if FASTRETRANS_DEBUG > 1
1063 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1064 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1068 tp->undo_marker ? tp->undo_retrans : 0);
1070 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1071 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1074 /* This exciting event is worth to be remembered. 8) */
1076 NET_INC_STATS(sock_net(sk),
1077 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1080 /* This must be called before lost_out or retrans_out are updated
1081 * on a new loss, because we want to know if all skbs previously
1082 * known to be lost have already been retransmitted, indicating
1083 * that this newly lost skb is our next skb to retransmit.
1085 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1087 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1088 (tp->retransmit_skb_hint &&
1089 before(TCP_SKB_CB(skb)->seq,
1090 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1091 tp->retransmit_skb_hint = skb;
1094 /* Sum the number of packets on the wire we have marked as lost, and
1095 * notify the congestion control module that the given skb was marked lost.
1097 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1099 tp->lost += tcp_skb_pcount(skb);
1102 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1104 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1105 struct tcp_sock *tp = tcp_sk(sk);
1107 if (sacked & TCPCB_SACKED_ACKED)
1110 tcp_verify_retransmit_hint(tp, skb);
1111 if (sacked & TCPCB_LOST) {
1112 if (sacked & TCPCB_SACKED_RETRANS) {
1113 /* Account for retransmits that are lost again */
1114 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1115 tp->retrans_out -= tcp_skb_pcount(skb);
1116 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1117 tcp_skb_pcount(skb));
1118 tcp_notify_skb_loss_event(tp, skb);
1121 tp->lost_out += tcp_skb_pcount(skb);
1122 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1123 tcp_notify_skb_loss_event(tp, skb);
1127 /* Updates the delivered and delivered_ce counts */
1128 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1131 tp->delivered += delivered;
1133 tp->delivered_ce += delivered;
1136 /* This procedure tags the retransmission queue when SACKs arrive.
1138 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1139 * Packets in queue with these bits set are counted in variables
1140 * sacked_out, retrans_out and lost_out, correspondingly.
1142 * Valid combinations are:
1143 * Tag InFlight Description
1144 * 0 1 - orig segment is in flight.
1145 * S 0 - nothing flies, orig reached receiver.
1146 * L 0 - nothing flies, orig lost by net.
1147 * R 2 - both orig and retransmit are in flight.
1148 * L|R 1 - orig is lost, retransmit is in flight.
1149 * S|R 1 - orig reached receiver, retrans is still in flight.
1150 * (L|S|R is logically valid, it could occur when L|R is sacked,
1151 * but it is equivalent to plain S and code short-curcuits it to S.
1152 * L|S is logically invalid, it would mean -1 packet in flight 8))
1154 * These 6 states form finite state machine, controlled by the following events:
1155 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1156 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1157 * 3. Loss detection event of two flavors:
1158 * A. Scoreboard estimator decided the packet is lost.
1159 * A'. Reno "three dupacks" marks head of queue lost.
1160 * B. SACK arrives sacking SND.NXT at the moment, when the
1161 * segment was retransmitted.
1162 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1164 * It is pleasant to note, that state diagram turns out to be commutative,
1165 * so that we are allowed not to be bothered by order of our actions,
1166 * when multiple events arrive simultaneously. (see the function below).
1168 * Reordering detection.
1169 * --------------------
1170 * Reordering metric is maximal distance, which a packet can be displaced
1171 * in packet stream. With SACKs we can estimate it:
1173 * 1. SACK fills old hole and the corresponding segment was not
1174 * ever retransmitted -> reordering. Alas, we cannot use it
1175 * when segment was retransmitted.
1176 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1177 * for retransmitted and already SACKed segment -> reordering..
1178 * Both of these heuristics are not used in Loss state, when we cannot
1179 * account for retransmits accurately.
1181 * SACK block validation.
1182 * ----------------------
1184 * SACK block range validation checks that the received SACK block fits to
1185 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1186 * Note that SND.UNA is not included to the range though being valid because
1187 * it means that the receiver is rather inconsistent with itself reporting
1188 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1189 * perfectly valid, however, in light of RFC2018 which explicitly states
1190 * that "SACK block MUST reflect the newest segment. Even if the newest
1191 * segment is going to be discarded ...", not that it looks very clever
1192 * in case of head skb. Due to potentional receiver driven attacks, we
1193 * choose to avoid immediate execution of a walk in write queue due to
1194 * reneging and defer head skb's loss recovery to standard loss recovery
1195 * procedure that will eventually trigger (nothing forbids us doing this).
1197 * Implements also blockage to start_seq wrap-around. Problem lies in the
1198 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1199 * there's no guarantee that it will be before snd_nxt (n). The problem
1200 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1203 * <- outs wnd -> <- wrapzone ->
1204 * u e n u_w e_w s n_w
1206 * |<------------+------+----- TCP seqno space --------------+---------->|
1207 * ...-- <2^31 ->| |<--------...
1208 * ...---- >2^31 ------>| |<--------...
1210 * Current code wouldn't be vulnerable but it's better still to discard such
1211 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1212 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1213 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1214 * equal to the ideal case (infinite seqno space without wrap caused issues).
1216 * With D-SACK the lower bound is extended to cover sequence space below
1217 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1218 * again, D-SACK block must not to go across snd_una (for the same reason as
1219 * for the normal SACK blocks, explained above). But there all simplicity
1220 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1221 * fully below undo_marker they do not affect behavior in anyway and can
1222 * therefore be safely ignored. In rare cases (which are more or less
1223 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1224 * fragmentation and packet reordering past skb's retransmission. To consider
1225 * them correctly, the acceptable range must be extended even more though
1226 * the exact amount is rather hard to quantify. However, tp->max_window can
1227 * be used as an exaggerated estimate.
1229 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1230 u32 start_seq, u32 end_seq)
1232 /* Too far in future, or reversed (interpretation is ambiguous) */
1233 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1236 /* Nasty start_seq wrap-around check (see comments above) */
1237 if (!before(start_seq, tp->snd_nxt))
1240 /* In outstanding window? ...This is valid exit for D-SACKs too.
1241 * start_seq == snd_una is non-sensical (see comments above)
1243 if (after(start_seq, tp->snd_una))
1246 if (!is_dsack || !tp->undo_marker)
1249 /* ...Then it's D-SACK, and must reside below snd_una completely */
1250 if (after(end_seq, tp->snd_una))
1253 if (!before(start_seq, tp->undo_marker))
1257 if (!after(end_seq, tp->undo_marker))
1260 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1261 * start_seq < undo_marker and end_seq >= undo_marker.
1263 return !before(start_seq, end_seq - tp->max_window);
1266 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1267 struct tcp_sack_block_wire *sp, int num_sacks,
1268 u32 prior_snd_una, struct tcp_sacktag_state *state)
1270 struct tcp_sock *tp = tcp_sk(sk);
1271 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1272 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1275 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1276 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1277 } else if (num_sacks > 1) {
1278 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1279 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1281 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1283 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1288 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1289 if (!dup_segs) { /* Skip dubious DSACK */
1290 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1294 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1296 /* D-SACK for already forgotten data... Do dumb counting. */
1297 if (tp->undo_marker && tp->undo_retrans > 0 &&
1298 !after(end_seq_0, prior_snd_una) &&
1299 after(end_seq_0, tp->undo_marker))
1300 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1305 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1306 * the incoming SACK may not exactly match but we can find smaller MSS
1307 * aligned portion of it that matches. Therefore we might need to fragment
1308 * which may fail and creates some hassle (caller must handle error case
1311 * FIXME: this could be merged to shift decision code
1313 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1314 u32 start_seq, u32 end_seq)
1318 unsigned int pkt_len;
1321 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1322 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1324 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1325 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1326 mss = tcp_skb_mss(skb);
1327 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1330 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1334 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1339 /* Round if necessary so that SACKs cover only full MSSes
1340 * and/or the remaining small portion (if present)
1342 if (pkt_len > mss) {
1343 unsigned int new_len = (pkt_len / mss) * mss;
1344 if (!in_sack && new_len < pkt_len)
1349 if (pkt_len >= skb->len && !in_sack)
1352 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1353 pkt_len, mss, GFP_ATOMIC);
1361 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1362 static u8 tcp_sacktag_one(struct sock *sk,
1363 struct tcp_sacktag_state *state, u8 sacked,
1364 u32 start_seq, u32 end_seq,
1365 int dup_sack, int pcount,
1368 struct tcp_sock *tp = tcp_sk(sk);
1370 /* Account D-SACK for retransmitted packet. */
1371 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1372 if (tp->undo_marker && tp->undo_retrans > 0 &&
1373 after(end_seq, tp->undo_marker))
1374 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1375 if ((sacked & TCPCB_SACKED_ACKED) &&
1376 before(start_seq, state->reord))
1377 state->reord = start_seq;
1380 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1381 if (!after(end_seq, tp->snd_una))
1384 if (!(sacked & TCPCB_SACKED_ACKED)) {
1385 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1387 if (sacked & TCPCB_SACKED_RETRANS) {
1388 /* If the segment is not tagged as lost,
1389 * we do not clear RETRANS, believing
1390 * that retransmission is still in flight.
1392 if (sacked & TCPCB_LOST) {
1393 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1394 tp->lost_out -= pcount;
1395 tp->retrans_out -= pcount;
1398 if (!(sacked & TCPCB_RETRANS)) {
1399 /* New sack for not retransmitted frame,
1400 * which was in hole. It is reordering.
1402 if (before(start_seq,
1403 tcp_highest_sack_seq(tp)) &&
1404 before(start_seq, state->reord))
1405 state->reord = start_seq;
1407 if (!after(end_seq, tp->high_seq))
1408 state->flag |= FLAG_ORIG_SACK_ACKED;
1409 if (state->first_sackt == 0)
1410 state->first_sackt = xmit_time;
1411 state->last_sackt = xmit_time;
1414 if (sacked & TCPCB_LOST) {
1415 sacked &= ~TCPCB_LOST;
1416 tp->lost_out -= pcount;
1420 sacked |= TCPCB_SACKED_ACKED;
1421 state->flag |= FLAG_DATA_SACKED;
1422 tp->sacked_out += pcount;
1423 /* Out-of-order packets delivered */
1424 state->sack_delivered += pcount;
1426 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1427 if (tp->lost_skb_hint &&
1428 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1429 tp->lost_cnt_hint += pcount;
1432 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1433 * frames and clear it. undo_retrans is decreased above, L|R frames
1434 * are accounted above as well.
1436 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1437 sacked &= ~TCPCB_SACKED_RETRANS;
1438 tp->retrans_out -= pcount;
1444 /* Shift newly-SACKed bytes from this skb to the immediately previous
1445 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1447 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1448 struct sk_buff *skb,
1449 struct tcp_sacktag_state *state,
1450 unsigned int pcount, int shifted, int mss,
1453 struct tcp_sock *tp = tcp_sk(sk);
1454 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1455 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1459 /* Adjust counters and hints for the newly sacked sequence
1460 * range but discard the return value since prev is already
1461 * marked. We must tag the range first because the seq
1462 * advancement below implicitly advances
1463 * tcp_highest_sack_seq() when skb is highest_sack.
1465 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1466 start_seq, end_seq, dup_sack, pcount,
1467 tcp_skb_timestamp_us(skb));
1468 tcp_rate_skb_delivered(sk, skb, state->rate);
1470 if (skb == tp->lost_skb_hint)
1471 tp->lost_cnt_hint += pcount;
1473 TCP_SKB_CB(prev)->end_seq += shifted;
1474 TCP_SKB_CB(skb)->seq += shifted;
1476 tcp_skb_pcount_add(prev, pcount);
1477 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1478 tcp_skb_pcount_add(skb, -pcount);
1480 /* When we're adding to gso_segs == 1, gso_size will be zero,
1481 * in theory this shouldn't be necessary but as long as DSACK
1482 * code can come after this skb later on it's better to keep
1483 * setting gso_size to something.
1485 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1486 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1488 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1489 if (tcp_skb_pcount(skb) <= 1)
1490 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1492 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1493 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1496 BUG_ON(!tcp_skb_pcount(skb));
1497 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1501 /* Whole SKB was eaten :-) */
1503 if (skb == tp->retransmit_skb_hint)
1504 tp->retransmit_skb_hint = prev;
1505 if (skb == tp->lost_skb_hint) {
1506 tp->lost_skb_hint = prev;
1507 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1510 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1511 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1512 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1513 TCP_SKB_CB(prev)->end_seq++;
1515 if (skb == tcp_highest_sack(sk))
1516 tcp_advance_highest_sack(sk, skb);
1518 tcp_skb_collapse_tstamp(prev, skb);
1519 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1520 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1522 tcp_rtx_queue_unlink_and_free(skb, sk);
1524 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1529 /* I wish gso_size would have a bit more sane initialization than
1530 * something-or-zero which complicates things
1532 static int tcp_skb_seglen(const struct sk_buff *skb)
1534 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1537 /* Shifting pages past head area doesn't work */
1538 static int skb_can_shift(const struct sk_buff *skb)
1540 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1543 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1544 int pcount, int shiftlen)
1546 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1547 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1548 * to make sure not storing more than 65535 * 8 bytes per skb,
1549 * even if current MSS is bigger.
1551 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1553 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1555 return skb_shift(to, from, shiftlen);
1558 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1561 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1562 struct tcp_sacktag_state *state,
1563 u32 start_seq, u32 end_seq,
1566 struct tcp_sock *tp = tcp_sk(sk);
1567 struct sk_buff *prev;
1573 /* Normally R but no L won't result in plain S */
1575 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1577 if (!skb_can_shift(skb))
1579 /* This frame is about to be dropped (was ACKed). */
1580 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1583 /* Can only happen with delayed DSACK + discard craziness */
1584 prev = skb_rb_prev(skb);
1588 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1591 if (!tcp_skb_can_collapse(prev, skb))
1594 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1595 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1599 pcount = tcp_skb_pcount(skb);
1600 mss = tcp_skb_seglen(skb);
1602 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1603 * drop this restriction as unnecessary
1605 if (mss != tcp_skb_seglen(prev))
1608 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1610 /* CHECKME: This is non-MSS split case only?, this will
1611 * cause skipped skbs due to advancing loop btw, original
1612 * has that feature too
1614 if (tcp_skb_pcount(skb) <= 1)
1617 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1619 /* TODO: head merge to next could be attempted here
1620 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1621 * though it might not be worth of the additional hassle
1623 * ...we can probably just fallback to what was done
1624 * previously. We could try merging non-SACKed ones
1625 * as well but it probably isn't going to buy off
1626 * because later SACKs might again split them, and
1627 * it would make skb timestamp tracking considerably
1633 len = end_seq - TCP_SKB_CB(skb)->seq;
1635 BUG_ON(len > skb->len);
1637 /* MSS boundaries should be honoured or else pcount will
1638 * severely break even though it makes things bit trickier.
1639 * Optimize common case to avoid most of the divides
1641 mss = tcp_skb_mss(skb);
1643 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1644 * drop this restriction as unnecessary
1646 if (mss != tcp_skb_seglen(prev))
1651 } else if (len < mss) {
1659 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1660 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1663 if (!tcp_skb_shift(prev, skb, pcount, len))
1665 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1668 /* Hole filled allows collapsing with the next as well, this is very
1669 * useful when hole on every nth skb pattern happens
1671 skb = skb_rb_next(prev);
1675 if (!skb_can_shift(skb) ||
1676 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1677 (mss != tcp_skb_seglen(skb)))
1680 if (!tcp_skb_can_collapse(prev, skb))
1683 pcount = tcp_skb_pcount(skb);
1684 if (tcp_skb_shift(prev, skb, pcount, len))
1685 tcp_shifted_skb(sk, prev, skb, state, pcount,
1695 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1699 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1700 struct tcp_sack_block *next_dup,
1701 struct tcp_sacktag_state *state,
1702 u32 start_seq, u32 end_seq,
1705 struct tcp_sock *tp = tcp_sk(sk);
1706 struct sk_buff *tmp;
1708 skb_rbtree_walk_from(skb) {
1710 bool dup_sack = dup_sack_in;
1712 /* queue is in-order => we can short-circuit the walk early */
1713 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1717 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1718 in_sack = tcp_match_skb_to_sack(sk, skb,
1719 next_dup->start_seq,
1725 /* skb reference here is a bit tricky to get right, since
1726 * shifting can eat and free both this skb and the next,
1727 * so not even _safe variant of the loop is enough.
1730 tmp = tcp_shift_skb_data(sk, skb, state,
1731 start_seq, end_seq, dup_sack);
1740 in_sack = tcp_match_skb_to_sack(sk, skb,
1746 if (unlikely(in_sack < 0))
1750 TCP_SKB_CB(skb)->sacked =
1753 TCP_SKB_CB(skb)->sacked,
1754 TCP_SKB_CB(skb)->seq,
1755 TCP_SKB_CB(skb)->end_seq,
1757 tcp_skb_pcount(skb),
1758 tcp_skb_timestamp_us(skb));
1759 tcp_rate_skb_delivered(sk, skb, state->rate);
1760 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1761 list_del_init(&skb->tcp_tsorted_anchor);
1763 if (!before(TCP_SKB_CB(skb)->seq,
1764 tcp_highest_sack_seq(tp)))
1765 tcp_advance_highest_sack(sk, skb);
1771 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1773 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1774 struct sk_buff *skb;
1778 skb = rb_to_skb(parent);
1779 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1780 p = &parent->rb_left;
1783 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1784 p = &parent->rb_right;
1792 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1795 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1798 return tcp_sacktag_bsearch(sk, skip_to_seq);
1801 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1803 struct tcp_sack_block *next_dup,
1804 struct tcp_sacktag_state *state,
1810 if (before(next_dup->start_seq, skip_to_seq)) {
1811 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1812 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1813 next_dup->start_seq, next_dup->end_seq,
1820 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1822 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1826 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1827 u32 prior_snd_una, struct tcp_sacktag_state *state)
1829 struct tcp_sock *tp = tcp_sk(sk);
1830 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1831 TCP_SKB_CB(ack_skb)->sacked);
1832 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1833 struct tcp_sack_block sp[TCP_NUM_SACKS];
1834 struct tcp_sack_block *cache;
1835 struct sk_buff *skb;
1836 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1838 bool found_dup_sack = false;
1840 int first_sack_index;
1843 state->reord = tp->snd_nxt;
1845 if (!tp->sacked_out)
1846 tcp_highest_sack_reset(sk);
1848 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1849 num_sacks, prior_snd_una, state);
1851 /* Eliminate too old ACKs, but take into
1852 * account more or less fresh ones, they can
1853 * contain valid SACK info.
1855 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1858 if (!tp->packets_out)
1862 first_sack_index = 0;
1863 for (i = 0; i < num_sacks; i++) {
1864 bool dup_sack = !i && found_dup_sack;
1866 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1867 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1869 if (!tcp_is_sackblock_valid(tp, dup_sack,
1870 sp[used_sacks].start_seq,
1871 sp[used_sacks].end_seq)) {
1875 if (!tp->undo_marker)
1876 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1878 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1880 /* Don't count olds caused by ACK reordering */
1881 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1882 !after(sp[used_sacks].end_seq, tp->snd_una))
1884 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1887 NET_INC_STATS(sock_net(sk), mib_idx);
1889 first_sack_index = -1;
1893 /* Ignore very old stuff early */
1894 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1896 first_sack_index = -1;
1903 /* order SACK blocks to allow in order walk of the retrans queue */
1904 for (i = used_sacks - 1; i > 0; i--) {
1905 for (j = 0; j < i; j++) {
1906 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1907 swap(sp[j], sp[j + 1]);
1909 /* Track where the first SACK block goes to */
1910 if (j == first_sack_index)
1911 first_sack_index = j + 1;
1916 state->mss_now = tcp_current_mss(sk);
1920 if (!tp->sacked_out) {
1921 /* It's already past, so skip checking against it */
1922 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1924 cache = tp->recv_sack_cache;
1925 /* Skip empty blocks in at head of the cache */
1926 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1931 while (i < used_sacks) {
1932 u32 start_seq = sp[i].start_seq;
1933 u32 end_seq = sp[i].end_seq;
1934 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1935 struct tcp_sack_block *next_dup = NULL;
1937 if (found_dup_sack && ((i + 1) == first_sack_index))
1938 next_dup = &sp[i + 1];
1940 /* Skip too early cached blocks */
1941 while (tcp_sack_cache_ok(tp, cache) &&
1942 !before(start_seq, cache->end_seq))
1945 /* Can skip some work by looking recv_sack_cache? */
1946 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1947 after(end_seq, cache->start_seq)) {
1950 if (before(start_seq, cache->start_seq)) {
1951 skb = tcp_sacktag_skip(skb, sk, start_seq);
1952 skb = tcp_sacktag_walk(skb, sk, next_dup,
1959 /* Rest of the block already fully processed? */
1960 if (!after(end_seq, cache->end_seq))
1963 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1967 /* ...tail remains todo... */
1968 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1969 /* ...but better entrypoint exists! */
1970 skb = tcp_highest_sack(sk);
1977 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1978 /* Check overlap against next cached too (past this one already) */
1983 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1984 skb = tcp_highest_sack(sk);
1988 skb = tcp_sacktag_skip(skb, sk, start_seq);
1991 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1992 start_seq, end_seq, dup_sack);
1998 /* Clear the head of the cache sack blocks so we can skip it next time */
1999 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2000 tp->recv_sack_cache[i].start_seq = 0;
2001 tp->recv_sack_cache[i].end_seq = 0;
2003 for (j = 0; j < used_sacks; j++)
2004 tp->recv_sack_cache[i++] = sp[j];
2006 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2007 tcp_check_sack_reordering(sk, state->reord, 0);
2009 tcp_verify_left_out(tp);
2012 #if FASTRETRANS_DEBUG > 0
2013 WARN_ON((int)tp->sacked_out < 0);
2014 WARN_ON((int)tp->lost_out < 0);
2015 WARN_ON((int)tp->retrans_out < 0);
2016 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2021 /* Limits sacked_out so that sum with lost_out isn't ever larger than
2022 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2024 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2028 holes = max(tp->lost_out, 1U);
2029 holes = min(holes, tp->packets_out);
2031 if ((tp->sacked_out + holes) > tp->packets_out) {
2032 tp->sacked_out = tp->packets_out - holes;
2038 /* If we receive more dupacks than we expected counting segments
2039 * in assumption of absent reordering, interpret this as reordering.
2040 * The only another reason could be bug in receiver TCP.
2042 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2044 struct tcp_sock *tp = tcp_sk(sk);
2046 if (!tcp_limit_reno_sacked(tp))
2049 tp->reordering = min_t(u32, tp->packets_out + addend,
2050 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2052 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2055 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2057 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2060 struct tcp_sock *tp = tcp_sk(sk);
2061 u32 prior_sacked = tp->sacked_out;
2064 tp->sacked_out += num_dupack;
2065 tcp_check_reno_reordering(sk, 0);
2066 delivered = tp->sacked_out - prior_sacked;
2068 tcp_count_delivered(tp, delivered, ece_ack);
2069 tcp_verify_left_out(tp);
2073 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2075 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2077 struct tcp_sock *tp = tcp_sk(sk);
2080 /* One ACK acked hole. The rest eat duplicate ACKs. */
2081 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2083 if (acked - 1 >= tp->sacked_out)
2086 tp->sacked_out -= acked - 1;
2088 tcp_check_reno_reordering(sk, acked);
2089 tcp_verify_left_out(tp);
2092 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2097 void tcp_clear_retrans(struct tcp_sock *tp)
2099 tp->retrans_out = 0;
2101 tp->undo_marker = 0;
2102 tp->undo_retrans = -1;
2106 static inline void tcp_init_undo(struct tcp_sock *tp)
2108 tp->undo_marker = tp->snd_una;
2109 /* Retransmission still in flight may cause DSACKs later. */
2110 tp->undo_retrans = tp->retrans_out ? : -1;
2113 static bool tcp_is_rack(const struct sock *sk)
2115 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2116 TCP_RACK_LOSS_DETECTION;
2119 /* If we detect SACK reneging, forget all SACK information
2120 * and reset tags completely, otherwise preserve SACKs. If receiver
2121 * dropped its ofo queue, we will know this due to reneging detection.
2123 static void tcp_timeout_mark_lost(struct sock *sk)
2125 struct tcp_sock *tp = tcp_sk(sk);
2126 struct sk_buff *skb, *head;
2127 bool is_reneg; /* is receiver reneging on SACKs? */
2129 head = tcp_rtx_queue_head(sk);
2130 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2132 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2134 /* Mark SACK reneging until we recover from this loss event. */
2135 tp->is_sack_reneg = 1;
2136 } else if (tcp_is_reno(tp)) {
2137 tcp_reset_reno_sack(tp);
2141 skb_rbtree_walk_from(skb) {
2143 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2144 else if (tcp_is_rack(sk) && skb != head &&
2145 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2146 continue; /* Don't mark recently sent ones lost yet */
2147 tcp_mark_skb_lost(sk, skb);
2149 tcp_verify_left_out(tp);
2150 tcp_clear_all_retrans_hints(tp);
2153 /* Enter Loss state. */
2154 void tcp_enter_loss(struct sock *sk)
2156 const struct inet_connection_sock *icsk = inet_csk(sk);
2157 struct tcp_sock *tp = tcp_sk(sk);
2158 struct net *net = sock_net(sk);
2159 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2162 tcp_timeout_mark_lost(sk);
2164 /* Reduce ssthresh if it has not yet been made inside this window. */
2165 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2166 !after(tp->high_seq, tp->snd_una) ||
2167 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2168 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2169 tp->prior_cwnd = tcp_snd_cwnd(tp);
2170 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2171 tcp_ca_event(sk, CA_EVENT_LOSS);
2174 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2175 tp->snd_cwnd_cnt = 0;
2176 tp->snd_cwnd_stamp = tcp_jiffies32;
2178 /* Timeout in disordered state after receiving substantial DUPACKs
2179 * suggests that the degree of reordering is over-estimated.
2181 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2182 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2183 tp->sacked_out >= reordering)
2184 tp->reordering = min_t(unsigned int, tp->reordering,
2187 tcp_set_ca_state(sk, TCP_CA_Loss);
2188 tp->high_seq = tp->snd_nxt;
2189 tcp_ecn_queue_cwr(tp);
2191 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2192 * loss recovery is underway except recurring timeout(s) on
2193 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2195 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2196 (new_recovery || icsk->icsk_retransmits) &&
2197 !inet_csk(sk)->icsk_mtup.probe_size;
2200 /* If ACK arrived pointing to a remembered SACK, it means that our
2201 * remembered SACKs do not reflect real state of receiver i.e.
2202 * receiver _host_ is heavily congested (or buggy).
2204 * To avoid big spurious retransmission bursts due to transient SACK
2205 * scoreboard oddities that look like reneging, we give the receiver a
2206 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2207 * restore sanity to the SACK scoreboard. If the apparent reneging
2208 * persists until this RTO then we'll clear the SACK scoreboard.
2210 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2212 if (flag & FLAG_SACK_RENEGING &&
2213 flag & FLAG_SND_UNA_ADVANCED) {
2214 struct tcp_sock *tp = tcp_sk(sk);
2215 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2216 msecs_to_jiffies(10));
2218 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2219 delay, TCP_RTO_MAX);
2225 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2226 * counter when SACK is enabled (without SACK, sacked_out is used for
2229 * With reordering, holes may still be in flight, so RFC3517 recovery
2230 * uses pure sacked_out (total number of SACKed segments) even though
2231 * it violates the RFC that uses duplicate ACKs, often these are equal
2232 * but when e.g. out-of-window ACKs or packet duplication occurs,
2233 * they differ. Since neither occurs due to loss, TCP should really
2236 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2238 return tp->sacked_out + 1;
2241 /* Linux NewReno/SACK/ECN state machine.
2242 * --------------------------------------
2244 * "Open" Normal state, no dubious events, fast path.
2245 * "Disorder" In all the respects it is "Open",
2246 * but requires a bit more attention. It is entered when
2247 * we see some SACKs or dupacks. It is split of "Open"
2248 * mainly to move some processing from fast path to slow one.
2249 * "CWR" CWND was reduced due to some Congestion Notification event.
2250 * It can be ECN, ICMP source quench, local device congestion.
2251 * "Recovery" CWND was reduced, we are fast-retransmitting.
2252 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2254 * tcp_fastretrans_alert() is entered:
2255 * - each incoming ACK, if state is not "Open"
2256 * - when arrived ACK is unusual, namely:
2261 * Counting packets in flight is pretty simple.
2263 * in_flight = packets_out - left_out + retrans_out
2265 * packets_out is SND.NXT-SND.UNA counted in packets.
2267 * retrans_out is number of retransmitted segments.
2269 * left_out is number of segments left network, but not ACKed yet.
2271 * left_out = sacked_out + lost_out
2273 * sacked_out: Packets, which arrived to receiver out of order
2274 * and hence not ACKed. With SACKs this number is simply
2275 * amount of SACKed data. Even without SACKs
2276 * it is easy to give pretty reliable estimate of this number,
2277 * counting duplicate ACKs.
2279 * lost_out: Packets lost by network. TCP has no explicit
2280 * "loss notification" feedback from network (for now).
2281 * It means that this number can be only _guessed_.
2282 * Actually, it is the heuristics to predict lossage that
2283 * distinguishes different algorithms.
2285 * F.e. after RTO, when all the queue is considered as lost,
2286 * lost_out = packets_out and in_flight = retrans_out.
2288 * Essentially, we have now a few algorithms detecting
2291 * If the receiver supports SACK:
2293 * RFC6675/3517: It is the conventional algorithm. A packet is
2294 * considered lost if the number of higher sequence packets
2295 * SACKed is greater than or equal the DUPACK thoreshold
2296 * (reordering). This is implemented in tcp_mark_head_lost and
2297 * tcp_update_scoreboard.
2299 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2300 * (2017-) that checks timing instead of counting DUPACKs.
2301 * Essentially a packet is considered lost if it's not S/ACKed
2302 * after RTT + reordering_window, where both metrics are
2303 * dynamically measured and adjusted. This is implemented in
2304 * tcp_rack_mark_lost.
2306 * If the receiver does not support SACK:
2308 * NewReno (RFC6582): in Recovery we assume that one segment
2309 * is lost (classic Reno). While we are in Recovery and
2310 * a partial ACK arrives, we assume that one more packet
2311 * is lost (NewReno). This heuristics are the same in NewReno
2314 * Really tricky (and requiring careful tuning) part of algorithm
2315 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2316 * The first determines the moment _when_ we should reduce CWND and,
2317 * hence, slow down forward transmission. In fact, it determines the moment
2318 * when we decide that hole is caused by loss, rather than by a reorder.
2320 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2321 * holes, caused by lost packets.
2323 * And the most logically complicated part of algorithm is undo
2324 * heuristics. We detect false retransmits due to both too early
2325 * fast retransmit (reordering) and underestimated RTO, analyzing
2326 * timestamps and D-SACKs. When we detect that some segments were
2327 * retransmitted by mistake and CWND reduction was wrong, we undo
2328 * window reduction and abort recovery phase. This logic is hidden
2329 * inside several functions named tcp_try_undo_<something>.
2332 /* This function decides, when we should leave Disordered state
2333 * and enter Recovery phase, reducing congestion window.
2335 * Main question: may we further continue forward transmission
2336 * with the same cwnd?
2338 static bool tcp_time_to_recover(struct sock *sk, int flag)
2340 struct tcp_sock *tp = tcp_sk(sk);
2342 /* Trick#1: The loss is proven. */
2346 /* Not-A-Trick#2 : Classic rule... */
2347 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2353 /* Detect loss in event "A" above by marking head of queue up as lost.
2354 * For RFC3517 SACK, a segment is considered lost if it
2355 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2356 * the maximum SACKed segments to pass before reaching this limit.
2358 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2360 struct tcp_sock *tp = tcp_sk(sk);
2361 struct sk_buff *skb;
2363 /* Use SACK to deduce losses of new sequences sent during recovery */
2364 const u32 loss_high = tp->snd_nxt;
2366 WARN_ON(packets > tp->packets_out);
2367 skb = tp->lost_skb_hint;
2369 /* Head already handled? */
2370 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2372 cnt = tp->lost_cnt_hint;
2374 skb = tcp_rtx_queue_head(sk);
2378 skb_rbtree_walk_from(skb) {
2379 /* TODO: do this better */
2380 /* this is not the most efficient way to do this... */
2381 tp->lost_skb_hint = skb;
2382 tp->lost_cnt_hint = cnt;
2384 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2387 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2388 cnt += tcp_skb_pcount(skb);
2393 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2394 tcp_mark_skb_lost(sk, skb);
2399 tcp_verify_left_out(tp);
2402 /* Account newly detected lost packet(s) */
2404 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2406 struct tcp_sock *tp = tcp_sk(sk);
2408 if (tcp_is_sack(tp)) {
2409 int sacked_upto = tp->sacked_out - tp->reordering;
2410 if (sacked_upto >= 0)
2411 tcp_mark_head_lost(sk, sacked_upto, 0);
2412 else if (fast_rexmit)
2413 tcp_mark_head_lost(sk, 1, 1);
2417 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2419 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2420 before(tp->rx_opt.rcv_tsecr, when);
2423 /* skb is spurious retransmitted if the returned timestamp echo
2424 * reply is prior to the skb transmission time
2426 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2427 const struct sk_buff *skb)
2429 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2430 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2433 /* Nothing was retransmitted or returned timestamp is less
2434 * than timestamp of the first retransmission.
2436 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2438 return tp->retrans_stamp &&
2439 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2442 /* Undo procedures. */
2444 /* We can clear retrans_stamp when there are no retransmissions in the
2445 * window. It would seem that it is trivially available for us in
2446 * tp->retrans_out, however, that kind of assumptions doesn't consider
2447 * what will happen if errors occur when sending retransmission for the
2448 * second time. ...It could the that such segment has only
2449 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2450 * the head skb is enough except for some reneging corner cases that
2451 * are not worth the effort.
2453 * Main reason for all this complexity is the fact that connection dying
2454 * time now depends on the validity of the retrans_stamp, in particular,
2455 * that successive retransmissions of a segment must not advance
2456 * retrans_stamp under any conditions.
2458 static bool tcp_any_retrans_done(const struct sock *sk)
2460 const struct tcp_sock *tp = tcp_sk(sk);
2461 struct sk_buff *skb;
2463 if (tp->retrans_out)
2466 skb = tcp_rtx_queue_head(sk);
2467 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2473 static void DBGUNDO(struct sock *sk, const char *msg)
2475 #if FASTRETRANS_DEBUG > 1
2476 struct tcp_sock *tp = tcp_sk(sk);
2477 struct inet_sock *inet = inet_sk(sk);
2479 if (sk->sk_family == AF_INET) {
2480 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2482 &inet->inet_daddr, ntohs(inet->inet_dport),
2483 tcp_snd_cwnd(tp), tcp_left_out(tp),
2484 tp->snd_ssthresh, tp->prior_ssthresh,
2487 #if IS_ENABLED(CONFIG_IPV6)
2488 else if (sk->sk_family == AF_INET6) {
2489 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2491 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2492 tcp_snd_cwnd(tp), tcp_left_out(tp),
2493 tp->snd_ssthresh, tp->prior_ssthresh,
2500 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2502 struct tcp_sock *tp = tcp_sk(sk);
2505 struct sk_buff *skb;
2507 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2508 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2511 tcp_clear_all_retrans_hints(tp);
2514 if (tp->prior_ssthresh) {
2515 const struct inet_connection_sock *icsk = inet_csk(sk);
2517 tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2519 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2520 tp->snd_ssthresh = tp->prior_ssthresh;
2521 tcp_ecn_withdraw_cwr(tp);
2524 tp->snd_cwnd_stamp = tcp_jiffies32;
2525 tp->undo_marker = 0;
2526 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2529 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2531 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2534 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2536 struct tcp_sock *tp = tcp_sk(sk);
2538 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2539 /* Hold old state until something *above* high_seq
2540 * is ACKed. For Reno it is MUST to prevent false
2541 * fast retransmits (RFC2582). SACK TCP is safe. */
2542 if (!tcp_any_retrans_done(sk))
2543 tp->retrans_stamp = 0;
2549 /* People celebrate: "We love our President!" */
2550 static bool tcp_try_undo_recovery(struct sock *sk)
2552 struct tcp_sock *tp = tcp_sk(sk);
2554 if (tcp_may_undo(tp)) {
2557 /* Happy end! We did not retransmit anything
2558 * or our original transmission succeeded.
2560 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2561 tcp_undo_cwnd_reduction(sk, false);
2562 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2563 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2565 mib_idx = LINUX_MIB_TCPFULLUNDO;
2567 NET_INC_STATS(sock_net(sk), mib_idx);
2568 } else if (tp->rack.reo_wnd_persist) {
2569 tp->rack.reo_wnd_persist--;
2571 if (tcp_is_non_sack_preventing_reopen(sk))
2573 tcp_set_ca_state(sk, TCP_CA_Open);
2574 tp->is_sack_reneg = 0;
2578 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2579 static bool tcp_try_undo_dsack(struct sock *sk)
2581 struct tcp_sock *tp = tcp_sk(sk);
2583 if (tp->undo_marker && !tp->undo_retrans) {
2584 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2585 tp->rack.reo_wnd_persist + 1);
2586 DBGUNDO(sk, "D-SACK");
2587 tcp_undo_cwnd_reduction(sk, false);
2588 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2594 /* Undo during loss recovery after partial ACK or using F-RTO. */
2595 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2597 struct tcp_sock *tp = tcp_sk(sk);
2599 if (frto_undo || tcp_may_undo(tp)) {
2600 tcp_undo_cwnd_reduction(sk, true);
2602 DBGUNDO(sk, "partial loss");
2603 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2605 NET_INC_STATS(sock_net(sk),
2606 LINUX_MIB_TCPSPURIOUSRTOS);
2607 inet_csk(sk)->icsk_retransmits = 0;
2608 if (tcp_is_non_sack_preventing_reopen(sk))
2610 if (frto_undo || tcp_is_sack(tp)) {
2611 tcp_set_ca_state(sk, TCP_CA_Open);
2612 tp->is_sack_reneg = 0;
2619 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2620 * It computes the number of packets to send (sndcnt) based on packets newly
2622 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2623 * cwnd reductions across a full RTT.
2624 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2625 * But when SND_UNA is acked without further losses,
2626 * slow starts cwnd up to ssthresh to speed up the recovery.
2628 static void tcp_init_cwnd_reduction(struct sock *sk)
2630 struct tcp_sock *tp = tcp_sk(sk);
2632 tp->high_seq = tp->snd_nxt;
2633 tp->tlp_high_seq = 0;
2634 tp->snd_cwnd_cnt = 0;
2635 tp->prior_cwnd = tcp_snd_cwnd(tp);
2636 tp->prr_delivered = 0;
2638 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2639 tcp_ecn_queue_cwr(tp);
2642 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2644 struct tcp_sock *tp = tcp_sk(sk);
2646 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2648 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2651 tp->prr_delivered += newly_acked_sacked;
2653 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2655 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2657 sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2658 newly_acked_sacked);
2659 if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2661 sndcnt = min(delta, sndcnt);
2663 /* Force a fast retransmit upon entering fast recovery */
2664 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2665 tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2668 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2670 struct tcp_sock *tp = tcp_sk(sk);
2672 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2675 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2676 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2677 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2678 tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2679 tp->snd_cwnd_stamp = tcp_jiffies32;
2681 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2684 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2685 void tcp_enter_cwr(struct sock *sk)
2687 struct tcp_sock *tp = tcp_sk(sk);
2689 tp->prior_ssthresh = 0;
2690 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2691 tp->undo_marker = 0;
2692 tcp_init_cwnd_reduction(sk);
2693 tcp_set_ca_state(sk, TCP_CA_CWR);
2696 EXPORT_SYMBOL(tcp_enter_cwr);
2698 static void tcp_try_keep_open(struct sock *sk)
2700 struct tcp_sock *tp = tcp_sk(sk);
2701 int state = TCP_CA_Open;
2703 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2704 state = TCP_CA_Disorder;
2706 if (inet_csk(sk)->icsk_ca_state != state) {
2707 tcp_set_ca_state(sk, state);
2708 tp->high_seq = tp->snd_nxt;
2712 static void tcp_try_to_open(struct sock *sk, int flag)
2714 struct tcp_sock *tp = tcp_sk(sk);
2716 tcp_verify_left_out(tp);
2718 if (!tcp_any_retrans_done(sk))
2719 tp->retrans_stamp = 0;
2721 if (flag & FLAG_ECE)
2724 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2725 tcp_try_keep_open(sk);
2729 static void tcp_mtup_probe_failed(struct sock *sk)
2731 struct inet_connection_sock *icsk = inet_csk(sk);
2733 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2734 icsk->icsk_mtup.probe_size = 0;
2735 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2738 static void tcp_mtup_probe_success(struct sock *sk)
2740 struct tcp_sock *tp = tcp_sk(sk);
2741 struct inet_connection_sock *icsk = inet_csk(sk);
2744 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2746 val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2747 do_div(val, icsk->icsk_mtup.probe_size);
2748 DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2749 tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2751 tp->snd_cwnd_cnt = 0;
2752 tp->snd_cwnd_stamp = tcp_jiffies32;
2753 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2755 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2756 icsk->icsk_mtup.probe_size = 0;
2757 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2758 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2761 /* Do a simple retransmit without using the backoff mechanisms in
2762 * tcp_timer. This is used for path mtu discovery.
2763 * The socket is already locked here.
2765 void tcp_simple_retransmit(struct sock *sk)
2767 const struct inet_connection_sock *icsk = inet_csk(sk);
2768 struct tcp_sock *tp = tcp_sk(sk);
2769 struct sk_buff *skb;
2772 /* A fastopen SYN request is stored as two separate packets within
2773 * the retransmit queue, this is done by tcp_send_syn_data().
2774 * As a result simply checking the MSS of the frames in the queue
2775 * will not work for the SYN packet.
2777 * Us being here is an indication of a path MTU issue so we can
2778 * assume that the fastopen SYN was lost and just mark all the
2779 * frames in the retransmit queue as lost. We will use an MSS of
2780 * -1 to mark all frames as lost, otherwise compute the current MSS.
2782 if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2785 mss = tcp_current_mss(sk);
2787 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2788 if (tcp_skb_seglen(skb) > mss)
2789 tcp_mark_skb_lost(sk, skb);
2792 tcp_clear_retrans_hints_partial(tp);
2797 if (tcp_is_reno(tp))
2798 tcp_limit_reno_sacked(tp);
2800 tcp_verify_left_out(tp);
2802 /* Don't muck with the congestion window here.
2803 * Reason is that we do not increase amount of _data_
2804 * in network, but units changed and effective
2805 * cwnd/ssthresh really reduced now.
2807 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2808 tp->high_seq = tp->snd_nxt;
2809 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2810 tp->prior_ssthresh = 0;
2811 tp->undo_marker = 0;
2812 tcp_set_ca_state(sk, TCP_CA_Loss);
2814 tcp_xmit_retransmit_queue(sk);
2816 EXPORT_SYMBOL(tcp_simple_retransmit);
2818 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2820 struct tcp_sock *tp = tcp_sk(sk);
2823 if (tcp_is_reno(tp))
2824 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2826 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2828 NET_INC_STATS(sock_net(sk), mib_idx);
2830 tp->prior_ssthresh = 0;
2833 if (!tcp_in_cwnd_reduction(sk)) {
2835 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2836 tcp_init_cwnd_reduction(sk);
2838 tcp_set_ca_state(sk, TCP_CA_Recovery);
2841 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2842 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2844 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2847 struct tcp_sock *tp = tcp_sk(sk);
2848 bool recovered = !before(tp->snd_una, tp->high_seq);
2850 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2851 tcp_try_undo_loss(sk, false))
2854 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2855 /* Step 3.b. A timeout is spurious if not all data are
2856 * lost, i.e., never-retransmitted data are (s)acked.
2858 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2859 tcp_try_undo_loss(sk, true))
2862 if (after(tp->snd_nxt, tp->high_seq)) {
2863 if (flag & FLAG_DATA_SACKED || num_dupack)
2864 tp->frto = 0; /* Step 3.a. loss was real */
2865 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2866 tp->high_seq = tp->snd_nxt;
2867 /* Step 2.b. Try send new data (but deferred until cwnd
2868 * is updated in tcp_ack()). Otherwise fall back to
2869 * the conventional recovery.
2871 if (!tcp_write_queue_empty(sk) &&
2872 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2873 *rexmit = REXMIT_NEW;
2881 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2882 tcp_try_undo_recovery(sk);
2885 if (tcp_is_reno(tp)) {
2886 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2887 * delivered. Lower inflight to clock out (re)transmissions.
2889 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2890 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2891 else if (flag & FLAG_SND_UNA_ADVANCED)
2892 tcp_reset_reno_sack(tp);
2894 *rexmit = REXMIT_LOST;
2897 static bool tcp_force_fast_retransmit(struct sock *sk)
2899 struct tcp_sock *tp = tcp_sk(sk);
2901 return after(tcp_highest_sack_seq(tp),
2902 tp->snd_una + tp->reordering * tp->mss_cache);
2905 /* Undo during fast recovery after partial ACK. */
2906 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2909 struct tcp_sock *tp = tcp_sk(sk);
2911 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2912 /* Plain luck! Hole if filled with delayed
2913 * packet, rather than with a retransmit. Check reordering.
2915 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2917 /* We are getting evidence that the reordering degree is higher
2918 * than we realized. If there are no retransmits out then we
2919 * can undo. Otherwise we clock out new packets but do not
2920 * mark more packets lost or retransmit more.
2922 if (tp->retrans_out)
2925 if (!tcp_any_retrans_done(sk))
2926 tp->retrans_stamp = 0;
2928 DBGUNDO(sk, "partial recovery");
2929 tcp_undo_cwnd_reduction(sk, true);
2930 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2931 tcp_try_keep_open(sk);
2933 /* Partial ACK arrived. Force fast retransmit. */
2934 *do_lost = tcp_force_fast_retransmit(sk);
2939 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2941 struct tcp_sock *tp = tcp_sk(sk);
2943 if (tcp_rtx_queue_empty(sk))
2946 if (unlikely(tcp_is_reno(tp))) {
2947 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2948 } else if (tcp_is_rack(sk)) {
2949 u32 prior_retrans = tp->retrans_out;
2951 if (tcp_rack_mark_lost(sk))
2952 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2953 if (prior_retrans > tp->retrans_out)
2954 *ack_flag |= FLAG_LOST_RETRANS;
2958 /* Process an event, which can update packets-in-flight not trivially.
2959 * Main goal of this function is to calculate new estimate for left_out,
2960 * taking into account both packets sitting in receiver's buffer and
2961 * packets lost by network.
2963 * Besides that it updates the congestion state when packet loss or ECN
2964 * is detected. But it does not reduce the cwnd, it is done by the
2965 * congestion control later.
2967 * It does _not_ decide what to send, it is made in function
2968 * tcp_xmit_retransmit_queue().
2970 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2971 int num_dupack, int *ack_flag, int *rexmit)
2973 struct inet_connection_sock *icsk = inet_csk(sk);
2974 struct tcp_sock *tp = tcp_sk(sk);
2975 int fast_rexmit = 0, flag = *ack_flag;
2976 bool ece_ack = flag & FLAG_ECE;
2977 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2978 tcp_force_fast_retransmit(sk));
2980 if (!tp->packets_out && tp->sacked_out)
2983 /* Now state machine starts.
2984 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2986 tp->prior_ssthresh = 0;
2988 /* B. In all the states check for reneging SACKs. */
2989 if (tcp_check_sack_reneging(sk, flag))
2992 /* C. Check consistency of the current state. */
2993 tcp_verify_left_out(tp);
2995 /* D. Check state exit conditions. State can be terminated
2996 * when high_seq is ACKed. */
2997 if (icsk->icsk_ca_state == TCP_CA_Open) {
2998 WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
2999 tp->retrans_stamp = 0;
3000 } else if (!before(tp->snd_una, tp->high_seq)) {
3001 switch (icsk->icsk_ca_state) {
3003 /* CWR is to be held something *above* high_seq
3004 * is ACKed for CWR bit to reach receiver. */
3005 if (tp->snd_una != tp->high_seq) {
3006 tcp_end_cwnd_reduction(sk);
3007 tcp_set_ca_state(sk, TCP_CA_Open);
3011 case TCP_CA_Recovery:
3012 if (tcp_is_reno(tp))
3013 tcp_reset_reno_sack(tp);
3014 if (tcp_try_undo_recovery(sk))
3016 tcp_end_cwnd_reduction(sk);
3021 /* E. Process state. */
3022 switch (icsk->icsk_ca_state) {
3023 case TCP_CA_Recovery:
3024 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3025 if (tcp_is_reno(tp))
3026 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3027 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3030 if (tcp_try_undo_dsack(sk))
3031 tcp_try_keep_open(sk);
3033 tcp_identify_packet_loss(sk, ack_flag);
3034 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3035 if (!tcp_time_to_recover(sk, flag))
3037 /* Undo reverts the recovery state. If loss is evident,
3038 * starts a new recovery (e.g. reordering then loss);
3040 tcp_enter_recovery(sk, ece_ack);
3044 tcp_process_loss(sk, flag, num_dupack, rexmit);
3045 tcp_identify_packet_loss(sk, ack_flag);
3046 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3047 (*ack_flag & FLAG_LOST_RETRANS)))
3049 /* Change state if cwnd is undone or retransmits are lost */
3052 if (tcp_is_reno(tp)) {
3053 if (flag & FLAG_SND_UNA_ADVANCED)
3054 tcp_reset_reno_sack(tp);
3055 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3058 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3059 tcp_try_undo_dsack(sk);
3061 tcp_identify_packet_loss(sk, ack_flag);
3062 if (!tcp_time_to_recover(sk, flag)) {
3063 tcp_try_to_open(sk, flag);
3067 /* MTU probe failure: don't reduce cwnd */
3068 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3069 icsk->icsk_mtup.probe_size &&
3070 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3071 tcp_mtup_probe_failed(sk);
3072 /* Restores the reduction we did in tcp_mtup_probe() */
3073 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3074 tcp_simple_retransmit(sk);
3078 /* Otherwise enter Recovery state */
3079 tcp_enter_recovery(sk, ece_ack);
3083 if (!tcp_is_rack(sk) && do_lost)
3084 tcp_update_scoreboard(sk, fast_rexmit);
3085 *rexmit = REXMIT_LOST;
3088 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3090 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3091 struct tcp_sock *tp = tcp_sk(sk);
3093 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3094 /* If the remote keeps returning delayed ACKs, eventually
3095 * the min filter would pick it up and overestimate the
3096 * prop. delay when it expires. Skip suspected delayed ACKs.
3100 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3101 rtt_us ? : jiffies_to_usecs(1));
3104 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3105 long seq_rtt_us, long sack_rtt_us,
3106 long ca_rtt_us, struct rate_sample *rs)
3108 const struct tcp_sock *tp = tcp_sk(sk);
3110 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3111 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3112 * Karn's algorithm forbids taking RTT if some retransmitted data
3113 * is acked (RFC6298).
3116 seq_rtt_us = sack_rtt_us;
3118 /* RTTM Rule: A TSecr value received in a segment is used to
3119 * update the averaged RTT measurement only if the segment
3120 * acknowledges some new data, i.e., only if it advances the
3121 * left edge of the send window.
3122 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3124 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3125 flag & FLAG_ACKED) {
3126 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3128 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3131 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3132 ca_rtt_us = seq_rtt_us;
3135 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3139 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3140 * always taken together with ACK, SACK, or TS-opts. Any negative
3141 * values will be skipped with the seq_rtt_us < 0 check above.
3143 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3144 tcp_rtt_estimator(sk, seq_rtt_us);
3147 /* RFC6298: only reset backoff on valid RTT measurement. */
3148 inet_csk(sk)->icsk_backoff = 0;
3152 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3153 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3155 struct rate_sample rs;
3158 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3159 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3161 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3165 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3167 const struct inet_connection_sock *icsk = inet_csk(sk);
3169 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3170 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3173 /* Restart timer after forward progress on connection.
3174 * RFC2988 recommends to restart timer to now+rto.
3176 void tcp_rearm_rto(struct sock *sk)
3178 const struct inet_connection_sock *icsk = inet_csk(sk);
3179 struct tcp_sock *tp = tcp_sk(sk);
3181 /* If the retrans timer is currently being used by Fast Open
3182 * for SYN-ACK retrans purpose, stay put.
3184 if (rcu_access_pointer(tp->fastopen_rsk))
3187 if (!tp->packets_out) {
3188 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3190 u32 rto = inet_csk(sk)->icsk_rto;
3191 /* Offset the time elapsed after installing regular RTO */
3192 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3193 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3194 s64 delta_us = tcp_rto_delta_us(sk);
3195 /* delta_us may not be positive if the socket is locked
3196 * when the retrans timer fires and is rescheduled.
3198 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3200 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3205 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3206 static void tcp_set_xmit_timer(struct sock *sk)
3208 if (!tcp_schedule_loss_probe(sk, true))
3212 /* If we get here, the whole TSO packet has not been acked. */
3213 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3215 struct tcp_sock *tp = tcp_sk(sk);
3218 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3220 packets_acked = tcp_skb_pcount(skb);
3221 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3223 packets_acked -= tcp_skb_pcount(skb);
3225 if (packets_acked) {
3226 BUG_ON(tcp_skb_pcount(skb) == 0);
3227 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3230 return packets_acked;
3233 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3234 const struct sk_buff *ack_skb, u32 prior_snd_una)
3236 const struct skb_shared_info *shinfo;
3238 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3239 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3242 shinfo = skb_shinfo(skb);
3243 if (!before(shinfo->tskey, prior_snd_una) &&
3244 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3245 tcp_skb_tsorted_save(skb) {
3246 __skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3247 } tcp_skb_tsorted_restore(skb);
3251 /* Remove acknowledged frames from the retransmission queue. If our packet
3252 * is before the ack sequence we can discard it as it's confirmed to have
3253 * arrived at the other end.
3255 static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3256 u32 prior_fack, u32 prior_snd_una,
3257 struct tcp_sacktag_state *sack, bool ece_ack)
3259 const struct inet_connection_sock *icsk = inet_csk(sk);
3260 u64 first_ackt, last_ackt;
3261 struct tcp_sock *tp = tcp_sk(sk);
3262 u32 prior_sacked = tp->sacked_out;
3263 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3264 struct sk_buff *skb, *next;
3265 bool fully_acked = true;
3266 long sack_rtt_us = -1L;
3267 long seq_rtt_us = -1L;
3268 long ca_rtt_us = -1L;
3275 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3276 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3277 const u32 start_seq = scb->seq;
3278 u8 sacked = scb->sacked;
3281 /* Determine how many packets and what bytes were acked, tso and else */
3282 if (after(scb->end_seq, tp->snd_una)) {
3283 if (tcp_skb_pcount(skb) == 1 ||
3284 !after(tp->snd_una, scb->seq))
3287 acked_pcount = tcp_tso_acked(sk, skb);
3290 fully_acked = false;
3292 acked_pcount = tcp_skb_pcount(skb);
3295 if (unlikely(sacked & TCPCB_RETRANS)) {
3296 if (sacked & TCPCB_SACKED_RETRANS)
3297 tp->retrans_out -= acked_pcount;
3298 flag |= FLAG_RETRANS_DATA_ACKED;
3299 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3300 last_ackt = tcp_skb_timestamp_us(skb);
3301 WARN_ON_ONCE(last_ackt == 0);
3303 first_ackt = last_ackt;
3305 if (before(start_seq, reord))
3307 if (!after(scb->end_seq, tp->high_seq))
3308 flag |= FLAG_ORIG_SACK_ACKED;
3311 if (sacked & TCPCB_SACKED_ACKED) {
3312 tp->sacked_out -= acked_pcount;
3313 } else if (tcp_is_sack(tp)) {
3314 tcp_count_delivered(tp, acked_pcount, ece_ack);
3315 if (!tcp_skb_spurious_retrans(tp, skb))
3316 tcp_rack_advance(tp, sacked, scb->end_seq,
3317 tcp_skb_timestamp_us(skb));
3319 if (sacked & TCPCB_LOST)
3320 tp->lost_out -= acked_pcount;
3322 tp->packets_out -= acked_pcount;
3323 pkts_acked += acked_pcount;
3324 tcp_rate_skb_delivered(sk, skb, sack->rate);
3326 /* Initial outgoing SYN's get put onto the write_queue
3327 * just like anything else we transmit. It is not
3328 * true data, and if we misinform our callers that
3329 * this ACK acks real data, we will erroneously exit
3330 * connection startup slow start one packet too
3331 * quickly. This is severely frowned upon behavior.
3333 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3334 flag |= FLAG_DATA_ACKED;
3336 flag |= FLAG_SYN_ACKED;
3337 tp->retrans_stamp = 0;
3343 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3345 next = skb_rb_next(skb);
3346 if (unlikely(skb == tp->retransmit_skb_hint))
3347 tp->retransmit_skb_hint = NULL;
3348 if (unlikely(skb == tp->lost_skb_hint))
3349 tp->lost_skb_hint = NULL;
3350 tcp_highest_sack_replace(sk, skb, next);
3351 tcp_rtx_queue_unlink_and_free(skb, sk);
3355 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3357 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3358 tp->snd_up = tp->snd_una;
3361 tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3362 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3363 flag |= FLAG_SACK_RENEGING;
3366 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3367 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3368 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3370 if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3371 (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3372 sack->rate->prior_delivered + 1 == tp->delivered &&
3373 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3374 /* Conservatively mark a delayed ACK. It's typically
3375 * from a lone runt packet over the round trip to
3376 * a receiver w/o out-of-order or CE events.
3378 flag |= FLAG_ACK_MAYBE_DELAYED;
3381 if (sack->first_sackt) {
3382 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3383 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3385 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3386 ca_rtt_us, sack->rate);
3388 if (flag & FLAG_ACKED) {
3389 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3390 if (unlikely(icsk->icsk_mtup.probe_size &&
3391 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3392 tcp_mtup_probe_success(sk);
3395 if (tcp_is_reno(tp)) {
3396 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3398 /* If any of the cumulatively ACKed segments was
3399 * retransmitted, non-SACK case cannot confirm that
3400 * progress was due to original transmission due to
3401 * lack of TCPCB_SACKED_ACKED bits even if some of
3402 * the packets may have been never retransmitted.
3404 if (flag & FLAG_RETRANS_DATA_ACKED)
3405 flag &= ~FLAG_ORIG_SACK_ACKED;
3409 /* Non-retransmitted hole got filled? That's reordering */
3410 if (before(reord, prior_fack))
3411 tcp_check_sack_reordering(sk, reord, 0);
3413 delta = prior_sacked - tp->sacked_out;
3414 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3416 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3417 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3418 tcp_skb_timestamp_us(skb))) {
3419 /* Do not re-arm RTO if the sack RTT is measured from data sent
3420 * after when the head was last (re)transmitted. Otherwise the
3421 * timeout may continue to extend in loss recovery.
3423 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3426 if (icsk->icsk_ca_ops->pkts_acked) {
3427 struct ack_sample sample = { .pkts_acked = pkts_acked,
3428 .rtt_us = sack->rate->rtt_us };
3430 sample.in_flight = tp->mss_cache *
3431 (tp->delivered - sack->rate->prior_delivered);
3432 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3435 #if FASTRETRANS_DEBUG > 0
3436 WARN_ON((int)tp->sacked_out < 0);
3437 WARN_ON((int)tp->lost_out < 0);
3438 WARN_ON((int)tp->retrans_out < 0);
3439 if (!tp->packets_out && tcp_is_sack(tp)) {
3440 icsk = inet_csk(sk);
3442 pr_debug("Leak l=%u %d\n",
3443 tp->lost_out, icsk->icsk_ca_state);
3446 if (tp->sacked_out) {
3447 pr_debug("Leak s=%u %d\n",
3448 tp->sacked_out, icsk->icsk_ca_state);
3451 if (tp->retrans_out) {
3452 pr_debug("Leak r=%u %d\n",
3453 tp->retrans_out, icsk->icsk_ca_state);
3454 tp->retrans_out = 0;
3461 static void tcp_ack_probe(struct sock *sk)
3463 struct inet_connection_sock *icsk = inet_csk(sk);
3464 struct sk_buff *head = tcp_send_head(sk);
3465 const struct tcp_sock *tp = tcp_sk(sk);
3467 /* Was it a usable window open? */
3470 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3471 icsk->icsk_backoff = 0;
3472 icsk->icsk_probes_tstamp = 0;
3473 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3474 /* Socket must be waked up by subsequent tcp_data_snd_check().
3475 * This function is not for random using!
3478 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3480 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3481 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3485 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3487 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3488 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3491 /* Decide wheather to run the increase function of congestion control. */
3492 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3494 /* If reordering is high then always grow cwnd whenever data is
3495 * delivered regardless of its ordering. Otherwise stay conservative
3496 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3497 * new SACK or ECE mark may first advance cwnd here and later reduce
3498 * cwnd in tcp_fastretrans_alert() based on more states.
3500 if (tcp_sk(sk)->reordering >
3501 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3502 return flag & FLAG_FORWARD_PROGRESS;
3504 return flag & FLAG_DATA_ACKED;
3507 /* The "ultimate" congestion control function that aims to replace the rigid
3508 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3509 * It's called toward the end of processing an ACK with precise rate
3510 * information. All transmission or retransmission are delayed afterwards.
3512 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3513 int flag, const struct rate_sample *rs)
3515 const struct inet_connection_sock *icsk = inet_csk(sk);
3517 if (icsk->icsk_ca_ops->cong_control) {
3518 icsk->icsk_ca_ops->cong_control(sk, rs);
3522 if (tcp_in_cwnd_reduction(sk)) {
3523 /* Reduce cwnd if state mandates */
3524 tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3525 } else if (tcp_may_raise_cwnd(sk, flag)) {
3526 /* Advance cwnd if state allows */
3527 tcp_cong_avoid(sk, ack, acked_sacked);
3529 tcp_update_pacing_rate(sk);
3532 /* Check that window update is acceptable.
3533 * The function assumes that snd_una<=ack<=snd_next.
3535 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3536 const u32 ack, const u32 ack_seq,
3539 return after(ack, tp->snd_una) ||
3540 after(ack_seq, tp->snd_wl1) ||
3541 (ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3544 /* If we update tp->snd_una, also update tp->bytes_acked */
3545 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3547 u32 delta = ack - tp->snd_una;
3549 sock_owned_by_me((struct sock *)tp);
3550 tp->bytes_acked += delta;
3554 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3555 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3557 u32 delta = seq - tp->rcv_nxt;
3559 sock_owned_by_me((struct sock *)tp);
3560 tp->bytes_received += delta;
3561 WRITE_ONCE(tp->rcv_nxt, seq);
3564 /* Update our send window.
3566 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3567 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3569 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3572 struct tcp_sock *tp = tcp_sk(sk);
3574 u32 nwin = ntohs(tcp_hdr(skb)->window);
3576 if (likely(!tcp_hdr(skb)->syn))
3577 nwin <<= tp->rx_opt.snd_wscale;
3579 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3580 flag |= FLAG_WIN_UPDATE;
3581 tcp_update_wl(tp, ack_seq);
3583 if (tp->snd_wnd != nwin) {
3586 /* Note, it is the only place, where
3587 * fast path is recovered for sending TCP.
3590 tcp_fast_path_check(sk);
3592 if (!tcp_write_queue_empty(sk))
3593 tcp_slow_start_after_idle_check(sk);
3595 if (nwin > tp->max_window) {
3596 tp->max_window = nwin;
3597 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3602 tcp_snd_una_update(tp, ack);
3607 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3608 u32 *last_oow_ack_time)
3610 /* Paired with the WRITE_ONCE() in this function. */
3611 u32 val = READ_ONCE(*last_oow_ack_time);
3614 s32 elapsed = (s32)(tcp_jiffies32 - val);
3617 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3618 NET_INC_STATS(net, mib_idx);
3619 return true; /* rate-limited: don't send yet! */
3623 /* Paired with the prior READ_ONCE() and with itself,
3624 * as we might be lockless.
3626 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3628 return false; /* not rate-limited: go ahead, send dupack now! */
3631 /* Return true if we're currently rate-limiting out-of-window ACKs and
3632 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3633 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3634 * attacks that send repeated SYNs or ACKs for the same connection. To
3635 * do this, we do not send a duplicate SYNACK or ACK if the remote
3636 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3638 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3639 int mib_idx, u32 *last_oow_ack_time)
3641 /* Data packets without SYNs are not likely part of an ACK loop. */
3642 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3646 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3649 /* RFC 5961 7 [ACK Throttling] */
3650 static void tcp_send_challenge_ack(struct sock *sk)
3652 struct tcp_sock *tp = tcp_sk(sk);
3653 struct net *net = sock_net(sk);
3654 u32 count, now, ack_limit;
3656 /* First check our per-socket dupack rate limit. */
3657 if (__tcp_oow_rate_limited(net,
3658 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3659 &tp->last_oow_ack_time))
3662 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3663 if (ack_limit == INT_MAX)
3666 /* Then check host-wide RFC 5961 rate limit. */
3668 if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3669 u32 half = (ack_limit + 1) >> 1;
3671 WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3672 WRITE_ONCE(net->ipv4.tcp_challenge_count,
3673 get_random_u32_inclusive(half, ack_limit + half - 1));
3675 count = READ_ONCE(net->ipv4.tcp_challenge_count);
3677 WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3679 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3684 static void tcp_store_ts_recent(struct tcp_sock *tp)
3686 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3687 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3690 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3692 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3693 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3694 * extra check below makes sure this can only happen
3695 * for pure ACK frames. -DaveM
3697 * Not only, also it occurs for expired timestamps.
3700 if (tcp_paws_check(&tp->rx_opt, 0))
3701 tcp_store_ts_recent(tp);
3705 /* This routine deals with acks during a TLP episode and ends an episode by
3706 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3708 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3710 struct tcp_sock *tp = tcp_sk(sk);
3712 if (before(ack, tp->tlp_high_seq))
3715 if (!tp->tlp_retrans) {
3716 /* TLP of new data has been acknowledged */
3717 tp->tlp_high_seq = 0;
3718 } else if (flag & FLAG_DSACK_TLP) {
3719 /* This DSACK means original and TLP probe arrived; no loss */
3720 tp->tlp_high_seq = 0;
3721 } else if (after(ack, tp->tlp_high_seq)) {
3722 /* ACK advances: there was a loss, so reduce cwnd. Reset
3723 * tlp_high_seq in tcp_init_cwnd_reduction()
3725 tcp_init_cwnd_reduction(sk);
3726 tcp_set_ca_state(sk, TCP_CA_CWR);
3727 tcp_end_cwnd_reduction(sk);
3728 tcp_try_keep_open(sk);
3729 NET_INC_STATS(sock_net(sk),
3730 LINUX_MIB_TCPLOSSPROBERECOVERY);
3731 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3732 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3733 /* Pure dupack: original and TLP probe arrived; no loss */
3734 tp->tlp_high_seq = 0;
3738 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3740 const struct inet_connection_sock *icsk = inet_csk(sk);
3742 if (icsk->icsk_ca_ops->in_ack_event)
3743 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3746 /* Congestion control has updated the cwnd already. So if we're in
3747 * loss recovery then now we do any new sends (for FRTO) or
3748 * retransmits (for CA_Loss or CA_recovery) that make sense.
3750 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3752 struct tcp_sock *tp = tcp_sk(sk);
3754 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3757 if (unlikely(rexmit == REXMIT_NEW)) {
3758 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3760 if (after(tp->snd_nxt, tp->high_seq))
3764 tcp_xmit_retransmit_queue(sk);
3767 /* Returns the number of packets newly acked or sacked by the current ACK */
3768 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3770 const struct net *net = sock_net(sk);
3771 struct tcp_sock *tp = tcp_sk(sk);
3774 delivered = tp->delivered - prior_delivered;
3775 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3776 if (flag & FLAG_ECE)
3777 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3782 /* This routine deals with incoming acks, but not outgoing ones. */
3783 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3785 struct inet_connection_sock *icsk = inet_csk(sk);
3786 struct tcp_sock *tp = tcp_sk(sk);
3787 struct tcp_sacktag_state sack_state;
3788 struct rate_sample rs = { .prior_delivered = 0 };
3789 u32 prior_snd_una = tp->snd_una;
3790 bool is_sack_reneg = tp->is_sack_reneg;
3791 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3792 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3794 int prior_packets = tp->packets_out;
3795 u32 delivered = tp->delivered;
3796 u32 lost = tp->lost;
3797 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3800 sack_state.first_sackt = 0;
3801 sack_state.rate = &rs;
3802 sack_state.sack_delivered = 0;
3804 /* We very likely will need to access rtx queue. */
3805 prefetch(sk->tcp_rtx_queue.rb_node);
3807 /* If the ack is older than previous acks
3808 * then we can probably ignore it.
3810 if (before(ack, prior_snd_una)) {
3811 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3812 if (before(ack, prior_snd_una - tp->max_window)) {
3813 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3814 tcp_send_challenge_ack(sk);
3815 return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3820 /* If the ack includes data we haven't sent yet, discard
3821 * this segment (RFC793 Section 3.9).
3823 if (after(ack, tp->snd_nxt))
3824 return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3826 if (after(ack, prior_snd_una)) {
3827 flag |= FLAG_SND_UNA_ADVANCED;
3828 icsk->icsk_retransmits = 0;
3830 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3831 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3832 if (icsk->icsk_clean_acked)
3833 icsk->icsk_clean_acked(sk, ack);
3837 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3838 rs.prior_in_flight = tcp_packets_in_flight(tp);
3840 /* ts_recent update must be made after we are sure that the packet
3843 if (flag & FLAG_UPDATE_TS_RECENT)
3844 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3846 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3847 FLAG_SND_UNA_ADVANCED) {
3848 /* Window is constant, pure forward advance.
3849 * No more checks are required.
3850 * Note, we use the fact that SND.UNA>=SND.WL2.
3852 tcp_update_wl(tp, ack_seq);
3853 tcp_snd_una_update(tp, ack);
3854 flag |= FLAG_WIN_UPDATE;
3856 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3858 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3860 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3862 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3865 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3867 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3869 if (TCP_SKB_CB(skb)->sacked)
3870 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3873 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3875 ack_ev_flags |= CA_ACK_ECE;
3878 if (sack_state.sack_delivered)
3879 tcp_count_delivered(tp, sack_state.sack_delivered,
3882 if (flag & FLAG_WIN_UPDATE)
3883 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3885 tcp_in_ack_event(sk, ack_ev_flags);
3888 /* This is a deviation from RFC3168 since it states that:
3889 * "When the TCP data sender is ready to set the CWR bit after reducing
3890 * the congestion window, it SHOULD set the CWR bit only on the first
3891 * new data packet that it transmits."
3892 * We accept CWR on pure ACKs to be more robust
3893 * with widely-deployed TCP implementations that do this.
3895 tcp_ecn_accept_cwr(sk, skb);
3897 /* We passed data and got it acked, remove any soft error
3898 * log. Something worked...
3900 WRITE_ONCE(sk->sk_err_soft, 0);
3901 icsk->icsk_probes_out = 0;
3902 tp->rcv_tstamp = tcp_jiffies32;
3906 /* See if we can take anything off of the retransmit queue. */
3907 flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3908 &sack_state, flag & FLAG_ECE);
3910 tcp_rack_update_reo_wnd(sk, &rs);
3912 if (tp->tlp_high_seq)
3913 tcp_process_tlp_ack(sk, ack, flag);
3915 if (tcp_ack_is_dubious(sk, flag)) {
3916 if (!(flag & (FLAG_SND_UNA_ADVANCED |
3917 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3919 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3920 if (!(flag & FLAG_DATA))
3921 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3923 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3927 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3928 if (flag & FLAG_SET_XMIT_TIMER)
3929 tcp_set_xmit_timer(sk);
3931 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3934 delivered = tcp_newly_delivered(sk, delivered, flag);
3935 lost = tp->lost - lost; /* freshly marked lost */
3936 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3937 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3938 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3939 tcp_xmit_recovery(sk, rexmit);
3943 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3944 if (flag & FLAG_DSACKING_ACK) {
3945 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3947 tcp_newly_delivered(sk, delivered, flag);
3949 /* If this ack opens up a zero window, clear backoff. It was
3950 * being used to time the probes, and is probably far higher than
3951 * it needs to be for normal retransmission.
3955 if (tp->tlp_high_seq)
3956 tcp_process_tlp_ack(sk, ack, flag);
3960 /* If data was SACKed, tag it and see if we should send more data.
3961 * If data was DSACKed, see if we can undo a cwnd reduction.
3963 if (TCP_SKB_CB(skb)->sacked) {
3964 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3966 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3968 tcp_newly_delivered(sk, delivered, flag);
3969 tcp_xmit_recovery(sk, rexmit);
3975 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3976 bool syn, struct tcp_fastopen_cookie *foc,
3979 /* Valid only in SYN or SYN-ACK with an even length. */
3980 if (!foc || !syn || len < 0 || (len & 1))
3983 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3984 len <= TCP_FASTOPEN_COOKIE_MAX)
3985 memcpy(foc->val, cookie, len);
3992 static bool smc_parse_options(const struct tcphdr *th,
3993 struct tcp_options_received *opt_rx,
3994 const unsigned char *ptr,
3997 #if IS_ENABLED(CONFIG_SMC)
3998 if (static_branch_unlikely(&tcp_have_smc)) {
3999 if (th->syn && !(opsize & 1) &&
4000 opsize >= TCPOLEN_EXP_SMC_BASE &&
4001 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4010 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4013 u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4015 const unsigned char *ptr = (const unsigned char *)(th + 1);
4016 int length = (th->doff * 4) - sizeof(struct tcphdr);
4019 while (length > 0) {
4020 int opcode = *ptr++;
4026 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4033 if (opsize < 2) /* "silly options" */
4035 if (opsize > length)
4036 return mss; /* fail on partial options */
4037 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4038 u16 in_mss = get_unaligned_be16(ptr);
4041 if (user_mss && user_mss < in_mss)
4052 EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4054 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4055 * But, this can also be called on packets in the established flow when
4056 * the fast version below fails.
4058 void tcp_parse_options(const struct net *net,
4059 const struct sk_buff *skb,
4060 struct tcp_options_received *opt_rx, int estab,
4061 struct tcp_fastopen_cookie *foc)
4063 const unsigned char *ptr;
4064 const struct tcphdr *th = tcp_hdr(skb);
4065 int length = (th->doff * 4) - sizeof(struct tcphdr);
4067 ptr = (const unsigned char *)(th + 1);
4068 opt_rx->saw_tstamp = 0;
4069 opt_rx->saw_unknown = 0;
4071 while (length > 0) {
4072 int opcode = *ptr++;
4078 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4085 if (opsize < 2) /* "silly options" */
4087 if (opsize > length)
4088 return; /* don't parse partial options */
4091 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4092 u16 in_mss = get_unaligned_be16(ptr);
4094 if (opt_rx->user_mss &&
4095 opt_rx->user_mss < in_mss)
4096 in_mss = opt_rx->user_mss;
4097 opt_rx->mss_clamp = in_mss;
4102 if (opsize == TCPOLEN_WINDOW && th->syn &&
4103 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4104 __u8 snd_wscale = *(__u8 *)ptr;
4105 opt_rx->wscale_ok = 1;
4106 if (snd_wscale > TCP_MAX_WSCALE) {
4107 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4111 snd_wscale = TCP_MAX_WSCALE;
4113 opt_rx->snd_wscale = snd_wscale;
4116 case TCPOPT_TIMESTAMP:
4117 if ((opsize == TCPOLEN_TIMESTAMP) &&
4118 ((estab && opt_rx->tstamp_ok) ||
4119 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4120 opt_rx->saw_tstamp = 1;
4121 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4122 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4125 case TCPOPT_SACK_PERM:
4126 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4127 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4128 opt_rx->sack_ok = TCP_SACK_SEEN;
4129 tcp_sack_reset(opt_rx);
4134 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4135 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4137 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4140 #ifdef CONFIG_TCP_MD5SIG
4142 /* The MD5 Hash has already been
4143 * checked (see tcp_v{4,6}_rcv()).
4147 case TCPOPT_FASTOPEN:
4148 tcp_parse_fastopen_option(
4149 opsize - TCPOLEN_FASTOPEN_BASE,
4150 ptr, th->syn, foc, false);
4154 /* Fast Open option shares code 254 using a
4155 * 16 bits magic number.
4157 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4158 get_unaligned_be16(ptr) ==
4159 TCPOPT_FASTOPEN_MAGIC) {
4160 tcp_parse_fastopen_option(opsize -
4161 TCPOLEN_EXP_FASTOPEN_BASE,
4162 ptr + 2, th->syn, foc, true);
4166 if (smc_parse_options(th, opt_rx, ptr, opsize))
4169 opt_rx->saw_unknown = 1;
4173 opt_rx->saw_unknown = 1;
4180 EXPORT_SYMBOL(tcp_parse_options);
4182 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4184 const __be32 *ptr = (const __be32 *)(th + 1);
4186 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4187 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4188 tp->rx_opt.saw_tstamp = 1;
4190 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4193 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4195 tp->rx_opt.rcv_tsecr = 0;
4201 /* Fast parse options. This hopes to only see timestamps.
4202 * If it is wrong it falls back on tcp_parse_options().
4204 static bool tcp_fast_parse_options(const struct net *net,
4205 const struct sk_buff *skb,
4206 const struct tcphdr *th, struct tcp_sock *tp)
4208 /* In the spirit of fast parsing, compare doff directly to constant
4209 * values. Because equality is used, short doff can be ignored here.
4211 if (th->doff == (sizeof(*th) / 4)) {
4212 tp->rx_opt.saw_tstamp = 0;
4214 } else if (tp->rx_opt.tstamp_ok &&
4215 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4216 if (tcp_parse_aligned_timestamp(tp, th))
4220 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4221 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4222 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4227 #ifdef CONFIG_TCP_MD5SIG
4229 * Parse MD5 Signature option
4231 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4233 int length = (th->doff << 2) - sizeof(*th);
4234 const u8 *ptr = (const u8 *)(th + 1);
4236 /* If not enough data remaining, we can short cut */
4237 while (length >= TCPOLEN_MD5SIG) {
4238 int opcode = *ptr++;
4249 if (opsize < 2 || opsize > length)
4251 if (opcode == TCPOPT_MD5SIG)
4252 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4259 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4262 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4264 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4265 * it can pass through stack. So, the following predicate verifies that
4266 * this segment is not used for anything but congestion avoidance or
4267 * fast retransmit. Moreover, we even are able to eliminate most of such
4268 * second order effects, if we apply some small "replay" window (~RTO)
4269 * to timestamp space.
4271 * All these measures still do not guarantee that we reject wrapped ACKs
4272 * on networks with high bandwidth, when sequence space is recycled fastly,
4273 * but it guarantees that such events will be very rare and do not affect
4274 * connection seriously. This doesn't look nice, but alas, PAWS is really
4277 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4278 * states that events when retransmit arrives after original data are rare.
4279 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4280 * the biggest problem on large power networks even with minor reordering.
4281 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4282 * up to bandwidth of 18Gigabit/sec. 8) ]
4285 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4287 const struct tcp_sock *tp = tcp_sk(sk);
4288 const struct tcphdr *th = tcp_hdr(skb);
4289 u32 seq = TCP_SKB_CB(skb)->seq;
4290 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4292 return (/* 1. Pure ACK with correct sequence number. */
4293 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4295 /* 2. ... and duplicate ACK. */
4296 ack == tp->snd_una &&
4298 /* 3. ... and does not update window. */
4299 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4301 /* 4. ... and sits in replay window. */
4302 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4305 static inline bool tcp_paws_discard(const struct sock *sk,
4306 const struct sk_buff *skb)
4308 const struct tcp_sock *tp = tcp_sk(sk);
4310 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4311 !tcp_disordered_ack(sk, skb);
4314 /* Check segment sequence number for validity.
4316 * Segment controls are considered valid, if the segment
4317 * fits to the window after truncation to the window. Acceptability
4318 * of data (and SYN, FIN, of course) is checked separately.
4319 * See tcp_data_queue(), for example.
4321 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4322 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4323 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4324 * (borrowed from freebsd)
4327 static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4328 u32 seq, u32 end_seq)
4330 if (before(end_seq, tp->rcv_wup))
4331 return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4333 if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4334 return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4336 return SKB_NOT_DROPPED_YET;
4339 /* When we get a reset we do this. */
4340 void tcp_reset(struct sock *sk, struct sk_buff *skb)
4342 trace_tcp_receive_reset(sk);
4344 /* mptcp can't tell us to ignore reset pkts,
4345 * so just ignore the return value of mptcp_incoming_options().
4347 if (sk_is_mptcp(sk))
4348 mptcp_incoming_options(sk, skb);
4350 /* We want the right error as BSD sees it (and indeed as we do). */
4351 switch (sk->sk_state) {
4353 WRITE_ONCE(sk->sk_err, ECONNREFUSED);
4355 case TCP_CLOSE_WAIT:
4356 WRITE_ONCE(sk->sk_err, EPIPE);
4361 WRITE_ONCE(sk->sk_err, ECONNRESET);
4363 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4366 tcp_write_queue_purge(sk);
4369 if (!sock_flag(sk, SOCK_DEAD))
4370 sk_error_report(sk);
4374 * Process the FIN bit. This now behaves as it is supposed to work
4375 * and the FIN takes effect when it is validly part of sequence
4376 * space. Not before when we get holes.
4378 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4379 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4382 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4383 * close and we go into CLOSING (and later onto TIME-WAIT)
4385 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4387 void tcp_fin(struct sock *sk)
4389 struct tcp_sock *tp = tcp_sk(sk);
4391 inet_csk_schedule_ack(sk);
4393 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4394 sock_set_flag(sk, SOCK_DONE);
4396 switch (sk->sk_state) {
4398 case TCP_ESTABLISHED:
4399 /* Move to CLOSE_WAIT */
4400 tcp_set_state(sk, TCP_CLOSE_WAIT);
4401 inet_csk_enter_pingpong_mode(sk);
4404 case TCP_CLOSE_WAIT:
4406 /* Received a retransmission of the FIN, do
4411 /* RFC793: Remain in the LAST-ACK state. */
4415 /* This case occurs when a simultaneous close
4416 * happens, we must ack the received FIN and
4417 * enter the CLOSING state.
4420 tcp_set_state(sk, TCP_CLOSING);
4423 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4425 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4428 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4429 * cases we should never reach this piece of code.
4431 pr_err("%s: Impossible, sk->sk_state=%d\n",
4432 __func__, sk->sk_state);
4436 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4437 * Probably, we should reset in this case. For now drop them.
4439 skb_rbtree_purge(&tp->out_of_order_queue);
4440 if (tcp_is_sack(tp))
4441 tcp_sack_reset(&tp->rx_opt);
4443 if (!sock_flag(sk, SOCK_DEAD)) {
4444 sk->sk_state_change(sk);
4446 /* Do not send POLL_HUP for half duplex close. */
4447 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4448 sk->sk_state == TCP_CLOSE)
4449 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4451 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4455 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4458 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4459 if (before(seq, sp->start_seq))
4460 sp->start_seq = seq;
4461 if (after(end_seq, sp->end_seq))
4462 sp->end_seq = end_seq;
4468 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4470 struct tcp_sock *tp = tcp_sk(sk);
4472 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4475 if (before(seq, tp->rcv_nxt))
4476 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4478 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4480 NET_INC_STATS(sock_net(sk), mib_idx);
4482 tp->rx_opt.dsack = 1;
4483 tp->duplicate_sack[0].start_seq = seq;
4484 tp->duplicate_sack[0].end_seq = end_seq;
4488 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4490 struct tcp_sock *tp = tcp_sk(sk);
4492 if (!tp->rx_opt.dsack)
4493 tcp_dsack_set(sk, seq, end_seq);
4495 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4498 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4500 /* When the ACK path fails or drops most ACKs, the sender would
4501 * timeout and spuriously retransmit the same segment repeatedly.
4502 * The receiver remembers and reflects via DSACKs. Leverage the
4503 * DSACK state and change the txhash to re-route speculatively.
4505 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4506 sk_rethink_txhash(sk))
4507 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4510 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4512 struct tcp_sock *tp = tcp_sk(sk);
4514 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4515 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4516 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4517 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4519 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4520 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4522 tcp_rcv_spurious_retrans(sk, skb);
4523 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4524 end_seq = tp->rcv_nxt;
4525 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4532 /* These routines update the SACK block as out-of-order packets arrive or
4533 * in-order packets close up the sequence space.
4535 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4538 struct tcp_sack_block *sp = &tp->selective_acks[0];
4539 struct tcp_sack_block *swalk = sp + 1;
4541 /* See if the recent change to the first SACK eats into
4542 * or hits the sequence space of other SACK blocks, if so coalesce.
4544 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4545 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4548 /* Zap SWALK, by moving every further SACK up by one slot.
4549 * Decrease num_sacks.
4551 tp->rx_opt.num_sacks--;
4552 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4561 void tcp_sack_compress_send_ack(struct sock *sk)
4563 struct tcp_sock *tp = tcp_sk(sk);
4565 if (!tp->compressed_ack)
4568 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4571 /* Since we have to send one ack finally,
4572 * substract one from tp->compressed_ack to keep
4573 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4575 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4576 tp->compressed_ack - 1);
4578 tp->compressed_ack = 0;
4582 /* Reasonable amount of sack blocks included in TCP SACK option
4583 * The max is 4, but this becomes 3 if TCP timestamps are there.
4584 * Given that SACK packets might be lost, be conservative and use 2.
4586 #define TCP_SACK_BLOCKS_EXPECTED 2
4588 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4590 struct tcp_sock *tp = tcp_sk(sk);
4591 struct tcp_sack_block *sp = &tp->selective_acks[0];
4592 int cur_sacks = tp->rx_opt.num_sacks;
4598 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4599 if (tcp_sack_extend(sp, seq, end_seq)) {
4600 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4601 tcp_sack_compress_send_ack(sk);
4602 /* Rotate this_sack to the first one. */
4603 for (; this_sack > 0; this_sack--, sp--)
4604 swap(*sp, *(sp - 1));
4606 tcp_sack_maybe_coalesce(tp);
4611 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4612 tcp_sack_compress_send_ack(sk);
4614 /* Could not find an adjacent existing SACK, build a new one,
4615 * put it at the front, and shift everyone else down. We
4616 * always know there is at least one SACK present already here.
4618 * If the sack array is full, forget about the last one.
4620 if (this_sack >= TCP_NUM_SACKS) {
4622 tp->rx_opt.num_sacks--;
4625 for (; this_sack > 0; this_sack--, sp--)
4629 /* Build the new head SACK, and we're done. */
4630 sp->start_seq = seq;
4631 sp->end_seq = end_seq;
4632 tp->rx_opt.num_sacks++;
4635 /* RCV.NXT advances, some SACKs should be eaten. */
4637 static void tcp_sack_remove(struct tcp_sock *tp)
4639 struct tcp_sack_block *sp = &tp->selective_acks[0];
4640 int num_sacks = tp->rx_opt.num_sacks;
4643 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4644 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4645 tp->rx_opt.num_sacks = 0;
4649 for (this_sack = 0; this_sack < num_sacks;) {
4650 /* Check if the start of the sack is covered by RCV.NXT. */
4651 if (!before(tp->rcv_nxt, sp->start_seq)) {
4654 /* RCV.NXT must cover all the block! */
4655 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4657 /* Zap this SACK, by moving forward any other SACKS. */
4658 for (i = this_sack+1; i < num_sacks; i++)
4659 tp->selective_acks[i-1] = tp->selective_acks[i];
4666 tp->rx_opt.num_sacks = num_sacks;
4670 * tcp_try_coalesce - try to merge skb to prior one
4673 * @from: buffer to add in queue
4674 * @fragstolen: pointer to boolean
4676 * Before queueing skb @from after @to, try to merge them
4677 * to reduce overall memory use and queue lengths, if cost is small.
4678 * Packets in ofo or receive queues can stay a long time.
4679 * Better try to coalesce them right now to avoid future collapses.
4680 * Returns true if caller should free @from instead of queueing it
4682 static bool tcp_try_coalesce(struct sock *sk,
4684 struct sk_buff *from,
4689 *fragstolen = false;
4691 /* Its possible this segment overlaps with prior segment in queue */
4692 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4695 if (!mptcp_skb_can_collapse(to, from))
4698 #ifdef CONFIG_TLS_DEVICE
4699 if (from->decrypted != to->decrypted)
4703 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4706 atomic_add(delta, &sk->sk_rmem_alloc);
4707 sk_mem_charge(sk, delta);
4708 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4709 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4710 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4711 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4713 if (TCP_SKB_CB(from)->has_rxtstamp) {
4714 TCP_SKB_CB(to)->has_rxtstamp = true;
4715 to->tstamp = from->tstamp;
4716 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4722 static bool tcp_ooo_try_coalesce(struct sock *sk,
4724 struct sk_buff *from,
4727 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4729 /* In case tcp_drop_reason() is called later, update to->gso_segs */
4731 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4732 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4734 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4739 static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4740 enum skb_drop_reason reason)
4742 sk_drops_add(sk, skb);
4743 kfree_skb_reason(skb, reason);
4746 /* This one checks to see if we can put data from the
4747 * out_of_order queue into the receive_queue.
4749 static void tcp_ofo_queue(struct sock *sk)
4751 struct tcp_sock *tp = tcp_sk(sk);
4752 __u32 dsack_high = tp->rcv_nxt;
4753 bool fin, fragstolen, eaten;
4754 struct sk_buff *skb, *tail;
4757 p = rb_first(&tp->out_of_order_queue);
4760 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4763 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4764 __u32 dsack = dsack_high;
4765 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4766 dsack_high = TCP_SKB_CB(skb)->end_seq;
4767 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4770 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4772 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4773 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4777 tail = skb_peek_tail(&sk->sk_receive_queue);
4778 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4779 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4780 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4782 __skb_queue_tail(&sk->sk_receive_queue, skb);
4784 kfree_skb_partial(skb, fragstolen);
4786 if (unlikely(fin)) {
4788 /* tcp_fin() purges tp->out_of_order_queue,
4789 * so we must end this loop right now.
4796 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4797 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4799 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4802 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4803 !sk_rmem_schedule(sk, skb, size)) {
4805 if (tcp_prune_queue(sk, skb) < 0)
4808 while (!sk_rmem_schedule(sk, skb, size)) {
4809 if (!tcp_prune_ofo_queue(sk, skb))
4816 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4818 struct tcp_sock *tp = tcp_sk(sk);
4819 struct rb_node **p, *parent;
4820 struct sk_buff *skb1;
4824 tcp_ecn_check_ce(sk, skb);
4826 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4827 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4828 sk->sk_data_ready(sk);
4829 tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4833 /* Disable header prediction. */
4835 inet_csk_schedule_ack(sk);
4837 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4838 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4839 seq = TCP_SKB_CB(skb)->seq;
4840 end_seq = TCP_SKB_CB(skb)->end_seq;
4842 p = &tp->out_of_order_queue.rb_node;
4843 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4844 /* Initial out of order segment, build 1 SACK. */
4845 if (tcp_is_sack(tp)) {
4846 tp->rx_opt.num_sacks = 1;
4847 tp->selective_acks[0].start_seq = seq;
4848 tp->selective_acks[0].end_seq = end_seq;
4850 rb_link_node(&skb->rbnode, NULL, p);
4851 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4852 tp->ooo_last_skb = skb;
4856 /* In the typical case, we are adding an skb to the end of the list.
4857 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4859 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4860 skb, &fragstolen)) {
4862 /* For non sack flows, do not grow window to force DUPACK
4863 * and trigger fast retransmit.
4865 if (tcp_is_sack(tp))
4866 tcp_grow_window(sk, skb, true);
4867 kfree_skb_partial(skb, fragstolen);
4871 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4872 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4873 parent = &tp->ooo_last_skb->rbnode;
4874 p = &parent->rb_right;
4878 /* Find place to insert this segment. Handle overlaps on the way. */
4882 skb1 = rb_to_skb(parent);
4883 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4884 p = &parent->rb_left;
4887 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4888 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4889 /* All the bits are present. Drop. */
4890 NET_INC_STATS(sock_net(sk),
4891 LINUX_MIB_TCPOFOMERGE);
4892 tcp_drop_reason(sk, skb,
4893 SKB_DROP_REASON_TCP_OFOMERGE);
4895 tcp_dsack_set(sk, seq, end_seq);
4898 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4899 /* Partial overlap. */
4900 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4902 /* skb's seq == skb1's seq and skb covers skb1.
4903 * Replace skb1 with skb.
4905 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4906 &tp->out_of_order_queue);
4907 tcp_dsack_extend(sk,
4908 TCP_SKB_CB(skb1)->seq,
4909 TCP_SKB_CB(skb1)->end_seq);
4910 NET_INC_STATS(sock_net(sk),
4911 LINUX_MIB_TCPOFOMERGE);
4912 tcp_drop_reason(sk, skb1,
4913 SKB_DROP_REASON_TCP_OFOMERGE);
4916 } else if (tcp_ooo_try_coalesce(sk, skb1,
4917 skb, &fragstolen)) {
4920 p = &parent->rb_right;
4923 /* Insert segment into RB tree. */
4924 rb_link_node(&skb->rbnode, parent, p);
4925 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4928 /* Remove other segments covered by skb. */
4929 while ((skb1 = skb_rb_next(skb)) != NULL) {
4930 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4932 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4933 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4937 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4938 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4939 TCP_SKB_CB(skb1)->end_seq);
4940 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4941 tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4943 /* If there is no skb after us, we are the last_skb ! */
4945 tp->ooo_last_skb = skb;
4948 if (tcp_is_sack(tp))
4949 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4952 /* For non sack flows, do not grow window to force DUPACK
4953 * and trigger fast retransmit.
4955 if (tcp_is_sack(tp))
4956 tcp_grow_window(sk, skb, false);
4958 skb_set_owner_r(skb, sk);
4962 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4966 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4969 tcp_try_coalesce(sk, tail,
4970 skb, fragstolen)) ? 1 : 0;
4971 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4973 __skb_queue_tail(&sk->sk_receive_queue, skb);
4974 skb_set_owner_r(skb, sk);
4979 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4981 struct sk_buff *skb;
4989 if (size > PAGE_SIZE) {
4990 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4992 data_len = npages << PAGE_SHIFT;
4993 size = data_len + (size & ~PAGE_MASK);
4995 skb = alloc_skb_with_frags(size - data_len, data_len,
4996 PAGE_ALLOC_COSTLY_ORDER,
4997 &err, sk->sk_allocation);
5001 skb_put(skb, size - data_len);
5002 skb->data_len = data_len;
5005 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5006 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5010 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5014 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5015 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5016 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5018 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5019 WARN_ON_ONCE(fragstolen); /* should not happen */
5031 void tcp_data_ready(struct sock *sk)
5033 if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5034 sk->sk_data_ready(sk);
5037 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5039 struct tcp_sock *tp = tcp_sk(sk);
5040 enum skb_drop_reason reason;
5044 /* If a subflow has been reset, the packet should not continue
5045 * to be processed, drop the packet.
5047 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5052 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5057 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
5059 reason = SKB_DROP_REASON_NOT_SPECIFIED;
5060 tp->rx_opt.dsack = 0;
5062 /* Queue data for delivery to the user.
5063 * Packets in sequence go to the receive queue.
5064 * Out of sequence packets to the out_of_order_queue.
5066 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5067 if (tcp_receive_window(tp) == 0) {
5068 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5069 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5073 /* Ok. In sequence. In window. */
5075 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5076 /* TODO: maybe ratelimit these WIN 0 ACK ? */
5077 inet_csk(sk)->icsk_ack.pending |=
5078 (ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5079 inet_csk_schedule_ack(sk);
5080 sk->sk_data_ready(sk);
5082 if (skb_queue_len(&sk->sk_receive_queue)) {
5083 reason = SKB_DROP_REASON_PROTO_MEM;
5084 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5087 sk_forced_mem_schedule(sk, skb->truesize);
5090 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5092 tcp_event_data_recv(sk, skb);
5093 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5096 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5099 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5100 * gap in queue is filled.
5102 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5103 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5106 if (tp->rx_opt.num_sacks)
5107 tcp_sack_remove(tp);
5109 tcp_fast_path_check(sk);
5112 kfree_skb_partial(skb, fragstolen);
5113 if (!sock_flag(sk, SOCK_DEAD))
5118 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5119 tcp_rcv_spurious_retrans(sk, skb);
5120 /* A retransmit, 2nd most common case. Force an immediate ack. */
5121 reason = SKB_DROP_REASON_TCP_OLD_DATA;
5122 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5123 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5126 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5127 inet_csk_schedule_ack(sk);
5129 tcp_drop_reason(sk, skb, reason);
5133 /* Out of window. F.e. zero window probe. */
5134 if (!before(TCP_SKB_CB(skb)->seq,
5135 tp->rcv_nxt + tcp_receive_window(tp))) {
5136 reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5140 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5141 /* Partial packet, seq < rcv_next < end_seq */
5142 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5144 /* If window is closed, drop tail of packet. But after
5145 * remembering D-SACK for its head made in previous line.
5147 if (!tcp_receive_window(tp)) {
5148 reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5149 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5155 tcp_data_queue_ofo(sk, skb);
5158 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5161 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5163 return skb_rb_next(skb);
5166 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5167 struct sk_buff_head *list,
5168 struct rb_root *root)
5170 struct sk_buff *next = tcp_skb_next(skb, list);
5173 __skb_unlink(skb, list);
5175 rb_erase(&skb->rbnode, root);
5178 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5183 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5184 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5186 struct rb_node **p = &root->rb_node;
5187 struct rb_node *parent = NULL;
5188 struct sk_buff *skb1;
5192 skb1 = rb_to_skb(parent);
5193 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5194 p = &parent->rb_left;
5196 p = &parent->rb_right;
5198 rb_link_node(&skb->rbnode, parent, p);
5199 rb_insert_color(&skb->rbnode, root);
5202 /* Collapse contiguous sequence of skbs head..tail with
5203 * sequence numbers start..end.
5205 * If tail is NULL, this means until the end of the queue.
5207 * Segments with FIN/SYN are not collapsed (only because this
5211 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5212 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5214 struct sk_buff *skb = head, *n;
5215 struct sk_buff_head tmp;
5218 /* First, check that queue is collapsible and find
5219 * the point where collapsing can be useful.
5222 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5223 n = tcp_skb_next(skb, list);
5225 /* No new bits? It is possible on ofo queue. */
5226 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5227 skb = tcp_collapse_one(sk, skb, list, root);
5233 /* The first skb to collapse is:
5235 * - bloated or contains data before "start" or
5236 * overlaps to the next one and mptcp allow collapsing.
5238 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5239 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5240 before(TCP_SKB_CB(skb)->seq, start))) {
5241 end_of_skbs = false;
5245 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5246 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5247 end_of_skbs = false;
5251 /* Decided to skip this, advance start seq. */
5252 start = TCP_SKB_CB(skb)->end_seq;
5255 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5258 __skb_queue_head_init(&tmp);
5260 while (before(start, end)) {
5261 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5262 struct sk_buff *nskb;
5264 nskb = alloc_skb(copy, GFP_ATOMIC);
5268 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5269 #ifdef CONFIG_TLS_DEVICE
5270 nskb->decrypted = skb->decrypted;
5272 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5274 __skb_queue_before(list, skb, nskb);
5276 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5277 skb_set_owner_r(nskb, sk);
5278 mptcp_skb_ext_move(nskb, skb);
5280 /* Copy data, releasing collapsed skbs. */
5282 int offset = start - TCP_SKB_CB(skb)->seq;
5283 int size = TCP_SKB_CB(skb)->end_seq - start;
5287 size = min(copy, size);
5288 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5290 TCP_SKB_CB(nskb)->end_seq += size;
5294 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5295 skb = tcp_collapse_one(sk, skb, list, root);
5298 !mptcp_skb_can_collapse(nskb, skb) ||
5299 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5301 #ifdef CONFIG_TLS_DEVICE
5302 if (skb->decrypted != nskb->decrypted)
5309 skb_queue_walk_safe(&tmp, skb, n)
5310 tcp_rbtree_insert(root, skb);
5313 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5314 * and tcp_collapse() them until all the queue is collapsed.
5316 static void tcp_collapse_ofo_queue(struct sock *sk)
5318 struct tcp_sock *tp = tcp_sk(sk);
5319 u32 range_truesize, sum_tiny = 0;
5320 struct sk_buff *skb, *head;
5323 skb = skb_rb_first(&tp->out_of_order_queue);
5326 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5329 start = TCP_SKB_CB(skb)->seq;
5330 end = TCP_SKB_CB(skb)->end_seq;
5331 range_truesize = skb->truesize;
5333 for (head = skb;;) {
5334 skb = skb_rb_next(skb);
5336 /* Range is terminated when we see a gap or when
5337 * we are at the queue end.
5340 after(TCP_SKB_CB(skb)->seq, end) ||
5341 before(TCP_SKB_CB(skb)->end_seq, start)) {
5342 /* Do not attempt collapsing tiny skbs */
5343 if (range_truesize != head->truesize ||
5344 end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5345 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5346 head, skb, start, end);
5348 sum_tiny += range_truesize;
5349 if (sum_tiny > sk->sk_rcvbuf >> 3)
5355 range_truesize += skb->truesize;
5356 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5357 start = TCP_SKB_CB(skb)->seq;
5358 if (after(TCP_SKB_CB(skb)->end_seq, end))
5359 end = TCP_SKB_CB(skb)->end_seq;
5364 * Clean the out-of-order queue to make room.
5365 * We drop high sequences packets to :
5366 * 1) Let a chance for holes to be filled.
5367 * This means we do not drop packets from ooo queue if their sequence
5368 * is before incoming packet sequence.
5369 * 2) not add too big latencies if thousands of packets sit there.
5370 * (But if application shrinks SO_RCVBUF, we could still end up
5371 * freeing whole queue here)
5372 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5374 * Return true if queue has shrunk.
5376 static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5378 struct tcp_sock *tp = tcp_sk(sk);
5379 struct rb_node *node, *prev;
5380 bool pruned = false;
5383 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5386 goal = sk->sk_rcvbuf >> 3;
5387 node = &tp->ooo_last_skb->rbnode;
5390 struct sk_buff *skb = rb_to_skb(node);
5392 /* If incoming skb would land last in ofo queue, stop pruning. */
5393 if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5396 prev = rb_prev(node);
5397 rb_erase(node, &tp->out_of_order_queue);
5398 goal -= skb->truesize;
5399 tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5400 tp->ooo_last_skb = rb_to_skb(prev);
5401 if (!prev || goal <= 0) {
5402 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5403 !tcp_under_memory_pressure(sk))
5405 goal = sk->sk_rcvbuf >> 3;
5411 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5412 /* Reset SACK state. A conforming SACK implementation will
5413 * do the same at a timeout based retransmit. When a connection
5414 * is in a sad state like this, we care only about integrity
5415 * of the connection not performance.
5417 if (tp->rx_opt.sack_ok)
5418 tcp_sack_reset(&tp->rx_opt);
5423 /* Reduce allocated memory if we can, trying to get
5424 * the socket within its memory limits again.
5426 * Return less than zero if we should start dropping frames
5427 * until the socket owning process reads some of the data
5428 * to stabilize the situation.
5430 static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5432 struct tcp_sock *tp = tcp_sk(sk);
5434 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5436 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5437 tcp_clamp_window(sk);
5438 else if (tcp_under_memory_pressure(sk))
5439 tcp_adjust_rcv_ssthresh(sk);
5441 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5444 tcp_collapse_ofo_queue(sk);
5445 if (!skb_queue_empty(&sk->sk_receive_queue))
5446 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5447 skb_peek(&sk->sk_receive_queue),
5449 tp->copied_seq, tp->rcv_nxt);
5451 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5454 /* Collapsing did not help, destructive actions follow.
5455 * This must not ever occur. */
5457 tcp_prune_ofo_queue(sk, in_skb);
5459 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5462 /* If we are really being abused, tell the caller to silently
5463 * drop receive data on the floor. It will get retransmitted
5464 * and hopefully then we'll have sufficient space.
5466 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5468 /* Massive buffer overcommit. */
5473 static bool tcp_should_expand_sndbuf(struct sock *sk)
5475 const struct tcp_sock *tp = tcp_sk(sk);
5477 /* If the user specified a specific send buffer setting, do
5480 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5483 /* If we are under global TCP memory pressure, do not expand. */
5484 if (tcp_under_memory_pressure(sk)) {
5485 int unused_mem = sk_unused_reserved_mem(sk);
5487 /* Adjust sndbuf according to reserved mem. But make sure
5488 * it never goes below SOCK_MIN_SNDBUF.
5489 * See sk_stream_moderate_sndbuf() for more details.
5491 if (unused_mem > SOCK_MIN_SNDBUF)
5492 WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5497 /* If we are under soft global TCP memory pressure, do not expand. */
5498 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5501 /* If we filled the congestion window, do not expand. */
5502 if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5508 static void tcp_new_space(struct sock *sk)
5510 struct tcp_sock *tp = tcp_sk(sk);
5512 if (tcp_should_expand_sndbuf(sk)) {
5513 tcp_sndbuf_expand(sk);
5514 tp->snd_cwnd_stamp = tcp_jiffies32;
5517 INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5520 /* Caller made space either from:
5521 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5522 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5524 * We might be able to generate EPOLLOUT to the application if:
5525 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5526 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5527 * small enough that tcp_stream_memory_free() decides it
5528 * is time to generate EPOLLOUT.
5530 void tcp_check_space(struct sock *sk)
5532 /* pairs with tcp_poll() */
5534 if (sk->sk_socket &&
5535 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5537 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5538 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5542 static inline void tcp_data_snd_check(struct sock *sk)
5544 tcp_push_pending_frames(sk);
5545 tcp_check_space(sk);
5549 * Check if sending an ack is needed.
5551 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5553 struct tcp_sock *tp = tcp_sk(sk);
5554 unsigned long rtt, delay;
5556 /* More than one full frame received... */
5557 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5558 /* ... and right edge of window advances far enough.
5559 * (tcp_recvmsg() will send ACK otherwise).
5560 * If application uses SO_RCVLOWAT, we want send ack now if
5561 * we have not received enough bytes to satisfy the condition.
5563 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5564 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5565 /* We ACK each frame or... */
5566 tcp_in_quickack_mode(sk) ||
5567 /* Protocol state mandates a one-time immediate ACK */
5568 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5574 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5575 tcp_send_delayed_ack(sk);
5579 if (!tcp_is_sack(tp) ||
5580 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5583 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5584 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5585 tp->dup_ack_counter = 0;
5587 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5588 tp->dup_ack_counter++;
5591 tp->compressed_ack++;
5592 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5595 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5597 rtt = tp->rcv_rtt_est.rtt_us;
5598 if (tp->srtt_us && tp->srtt_us < rtt)
5601 delay = min_t(unsigned long,
5602 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5603 rtt * (NSEC_PER_USEC >> 3)/20);
5605 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5606 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5607 HRTIMER_MODE_REL_PINNED_SOFT);
5610 static inline void tcp_ack_snd_check(struct sock *sk)
5612 if (!inet_csk_ack_scheduled(sk)) {
5613 /* We sent a data segment already. */
5616 __tcp_ack_snd_check(sk, 1);
5620 * This routine is only called when we have urgent data
5621 * signaled. Its the 'slow' part of tcp_urg. It could be
5622 * moved inline now as tcp_urg is only called from one
5623 * place. We handle URGent data wrong. We have to - as
5624 * BSD still doesn't use the correction from RFC961.
5625 * For 1003.1g we should support a new option TCP_STDURG to permit
5626 * either form (or just set the sysctl tcp_stdurg).
5629 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5631 struct tcp_sock *tp = tcp_sk(sk);
5632 u32 ptr = ntohs(th->urg_ptr);
5634 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5636 ptr += ntohl(th->seq);
5638 /* Ignore urgent data that we've already seen and read. */
5639 if (after(tp->copied_seq, ptr))
5642 /* Do not replay urg ptr.
5644 * NOTE: interesting situation not covered by specs.
5645 * Misbehaving sender may send urg ptr, pointing to segment,
5646 * which we already have in ofo queue. We are not able to fetch
5647 * such data and will stay in TCP_URG_NOTYET until will be eaten
5648 * by recvmsg(). Seems, we are not obliged to handle such wicked
5649 * situations. But it is worth to think about possibility of some
5650 * DoSes using some hypothetical application level deadlock.
5652 if (before(ptr, tp->rcv_nxt))
5655 /* Do we already have a newer (or duplicate) urgent pointer? */
5656 if (tp->urg_data && !after(ptr, tp->urg_seq))
5659 /* Tell the world about our new urgent pointer. */
5662 /* We may be adding urgent data when the last byte read was
5663 * urgent. To do this requires some care. We cannot just ignore
5664 * tp->copied_seq since we would read the last urgent byte again
5665 * as data, nor can we alter copied_seq until this data arrives
5666 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5668 * NOTE. Double Dutch. Rendering to plain English: author of comment
5669 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5670 * and expect that both A and B disappear from stream. This is _wrong_.
5671 * Though this happens in BSD with high probability, this is occasional.
5672 * Any application relying on this is buggy. Note also, that fix "works"
5673 * only in this artificial test. Insert some normal data between A and B and we will
5674 * decline of BSD again. Verdict: it is better to remove to trap
5677 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5678 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5679 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5681 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5682 __skb_unlink(skb, &sk->sk_receive_queue);
5687 WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5688 WRITE_ONCE(tp->urg_seq, ptr);
5690 /* Disable header prediction. */
5694 /* This is the 'fast' part of urgent handling. */
5695 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5697 struct tcp_sock *tp = tcp_sk(sk);
5699 /* Check if we get a new urgent pointer - normally not. */
5700 if (unlikely(th->urg))
5701 tcp_check_urg(sk, th);
5703 /* Do we wait for any urgent data? - normally not... */
5704 if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5705 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5708 /* Is the urgent pointer pointing into this packet? */
5709 if (ptr < skb->len) {
5711 if (skb_copy_bits(skb, ptr, &tmp, 1))
5713 WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5714 if (!sock_flag(sk, SOCK_DEAD))
5715 sk->sk_data_ready(sk);
5720 /* Accept RST for rcv_nxt - 1 after a FIN.
5721 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5722 * FIN is sent followed by a RST packet. The RST is sent with the same
5723 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5724 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5725 * ACKs on the closed socket. In addition middleboxes can drop either the
5726 * challenge ACK or a subsequent RST.
5728 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5730 const struct tcp_sock *tp = tcp_sk(sk);
5732 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5733 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5737 /* Does PAWS and seqno based validation of an incoming segment, flags will
5738 * play significant role here.
5740 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5741 const struct tcphdr *th, int syn_inerr)
5743 struct tcp_sock *tp = tcp_sk(sk);
5746 /* RFC1323: H1. Apply PAWS check first. */
5747 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5748 tp->rx_opt.saw_tstamp &&
5749 tcp_paws_discard(sk, skb)) {
5751 if (unlikely(th->syn))
5753 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5754 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5755 LINUX_MIB_TCPACKSKIPPEDPAWS,
5756 &tp->last_oow_ack_time))
5757 tcp_send_dupack(sk, skb);
5758 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5761 /* Reset is accepted even if it did not pass PAWS. */
5764 /* Step 1: check sequence number */
5765 reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5767 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5768 * (RST) segments are validated by checking their SEQ-fields."
5769 * And page 69: "If an incoming segment is not acceptable,
5770 * an acknowledgment should be sent in reply (unless the RST
5771 * bit is set, if so drop the segment and return)".
5776 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5777 LINUX_MIB_TCPACKSKIPPEDSEQ,
5778 &tp->last_oow_ack_time))
5779 tcp_send_dupack(sk, skb);
5780 } else if (tcp_reset_check(sk, skb)) {
5786 /* Step 2: check RST bit */
5788 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5789 * FIN and SACK too if available):
5790 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5791 * the right-most SACK block,
5793 * RESET the connection
5795 * Send a challenge ACK
5797 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5798 tcp_reset_check(sk, skb))
5801 if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5802 struct tcp_sack_block *sp = &tp->selective_acks[0];
5803 int max_sack = sp[0].end_seq;
5806 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5808 max_sack = after(sp[this_sack].end_seq,
5810 sp[this_sack].end_seq : max_sack;
5813 if (TCP_SKB_CB(skb)->seq == max_sack)
5817 /* Disable TFO if RST is out-of-order
5818 * and no data has been received
5819 * for current active TFO socket
5821 if (tp->syn_fastopen && !tp->data_segs_in &&
5822 sk->sk_state == TCP_ESTABLISHED)
5823 tcp_fastopen_active_disable(sk);
5824 tcp_send_challenge_ack(sk);
5825 SKB_DR_SET(reason, TCP_RESET);
5829 /* step 3: check security and precedence [ignored] */
5831 /* step 4: Check for a SYN
5832 * RFC 5961 4.2 : Send a challenge ack
5837 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5838 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5839 tcp_send_challenge_ack(sk);
5840 SKB_DR_SET(reason, TCP_INVALID_SYN);
5844 bpf_skops_parse_hdr(sk, skb);
5849 tcp_drop_reason(sk, skb, reason);
5859 * TCP receive function for the ESTABLISHED state.
5861 * It is split into a fast path and a slow path. The fast path is
5863 * - A zero window was announced from us - zero window probing
5864 * is only handled properly in the slow path.
5865 * - Out of order segments arrived.
5866 * - Urgent data is expected.
5867 * - There is no buffer space left
5868 * - Unexpected TCP flags/window values/header lengths are received
5869 * (detected by checking the TCP header against pred_flags)
5870 * - Data is sent in both directions. Fast path only supports pure senders
5871 * or pure receivers (this means either the sequence number or the ack
5872 * value must stay constant)
5873 * - Unexpected TCP option.
5875 * When these conditions are not satisfied it drops into a standard
5876 * receive procedure patterned after RFC793 to handle all cases.
5877 * The first three cases are guaranteed by proper pred_flags setting,
5878 * the rest is checked inline. Fast processing is turned on in
5879 * tcp_data_queue when everything is OK.
5881 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5883 enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5884 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5885 struct tcp_sock *tp = tcp_sk(sk);
5886 unsigned int len = skb->len;
5888 /* TCP congestion window tracking */
5889 trace_tcp_probe(sk, skb);
5891 tcp_mstamp_refresh(tp);
5892 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5893 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5895 * Header prediction.
5896 * The code loosely follows the one in the famous
5897 * "30 instruction TCP receive" Van Jacobson mail.
5899 * Van's trick is to deposit buffers into socket queue
5900 * on a device interrupt, to call tcp_recv function
5901 * on the receive process context and checksum and copy
5902 * the buffer to user space. smart...
5904 * Our current scheme is not silly either but we take the
5905 * extra cost of the net_bh soft interrupt processing...
5906 * We do checksum and copy also but from device to kernel.
5909 tp->rx_opt.saw_tstamp = 0;
5911 /* pred_flags is 0xS?10 << 16 + snd_wnd
5912 * if header_prediction is to be made
5913 * 'S' will always be tp->tcp_header_len >> 2
5914 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5915 * turn it off (when there are holes in the receive
5916 * space for instance)
5917 * PSH flag is ignored.
5920 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5921 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5922 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5923 int tcp_header_len = tp->tcp_header_len;
5925 /* Timestamp header prediction: tcp_header_len
5926 * is automatically equal to th->doff*4 due to pred_flags
5930 /* Check timestamp */
5931 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5932 /* No? Slow path! */
5933 if (!tcp_parse_aligned_timestamp(tp, th))
5936 /* If PAWS failed, check it more carefully in slow path */
5937 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5940 /* DO NOT update ts_recent here, if checksum fails
5941 * and timestamp was corrupted part, it will result
5942 * in a hung connection since we will drop all
5943 * future packets due to the PAWS test.
5947 if (len <= tcp_header_len) {
5948 /* Bulk data transfer: sender */
5949 if (len == tcp_header_len) {
5950 /* Predicted packet is in window by definition.
5951 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5952 * Hence, check seq<=rcv_wup reduces to:
5954 if (tcp_header_len ==
5955 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5956 tp->rcv_nxt == tp->rcv_wup)
5957 tcp_store_ts_recent(tp);
5959 /* We know that such packets are checksummed
5962 tcp_ack(sk, skb, 0);
5964 tcp_data_snd_check(sk);
5965 /* When receiving pure ack in fast path, update
5966 * last ts ecr directly instead of calling
5967 * tcp_rcv_rtt_measure_ts()
5969 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5971 } else { /* Header too small */
5972 reason = SKB_DROP_REASON_PKT_TOO_SMALL;
5973 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5978 bool fragstolen = false;
5980 if (tcp_checksum_complete(skb))
5983 if ((int)skb->truesize > sk->sk_forward_alloc)
5986 /* Predicted packet is in window by definition.
5987 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5988 * Hence, check seq<=rcv_wup reduces to:
5990 if (tcp_header_len ==
5991 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5992 tp->rcv_nxt == tp->rcv_wup)
5993 tcp_store_ts_recent(tp);
5995 tcp_rcv_rtt_measure_ts(sk, skb);
5997 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5999 /* Bulk data transfer: receiver */
6001 __skb_pull(skb, tcp_header_len);
6002 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6004 tcp_event_data_recv(sk, skb);
6006 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6007 /* Well, only one small jumplet in fast path... */
6008 tcp_ack(sk, skb, FLAG_DATA);
6009 tcp_data_snd_check(sk);
6010 if (!inet_csk_ack_scheduled(sk))
6013 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6016 __tcp_ack_snd_check(sk, 0);
6019 kfree_skb_partial(skb, fragstolen);
6026 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6029 if (!th->ack && !th->rst && !th->syn) {
6030 reason = SKB_DROP_REASON_TCP_FLAGS;
6035 * Standard slow path.
6038 if (!tcp_validate_incoming(sk, skb, th, 1))
6042 reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6043 if ((int)reason < 0) {
6047 tcp_rcv_rtt_measure_ts(sk, skb);
6049 /* Process urgent data. */
6050 tcp_urg(sk, skb, th);
6052 /* step 7: process the segment text */
6053 tcp_data_queue(sk, skb);
6055 tcp_data_snd_check(sk);
6056 tcp_ack_snd_check(sk);
6060 reason = SKB_DROP_REASON_TCP_CSUM;
6061 trace_tcp_bad_csum(skb);
6062 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6063 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6066 tcp_drop_reason(sk, skb, reason);
6068 EXPORT_SYMBOL(tcp_rcv_established);
6070 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6072 struct inet_connection_sock *icsk = inet_csk(sk);
6073 struct tcp_sock *tp = tcp_sk(sk);
6076 icsk->icsk_af_ops->rebuild_header(sk);
6077 tcp_init_metrics(sk);
6079 /* Initialize the congestion window to start the transfer.
6080 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6081 * retransmitted. In light of RFC6298 more aggressive 1sec
6082 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6083 * retransmission has occurred.
6085 if (tp->total_retrans > 1 && tp->undo_marker)
6086 tcp_snd_cwnd_set(tp, 1);
6088 tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6089 tp->snd_cwnd_stamp = tcp_jiffies32;
6091 bpf_skops_established(sk, bpf_op, skb);
6092 /* Initialize congestion control unless BPF initialized it already: */
6093 if (!icsk->icsk_ca_initialized)
6094 tcp_init_congestion_control(sk);
6095 tcp_init_buffer_space(sk);
6098 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6100 struct tcp_sock *tp = tcp_sk(sk);
6101 struct inet_connection_sock *icsk = inet_csk(sk);
6103 tcp_set_state(sk, TCP_ESTABLISHED);
6104 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6107 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6108 security_inet_conn_established(sk, skb);
6109 sk_mark_napi_id(sk, skb);
6112 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6114 /* Prevent spurious tcp_cwnd_restart() on first data
6117 tp->lsndtime = tcp_jiffies32;
6119 if (sock_flag(sk, SOCK_KEEPOPEN))
6120 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6122 if (!tp->rx_opt.snd_wscale)
6123 __tcp_fast_path_on(tp, tp->snd_wnd);
6128 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6129 struct tcp_fastopen_cookie *cookie)
6131 struct tcp_sock *tp = tcp_sk(sk);
6132 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6133 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6134 bool syn_drop = false;
6136 if (mss == tp->rx_opt.user_mss) {
6137 struct tcp_options_received opt;
6139 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6140 tcp_clear_options(&opt);
6141 opt.user_mss = opt.mss_clamp = 0;
6142 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6143 mss = opt.mss_clamp;
6146 if (!tp->syn_fastopen) {
6147 /* Ignore an unsolicited cookie */
6149 } else if (tp->total_retrans) {
6150 /* SYN timed out and the SYN-ACK neither has a cookie nor
6151 * acknowledges data. Presumably the remote received only
6152 * the retransmitted (regular) SYNs: either the original
6153 * SYN-data or the corresponding SYN-ACK was dropped.
6155 syn_drop = (cookie->len < 0 && data);
6156 } else if (cookie->len < 0 && !tp->syn_data) {
6157 /* We requested a cookie but didn't get it. If we did not use
6158 * the (old) exp opt format then try so next time (try_exp=1).
6159 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6161 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6164 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6166 if (data) { /* Retransmit unacked data in SYN */
6167 if (tp->total_retrans)
6168 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6170 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6171 skb_rbtree_walk_from(data)
6172 tcp_mark_skb_lost(sk, data);
6173 tcp_xmit_retransmit_queue(sk);
6174 NET_INC_STATS(sock_net(sk),
6175 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6178 tp->syn_data_acked = tp->syn_data;
6179 if (tp->syn_data_acked) {
6180 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6181 /* SYN-data is counted as two separate packets in tcp_ack() */
6182 if (tp->delivered > 1)
6186 tcp_fastopen_add_skb(sk, synack);
6191 static void smc_check_reset_syn(struct tcp_sock *tp)
6193 #if IS_ENABLED(CONFIG_SMC)
6194 if (static_branch_unlikely(&tcp_have_smc)) {
6195 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6201 static void tcp_try_undo_spurious_syn(struct sock *sk)
6203 struct tcp_sock *tp = tcp_sk(sk);
6206 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6207 * spurious if the ACK's timestamp option echo value matches the
6208 * original SYN timestamp.
6210 syn_stamp = tp->retrans_stamp;
6211 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6212 syn_stamp == tp->rx_opt.rcv_tsecr)
6213 tp->undo_marker = 0;
6216 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6217 const struct tcphdr *th)
6219 struct inet_connection_sock *icsk = inet_csk(sk);
6220 struct tcp_sock *tp = tcp_sk(sk);
6221 struct tcp_fastopen_cookie foc = { .len = -1 };
6222 int saved_clamp = tp->rx_opt.mss_clamp;
6226 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6227 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6228 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6232 * "If the state is SYN-SENT then
6233 * first check the ACK bit
6234 * If the ACK bit is set
6235 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6236 * a reset (unless the RST bit is set, if so drop
6237 * the segment and return)"
6239 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6240 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6241 /* Previous FIN/ACK or RST/ACK might be ignored. */
6242 if (icsk->icsk_retransmits == 0)
6243 inet_csk_reset_xmit_timer(sk,
6245 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6246 goto reset_and_undo;
6249 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6250 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6251 tcp_time_stamp(tp))) {
6252 NET_INC_STATS(sock_net(sk),
6253 LINUX_MIB_PAWSACTIVEREJECTED);
6254 goto reset_and_undo;
6257 /* Now ACK is acceptable.
6259 * "If the RST bit is set
6260 * If the ACK was acceptable then signal the user "error:
6261 * connection reset", drop the segment, enter CLOSED state,
6262 * delete TCB, and return."
6273 * "fifth, if neither of the SYN or RST bits is set then
6274 * drop the segment and return."
6280 SKB_DR_SET(reason, TCP_FLAGS);
6281 goto discard_and_undo;
6284 * "If the SYN bit is on ...
6285 * are acceptable then ...
6286 * (our SYN has been ACKed), change the connection
6287 * state to ESTABLISHED..."
6290 tcp_ecn_rcv_synack(tp, th);
6292 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6293 tcp_try_undo_spurious_syn(sk);
6294 tcp_ack(sk, skb, FLAG_SLOWPATH);
6296 /* Ok.. it's good. Set up sequence numbers and
6297 * move to established.
6299 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6300 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6302 /* RFC1323: The window in SYN & SYN/ACK segments is
6305 tp->snd_wnd = ntohs(th->window);
6307 if (!tp->rx_opt.wscale_ok) {
6308 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6309 tp->window_clamp = min(tp->window_clamp, 65535U);
6312 if (tp->rx_opt.saw_tstamp) {
6313 tp->rx_opt.tstamp_ok = 1;
6314 tp->tcp_header_len =
6315 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6316 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6317 tcp_store_ts_recent(tp);
6319 tp->tcp_header_len = sizeof(struct tcphdr);
6322 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6323 tcp_initialize_rcv_mss(sk);
6325 /* Remember, tcp_poll() does not lock socket!
6326 * Change state from SYN-SENT only after copied_seq
6327 * is initialized. */
6328 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6330 smc_check_reset_syn(tp);
6334 tcp_finish_connect(sk, skb);
6336 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6337 tcp_rcv_fastopen_synack(sk, skb, &foc);
6339 if (!sock_flag(sk, SOCK_DEAD)) {
6340 sk->sk_state_change(sk);
6341 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6345 if (sk->sk_write_pending ||
6346 READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6347 inet_csk_in_pingpong_mode(sk)) {
6348 /* Save one ACK. Data will be ready after
6349 * several ticks, if write_pending is set.
6351 * It may be deleted, but with this feature tcpdumps
6352 * look so _wonderfully_ clever, that I was not able
6353 * to stand against the temptation 8) --ANK
6355 inet_csk_schedule_ack(sk);
6356 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6357 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6358 TCP_DELACK_MAX, TCP_RTO_MAX);
6365 /* No ACK in the segment */
6369 * "If the RST bit is set
6371 * Otherwise (no ACK) drop the segment and return."
6373 SKB_DR_SET(reason, TCP_RESET);
6374 goto discard_and_undo;
6378 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6379 tcp_paws_reject(&tp->rx_opt, 0)) {
6380 SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6381 goto discard_and_undo;
6384 /* We see SYN without ACK. It is attempt of
6385 * simultaneous connect with crossed SYNs.
6386 * Particularly, it can be connect to self.
6388 tcp_set_state(sk, TCP_SYN_RECV);
6390 if (tp->rx_opt.saw_tstamp) {
6391 tp->rx_opt.tstamp_ok = 1;
6392 tcp_store_ts_recent(tp);
6393 tp->tcp_header_len =
6394 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6396 tp->tcp_header_len = sizeof(struct tcphdr);
6399 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6400 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6401 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6403 /* RFC1323: The window in SYN & SYN/ACK segments is
6406 tp->snd_wnd = ntohs(th->window);
6407 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6408 tp->max_window = tp->snd_wnd;
6410 tcp_ecn_rcv_syn(tp, th);
6413 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6414 tcp_initialize_rcv_mss(sk);
6416 tcp_send_synack(sk);
6418 /* Note, we could accept data and URG from this segment.
6419 * There are no obstacles to make this (except that we must
6420 * either change tcp_recvmsg() to prevent it from returning data
6421 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6423 * However, if we ignore data in ACKless segments sometimes,
6424 * we have no reasons to accept it sometimes.
6425 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6426 * is not flawless. So, discard packet for sanity.
6427 * Uncomment this return to process the data.
6434 /* "fifth, if neither of the SYN or RST bits is set then
6435 * drop the segment and return."
6439 tcp_clear_options(&tp->rx_opt);
6440 tp->rx_opt.mss_clamp = saved_clamp;
6441 tcp_drop_reason(sk, skb, reason);
6445 tcp_clear_options(&tp->rx_opt);
6446 tp->rx_opt.mss_clamp = saved_clamp;
6450 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6452 struct request_sock *req;
6454 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6455 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6457 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6458 tcp_try_undo_loss(sk, false);
6460 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6461 tcp_sk(sk)->retrans_stamp = 0;
6462 inet_csk(sk)->icsk_retransmits = 0;
6464 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6465 * we no longer need req so release it.
6467 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6468 lockdep_sock_is_held(sk));
6469 reqsk_fastopen_remove(sk, req, false);
6471 /* Re-arm the timer because data may have been sent out.
6472 * This is similar to the regular data transmission case
6473 * when new data has just been ack'ed.
6475 * (TFO) - we could try to be more aggressive and
6476 * retransmitting any data sooner based on when they
6483 * This function implements the receiving procedure of RFC 793 for
6484 * all states except ESTABLISHED and TIME_WAIT.
6485 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6486 * address independent.
6489 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6491 struct tcp_sock *tp = tcp_sk(sk);
6492 struct inet_connection_sock *icsk = inet_csk(sk);
6493 const struct tcphdr *th = tcp_hdr(skb);
6494 struct request_sock *req;
6499 switch (sk->sk_state) {
6501 SKB_DR_SET(reason, TCP_CLOSE);
6509 SKB_DR_SET(reason, TCP_RESET);
6514 SKB_DR_SET(reason, TCP_FLAGS);
6517 /* It is possible that we process SYN packets from backlog,
6518 * so we need to make sure to disable BH and RCU right there.
6522 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6531 SKB_DR_SET(reason, TCP_FLAGS);
6535 tp->rx_opt.saw_tstamp = 0;
6536 tcp_mstamp_refresh(tp);
6537 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6541 /* Do step6 onward by hand. */
6542 tcp_urg(sk, skb, th);
6544 tcp_data_snd_check(sk);
6548 tcp_mstamp_refresh(tp);
6549 tp->rx_opt.saw_tstamp = 0;
6550 req = rcu_dereference_protected(tp->fastopen_rsk,
6551 lockdep_sock_is_held(sk));
6555 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6556 sk->sk_state != TCP_FIN_WAIT1);
6558 if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6559 SKB_DR_SET(reason, TCP_FASTOPEN);
6564 if (!th->ack && !th->rst && !th->syn) {
6565 SKB_DR_SET(reason, TCP_FLAGS);
6568 if (!tcp_validate_incoming(sk, skb, th, 0))
6571 /* step 5: check the ACK field */
6572 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6573 FLAG_UPDATE_TS_RECENT |
6574 FLAG_NO_CHALLENGE_ACK) > 0;
6577 if (sk->sk_state == TCP_SYN_RECV)
6578 return 1; /* send one RST */
6579 tcp_send_challenge_ack(sk);
6580 SKB_DR_SET(reason, TCP_OLD_ACK);
6583 switch (sk->sk_state) {
6585 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6587 tcp_synack_rtt_meas(sk, req);
6590 tcp_rcv_synrecv_state_fastopen(sk);
6592 tcp_try_undo_spurious_syn(sk);
6593 tp->retrans_stamp = 0;
6594 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6596 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6599 tcp_set_state(sk, TCP_ESTABLISHED);
6600 sk->sk_state_change(sk);
6602 /* Note, that this wakeup is only for marginal crossed SYN case.
6603 * Passively open sockets are not waked up, because
6604 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6607 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6609 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6610 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6611 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6613 if (tp->rx_opt.tstamp_ok)
6614 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6616 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6617 tcp_update_pacing_rate(sk);
6619 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6620 tp->lsndtime = tcp_jiffies32;
6622 tcp_initialize_rcv_mss(sk);
6623 tcp_fast_path_on(tp);
6626 case TCP_FIN_WAIT1: {
6630 tcp_rcv_synrecv_state_fastopen(sk);
6632 if (tp->snd_una != tp->write_seq)
6635 tcp_set_state(sk, TCP_FIN_WAIT2);
6636 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6640 if (!sock_flag(sk, SOCK_DEAD)) {
6641 /* Wake up lingering close() */
6642 sk->sk_state_change(sk);
6646 if (READ_ONCE(tp->linger2) < 0) {
6648 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6651 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6652 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6653 /* Receive out of order FIN after close() */
6654 if (tp->syn_fastopen && th->fin)
6655 tcp_fastopen_active_disable(sk);
6657 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6661 tmo = tcp_fin_time(sk);
6662 if (tmo > TCP_TIMEWAIT_LEN) {
6663 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6664 } else if (th->fin || sock_owned_by_user(sk)) {
6665 /* Bad case. We could lose such FIN otherwise.
6666 * It is not a big problem, but it looks confusing
6667 * and not so rare event. We still can lose it now,
6668 * if it spins in bh_lock_sock(), but it is really
6671 inet_csk_reset_keepalive_timer(sk, tmo);
6673 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6680 if (tp->snd_una == tp->write_seq) {
6681 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6687 if (tp->snd_una == tp->write_seq) {
6688 tcp_update_metrics(sk);
6695 /* step 6: check the URG bit */
6696 tcp_urg(sk, skb, th);
6698 /* step 7: process the segment text */
6699 switch (sk->sk_state) {
6700 case TCP_CLOSE_WAIT:
6703 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6704 /* If a subflow has been reset, the packet should not
6705 * continue to be processed, drop the packet.
6707 if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6714 /* RFC 793 says to queue data in these states,
6715 * RFC 1122 says we MUST send a reset.
6716 * BSD 4.4 also does reset.
6718 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6719 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6720 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6721 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6727 case TCP_ESTABLISHED:
6728 tcp_data_queue(sk, skb);
6733 /* tcp_data could move socket to TIME-WAIT */
6734 if (sk->sk_state != TCP_CLOSE) {
6735 tcp_data_snd_check(sk);
6736 tcp_ack_snd_check(sk);
6741 tcp_drop_reason(sk, skb, reason);
6749 EXPORT_SYMBOL(tcp_rcv_state_process);
6751 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6753 struct inet_request_sock *ireq = inet_rsk(req);
6755 if (family == AF_INET)
6756 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6757 &ireq->ir_rmt_addr, port);
6758 #if IS_ENABLED(CONFIG_IPV6)
6759 else if (family == AF_INET6)
6760 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6761 &ireq->ir_v6_rmt_addr, port);
6765 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6767 * If we receive a SYN packet with these bits set, it means a
6768 * network is playing bad games with TOS bits. In order to
6769 * avoid possible false congestion notifications, we disable
6770 * TCP ECN negotiation.
6772 * Exception: tcp_ca wants ECN. This is required for DCTCP
6773 * congestion control: Linux DCTCP asserts ECT on all packets,
6774 * including SYN, which is most optimal solution; however,
6775 * others, such as FreeBSD do not.
6777 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6778 * set, indicating the use of a future TCP extension (such as AccECN). See
6779 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6782 static void tcp_ecn_create_request(struct request_sock *req,
6783 const struct sk_buff *skb,
6784 const struct sock *listen_sk,
6785 const struct dst_entry *dst)
6787 const struct tcphdr *th = tcp_hdr(skb);
6788 const struct net *net = sock_net(listen_sk);
6789 bool th_ecn = th->ece && th->cwr;
6796 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6797 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6798 ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6800 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6801 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6802 tcp_bpf_ca_needs_ecn((struct sock *)req))
6803 inet_rsk(req)->ecn_ok = 1;
6806 static void tcp_openreq_init(struct request_sock *req,
6807 const struct tcp_options_received *rx_opt,
6808 struct sk_buff *skb, const struct sock *sk)
6810 struct inet_request_sock *ireq = inet_rsk(req);
6812 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6813 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6814 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6815 tcp_rsk(req)->snt_synack = 0;
6816 tcp_rsk(req)->last_oow_ack_time = 0;
6817 req->mss = rx_opt->mss_clamp;
6818 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6819 ireq->tstamp_ok = rx_opt->tstamp_ok;
6820 ireq->sack_ok = rx_opt->sack_ok;
6821 ireq->snd_wscale = rx_opt->snd_wscale;
6822 ireq->wscale_ok = rx_opt->wscale_ok;
6825 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6826 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6827 ireq->ir_mark = inet_request_mark(sk, skb);
6828 #if IS_ENABLED(CONFIG_SMC)
6829 ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6830 tcp_sk(sk)->smc_hs_congested(sk));
6834 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6835 struct sock *sk_listener,
6836 bool attach_listener)
6838 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6842 struct inet_request_sock *ireq = inet_rsk(req);
6844 ireq->ireq_opt = NULL;
6845 #if IS_ENABLED(CONFIG_IPV6)
6846 ireq->pktopts = NULL;
6848 atomic64_set(&ireq->ir_cookie, 0);
6849 ireq->ireq_state = TCP_NEW_SYN_RECV;
6850 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6851 ireq->ireq_family = sk_listener->sk_family;
6852 req->timeout = TCP_TIMEOUT_INIT;
6857 EXPORT_SYMBOL(inet_reqsk_alloc);
6860 * Return true if a syncookie should be sent
6862 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6864 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6865 const char *msg = "Dropping request";
6866 struct net *net = sock_net(sk);
6867 bool want_cookie = false;
6870 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6872 #ifdef CONFIG_SYN_COOKIES
6874 msg = "Sending cookies";
6876 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6879 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6881 if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
6882 xchg(&queue->synflood_warned, 1) == 0) {
6883 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
6884 net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
6885 proto, inet6_rcv_saddr(sk),
6888 net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
6889 proto, &sk->sk_rcv_saddr,
6897 static void tcp_reqsk_record_syn(const struct sock *sk,
6898 struct request_sock *req,
6899 const struct sk_buff *skb)
6901 if (tcp_sk(sk)->save_syn) {
6902 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6903 struct saved_syn *saved_syn;
6907 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
6908 base = skb_mac_header(skb);
6909 mac_hdrlen = skb_mac_header_len(skb);
6912 base = skb_network_header(skb);
6916 saved_syn = kmalloc(struct_size(saved_syn, data, len),
6919 saved_syn->mac_hdrlen = mac_hdrlen;
6920 saved_syn->network_hdrlen = skb_network_header_len(skb);
6921 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6922 memcpy(saved_syn->data, base, len);
6923 req->saved_syn = saved_syn;
6928 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6929 * used for SYN cookie generation.
6931 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6932 const struct tcp_request_sock_ops *af_ops,
6933 struct sock *sk, struct tcphdr *th)
6935 struct tcp_sock *tp = tcp_sk(sk);
6938 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6939 !inet_csk_reqsk_queue_is_full(sk))
6942 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6945 if (sk_acceptq_is_full(sk)) {
6946 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6950 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6952 mss = af_ops->mss_clamp;
6956 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6958 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6959 const struct tcp_request_sock_ops *af_ops,
6960 struct sock *sk, struct sk_buff *skb)
6962 struct tcp_fastopen_cookie foc = { .len = -1 };
6963 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6964 struct tcp_options_received tmp_opt;
6965 struct tcp_sock *tp = tcp_sk(sk);
6966 struct net *net = sock_net(sk);
6967 struct sock *fastopen_sk = NULL;
6968 struct request_sock *req;
6969 bool want_cookie = false;
6970 struct dst_entry *dst;
6974 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6976 /* TW buckets are converted to open requests without
6977 * limitations, they conserve resources and peer is
6978 * evidently real one.
6980 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6981 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6986 if (sk_acceptq_is_full(sk)) {
6987 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6991 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6995 req->syncookie = want_cookie;
6996 tcp_rsk(req)->af_specific = af_ops;
6997 tcp_rsk(req)->ts_off = 0;
6998 #if IS_ENABLED(CONFIG_MPTCP)
6999 tcp_rsk(req)->is_mptcp = 0;
7002 tcp_clear_options(&tmp_opt);
7003 tmp_opt.mss_clamp = af_ops->mss_clamp;
7004 tmp_opt.user_mss = tp->rx_opt.user_mss;
7005 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7006 want_cookie ? NULL : &foc);
7008 if (want_cookie && !tmp_opt.saw_tstamp)
7009 tcp_clear_options(&tmp_opt);
7011 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7014 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7015 tcp_openreq_init(req, &tmp_opt, skb, sk);
7016 inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7018 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
7019 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7021 dst = af_ops->route_req(sk, skb, &fl, req);
7025 if (tmp_opt.tstamp_ok)
7026 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7028 if (!want_cookie && !isn) {
7029 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7031 /* Kill the following clause, if you dislike this way. */
7033 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7034 (max_syn_backlog >> 2)) &&
7035 !tcp_peer_is_proven(req, dst)) {
7036 /* Without syncookies last quarter of
7037 * backlog is filled with destinations,
7038 * proven to be alive.
7039 * It means that we continue to communicate
7040 * to destinations, already remembered
7041 * to the moment of synflood.
7043 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7045 goto drop_and_release;
7048 isn = af_ops->init_seq(skb);
7051 tcp_ecn_create_request(req, skb, sk, dst);
7054 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7055 if (!tmp_opt.tstamp_ok)
7056 inet_rsk(req)->ecn_ok = 0;
7059 tcp_rsk(req)->snt_isn = isn;
7060 tcp_rsk(req)->txhash = net_tx_rndhash();
7061 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7062 tcp_openreq_init_rwin(req, sk, dst);
7063 sk_rx_queue_set(req_to_sk(req), skb);
7065 tcp_reqsk_record_syn(sk, req, skb);
7066 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7069 af_ops->send_synack(fastopen_sk, dst, &fl, req,
7070 &foc, TCP_SYNACK_FASTOPEN, skb);
7071 /* Add the child socket directly into the accept queue */
7072 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7073 reqsk_fastopen_remove(fastopen_sk, req, false);
7074 bh_unlock_sock(fastopen_sk);
7075 sock_put(fastopen_sk);
7078 sk->sk_data_ready(sk);
7079 bh_unlock_sock(fastopen_sk);
7080 sock_put(fastopen_sk);
7082 tcp_rsk(req)->tfo_listener = false;
7084 req->timeout = tcp_timeout_init((struct sock *)req);
7085 inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7087 af_ops->send_synack(sk, dst, &fl, req, &foc,
7088 !want_cookie ? TCP_SYNACK_NORMAL :
7107 EXPORT_SYMBOL(tcp_conn_request);