1 // SPDX-License-Identifier: GPL-2.0
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * Implementation of the Transmission Control Protocol(TCP).
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Pedro Roque : Fast Retransmit/Recovery.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
57 * J Hadi Salim: ECN support
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
65 #define pr_fmt(fmt) "TCP: " fmt
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
84 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
86 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
87 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
88 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
89 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
90 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
91 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
92 #define FLAG_ECE 0x40 /* ECE in this ACK */
93 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
94 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
95 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
96 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
98 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
99 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
100 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
101 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
102 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
104 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
105 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
106 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
107 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
109 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
110 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112 #define REXMIT_NONE 0 /* no loss recovery to do */
113 #define REXMIT_LOST 1 /* retransmit packets marked lost */
114 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
116 #if IS_ENABLED(CONFIG_TLS_DEVICE)
117 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119 void clean_acked_data_enable(struct inet_connection_sock *icsk,
120 void (*cad)(struct sock *sk, u32 ack_seq))
122 icsk->icsk_clean_acked = cad;
123 static_branch_deferred_inc(&clean_acked_data_enabled);
125 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127 void clean_acked_data_disable(struct inet_connection_sock *icsk)
129 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
130 icsk->icsk_clean_acked = NULL;
132 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134 void clean_acked_data_flush(void)
136 static_key_deferred_flush(&clean_acked_data_enabled);
138 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
141 #ifdef CONFIG_CGROUP_BPF
142 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
145 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
146 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
147 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
148 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
149 struct bpf_sock_ops_kern sock_ops;
151 if (likely(!unknown_opt && !parse_all_opt))
154 /* The skb will be handled in the
155 * bpf_skops_established() or
156 * bpf_skops_write_hdr_opt().
158 switch (sk->sk_state) {
165 sock_owned_by_me(sk);
167 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
168 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
169 sock_ops.is_fullsock = 1;
171 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
176 static void bpf_skops_established(struct sock *sk, int bpf_op,
179 struct bpf_sock_ops_kern sock_ops;
181 sock_owned_by_me(sk);
183 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
184 sock_ops.op = bpf_op;
185 sock_ops.is_fullsock = 1;
187 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
194 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
198 static void bpf_skops_established(struct sock *sk, int bpf_op,
204 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
207 static bool __once __read_mostly;
210 struct net_device *dev;
215 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
216 if (!dev || len >= dev->mtu)
217 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
218 dev ? dev->name : "Unknown driver");
223 /* Adapt the MSS value used to make delayed ack decision to the
226 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228 struct inet_connection_sock *icsk = inet_csk(sk);
229 const unsigned int lss = icsk->icsk_ack.last_seg_size;
232 icsk->icsk_ack.last_seg_size = 0;
234 /* skb->len may jitter because of SACKs, even if peer
235 * sends good full-sized frames.
237 len = skb_shinfo(skb)->gso_size ? : skb->len;
238 if (len >= icsk->icsk_ack.rcv_mss) {
239 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
241 /* Account for possibly-removed options */
242 if (unlikely(len > icsk->icsk_ack.rcv_mss +
243 MAX_TCP_OPTION_SPACE))
244 tcp_gro_dev_warn(sk, skb, len);
246 /* Otherwise, we make more careful check taking into account,
247 * that SACKs block is variable.
249 * "len" is invariant segment length, including TCP header.
251 len += skb->data - skb_transport_header(skb);
252 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
253 /* If PSH is not set, packet should be
254 * full sized, provided peer TCP is not badly broken.
255 * This observation (if it is correct 8)) allows
256 * to handle super-low mtu links fairly.
258 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
259 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
260 /* Subtract also invariant (if peer is RFC compliant),
261 * tcp header plus fixed timestamp option length.
262 * Resulting "len" is MSS free of SACK jitter.
264 len -= tcp_sk(sk)->tcp_header_len;
265 icsk->icsk_ack.last_seg_size = len;
267 icsk->icsk_ack.rcv_mss = len;
271 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
272 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
273 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
277 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
279 struct inet_connection_sock *icsk = inet_csk(sk);
280 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
284 quickacks = min(quickacks, max_quickacks);
285 if (quickacks > icsk->icsk_ack.quick)
286 icsk->icsk_ack.quick = quickacks;
289 void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
291 struct inet_connection_sock *icsk = inet_csk(sk);
293 tcp_incr_quickack(sk, max_quickacks);
294 inet_csk_exit_pingpong_mode(sk);
295 icsk->icsk_ack.ato = TCP_ATO_MIN;
297 EXPORT_SYMBOL(tcp_enter_quickack_mode);
299 /* Send ACKs quickly, if "quick" count is not exhausted
300 * and the session is not interactive.
303 static bool tcp_in_quickack_mode(struct sock *sk)
305 const struct inet_connection_sock *icsk = inet_csk(sk);
306 const struct dst_entry *dst = __sk_dst_get(sk);
308 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
309 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
312 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
314 if (tp->ecn_flags & TCP_ECN_OK)
315 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
318 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
320 if (tcp_hdr(skb)->cwr) {
321 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
323 /* If the sender is telling us it has entered CWR, then its
324 * cwnd may be very low (even just 1 packet), so we should ACK
327 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
328 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
332 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
334 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
337 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
339 struct tcp_sock *tp = tcp_sk(sk);
341 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
342 case INET_ECN_NOT_ECT:
343 /* Funny extension: if ECT is not set on a segment,
344 * and we already seen ECT on a previous segment,
345 * it is probably a retransmit.
347 if (tp->ecn_flags & TCP_ECN_SEEN)
348 tcp_enter_quickack_mode(sk, 2);
351 if (tcp_ca_needs_ecn(sk))
352 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
354 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
355 /* Better not delay acks, sender can have a very low cwnd */
356 tcp_enter_quickack_mode(sk, 2);
357 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
359 tp->ecn_flags |= TCP_ECN_SEEN;
362 if (tcp_ca_needs_ecn(sk))
363 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
364 tp->ecn_flags |= TCP_ECN_SEEN;
369 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
371 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
372 __tcp_ecn_check_ce(sk, skb);
375 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
377 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
378 tp->ecn_flags &= ~TCP_ECN_OK;
381 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
383 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
384 tp->ecn_flags &= ~TCP_ECN_OK;
387 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
389 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
394 /* Buffer size and advertised window tuning.
396 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
399 static void tcp_sndbuf_expand(struct sock *sk)
401 const struct tcp_sock *tp = tcp_sk(sk);
402 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
406 /* Worst case is non GSO/TSO : each frame consumes one skb
407 * and skb->head is kmalloced using power of two area of memory
409 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
411 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
413 per_mss = roundup_pow_of_two(per_mss) +
414 SKB_DATA_ALIGN(sizeof(struct sk_buff));
416 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
417 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
419 /* Fast Recovery (RFC 5681 3.2) :
420 * Cubic needs 1.7 factor, rounded to 2 to include
421 * extra cushion (application might react slowly to EPOLLOUT)
423 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
424 sndmem *= nr_segs * per_mss;
426 if (sk->sk_sndbuf < sndmem)
427 WRITE_ONCE(sk->sk_sndbuf,
428 min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]));
431 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
433 * All tcp_full_space() is split to two parts: "network" buffer, allocated
434 * forward and advertised in receiver window (tp->rcv_wnd) and
435 * "application buffer", required to isolate scheduling/application
436 * latencies from network.
437 * window_clamp is maximal advertised window. It can be less than
438 * tcp_full_space(), in this case tcp_full_space() - window_clamp
439 * is reserved for "application" buffer. The less window_clamp is
440 * the smoother our behaviour from viewpoint of network, but the lower
441 * throughput and the higher sensitivity of the connection to losses. 8)
443 * rcv_ssthresh is more strict window_clamp used at "slow start"
444 * phase to predict further behaviour of this connection.
445 * It is used for two goals:
446 * - to enforce header prediction at sender, even when application
447 * requires some significant "application buffer". It is check #1.
448 * - to prevent pruning of receive queue because of misprediction
449 * of receiver window. Check #2.
451 * The scheme does not work when sender sends good segments opening
452 * window and then starts to feed us spaghetti. But it should work
453 * in common situations. Otherwise, we have to rely on queue collapsing.
456 /* Slow part of check#2. */
457 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
459 struct tcp_sock *tp = tcp_sk(sk);
461 int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
462 int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
464 while (tp->rcv_ssthresh <= window) {
465 if (truesize <= skb->len)
466 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
474 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
476 struct tcp_sock *tp = tcp_sk(sk);
479 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
482 if (room > 0 && !tcp_under_memory_pressure(sk)) {
485 /* Check #2. Increase window, if skb with such overhead
486 * will fit to rcvbuf in future.
488 if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
489 incr = 2 * tp->advmss;
491 incr = __tcp_grow_window(sk, skb);
494 incr = max_t(int, incr, 2 * skb->len);
495 tp->rcv_ssthresh += min(room, incr);
496 inet_csk(sk)->icsk_ack.quick |= 1;
501 /* 3. Try to fixup all. It is made immediately after connection enters
504 static void tcp_init_buffer_space(struct sock *sk)
506 int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
507 struct tcp_sock *tp = tcp_sk(sk);
510 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
511 tcp_sndbuf_expand(sk);
513 tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
514 tcp_mstamp_refresh(tp);
515 tp->rcvq_space.time = tp->tcp_mstamp;
516 tp->rcvq_space.seq = tp->copied_seq;
518 maxwin = tcp_full_space(sk);
520 if (tp->window_clamp >= maxwin) {
521 tp->window_clamp = maxwin;
523 if (tcp_app_win && maxwin > 4 * tp->advmss)
524 tp->window_clamp = max(maxwin -
525 (maxwin >> tcp_app_win),
529 /* Force reservation of one segment. */
531 tp->window_clamp > 2 * tp->advmss &&
532 tp->window_clamp + tp->advmss > maxwin)
533 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
535 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
536 tp->snd_cwnd_stamp = tcp_jiffies32;
539 /* 4. Recalculate window clamp after socket hit its memory bounds. */
540 static void tcp_clamp_window(struct sock *sk)
542 struct tcp_sock *tp = tcp_sk(sk);
543 struct inet_connection_sock *icsk = inet_csk(sk);
544 struct net *net = sock_net(sk);
546 icsk->icsk_ack.quick = 0;
548 if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
549 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
550 !tcp_under_memory_pressure(sk) &&
551 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
552 WRITE_ONCE(sk->sk_rcvbuf,
553 min(atomic_read(&sk->sk_rmem_alloc),
554 net->ipv4.sysctl_tcp_rmem[2]));
556 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
557 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
560 /* Initialize RCV_MSS value.
561 * RCV_MSS is an our guess about MSS used by the peer.
562 * We haven't any direct information about the MSS.
563 * It's better to underestimate the RCV_MSS rather than overestimate.
564 * Overestimations make us ACKing less frequently than needed.
565 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
567 void tcp_initialize_rcv_mss(struct sock *sk)
569 const struct tcp_sock *tp = tcp_sk(sk);
570 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
572 hint = min(hint, tp->rcv_wnd / 2);
573 hint = min(hint, TCP_MSS_DEFAULT);
574 hint = max(hint, TCP_MIN_MSS);
576 inet_csk(sk)->icsk_ack.rcv_mss = hint;
578 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
580 /* Receiver "autotuning" code.
582 * The algorithm for RTT estimation w/o timestamps is based on
583 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
584 * <https://public.lanl.gov/radiant/pubs.html#DRS>
586 * More detail on this code can be found at
587 * <http://staff.psc.edu/jheffner/>,
588 * though this reference is out of date. A new paper
591 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
593 u32 new_sample = tp->rcv_rtt_est.rtt_us;
596 if (new_sample != 0) {
597 /* If we sample in larger samples in the non-timestamp
598 * case, we could grossly overestimate the RTT especially
599 * with chatty applications or bulk transfer apps which
600 * are stalled on filesystem I/O.
602 * Also, since we are only going for a minimum in the
603 * non-timestamp case, we do not smooth things out
604 * else with timestamps disabled convergence takes too
608 m -= (new_sample >> 3);
616 /* No previous measure. */
620 tp->rcv_rtt_est.rtt_us = new_sample;
623 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
627 if (tp->rcv_rtt_est.time == 0)
629 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
631 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
634 tcp_rcv_rtt_update(tp, delta_us, 1);
637 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
638 tp->rcv_rtt_est.time = tp->tcp_mstamp;
641 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
642 const struct sk_buff *skb)
644 struct tcp_sock *tp = tcp_sk(sk);
646 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
648 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
650 if (TCP_SKB_CB(skb)->end_seq -
651 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
652 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
655 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
658 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
659 tcp_rcv_rtt_update(tp, delta_us, 0);
665 * This function should be called every time data is copied to user space.
666 * It calculates the appropriate TCP receive buffer space.
668 void tcp_rcv_space_adjust(struct sock *sk)
670 struct tcp_sock *tp = tcp_sk(sk);
674 trace_tcp_rcv_space_adjust(sk);
676 tcp_mstamp_refresh(tp);
677 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
678 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
681 /* Number of bytes copied to user in last RTT */
682 copied = tp->copied_seq - tp->rcvq_space.seq;
683 if (copied <= tp->rcvq_space.space)
687 * copied = bytes received in previous RTT, our base window
688 * To cope with packet losses, we need a 2x factor
689 * To cope with slow start, and sender growing its cwin by 100 %
690 * every RTT, we need a 4x factor, because the ACK we are sending
691 * now is for the next RTT, not the current one :
692 * <prev RTT . ><current RTT .. ><next RTT .... >
695 if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
696 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
700 /* minimal window to cope with packet losses, assuming
701 * steady state. Add some cushion because of small variations.
703 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
705 /* Accommodate for sender rate increase (eg. slow start) */
706 grow = rcvwin * (copied - tp->rcvq_space.space);
707 do_div(grow, tp->rcvq_space.space);
708 rcvwin += (grow << 1);
710 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
711 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
714 do_div(rcvwin, tp->advmss);
715 rcvbuf = min_t(u64, rcvwin * rcvmem,
716 sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
717 if (rcvbuf > sk->sk_rcvbuf) {
718 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
720 /* Make the window clamp follow along. */
721 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
724 tp->rcvq_space.space = copied;
727 tp->rcvq_space.seq = tp->copied_seq;
728 tp->rcvq_space.time = tp->tcp_mstamp;
731 /* There is something which you must keep in mind when you analyze the
732 * behavior of the tp->ato delayed ack timeout interval. When a
733 * connection starts up, we want to ack as quickly as possible. The
734 * problem is that "good" TCP's do slow start at the beginning of data
735 * transmission. The means that until we send the first few ACK's the
736 * sender will sit on his end and only queue most of his data, because
737 * he can only send snd_cwnd unacked packets at any given time. For
738 * each ACK we send, he increments snd_cwnd and transmits more of his
741 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
743 struct tcp_sock *tp = tcp_sk(sk);
744 struct inet_connection_sock *icsk = inet_csk(sk);
747 inet_csk_schedule_ack(sk);
749 tcp_measure_rcv_mss(sk, skb);
751 tcp_rcv_rtt_measure(tp);
755 if (!icsk->icsk_ack.ato) {
756 /* The _first_ data packet received, initialize
757 * delayed ACK engine.
759 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
760 icsk->icsk_ack.ato = TCP_ATO_MIN;
762 int m = now - icsk->icsk_ack.lrcvtime;
764 if (m <= TCP_ATO_MIN / 2) {
765 /* The fastest case is the first. */
766 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
767 } else if (m < icsk->icsk_ack.ato) {
768 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
769 if (icsk->icsk_ack.ato > icsk->icsk_rto)
770 icsk->icsk_ack.ato = icsk->icsk_rto;
771 } else if (m > icsk->icsk_rto) {
772 /* Too long gap. Apparently sender failed to
773 * restart window, so that we send ACKs quickly.
775 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
779 icsk->icsk_ack.lrcvtime = now;
781 tcp_ecn_check_ce(sk, skb);
784 tcp_grow_window(sk, skb);
787 /* Called to compute a smoothed rtt estimate. The data fed to this
788 * routine either comes from timestamps, or from segments that were
789 * known _not_ to have been retransmitted [see Karn/Partridge
790 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
791 * piece by Van Jacobson.
792 * NOTE: the next three routines used to be one big routine.
793 * To save cycles in the RFC 1323 implementation it was better to break
794 * it up into three procedures. -- erics
796 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
798 struct tcp_sock *tp = tcp_sk(sk);
799 long m = mrtt_us; /* RTT */
800 u32 srtt = tp->srtt_us;
802 /* The following amusing code comes from Jacobson's
803 * article in SIGCOMM '88. Note that rtt and mdev
804 * are scaled versions of rtt and mean deviation.
805 * This is designed to be as fast as possible
806 * m stands for "measurement".
808 * On a 1990 paper the rto value is changed to:
809 * RTO = rtt + 4 * mdev
811 * Funny. This algorithm seems to be very broken.
812 * These formulae increase RTO, when it should be decreased, increase
813 * too slowly, when it should be increased quickly, decrease too quickly
814 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
815 * does not matter how to _calculate_ it. Seems, it was trap
816 * that VJ failed to avoid. 8)
819 m -= (srtt >> 3); /* m is now error in rtt est */
820 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
822 m = -m; /* m is now abs(error) */
823 m -= (tp->mdev_us >> 2); /* similar update on mdev */
824 /* This is similar to one of Eifel findings.
825 * Eifel blocks mdev updates when rtt decreases.
826 * This solution is a bit different: we use finer gain
827 * for mdev in this case (alpha*beta).
828 * Like Eifel it also prevents growth of rto,
829 * but also it limits too fast rto decreases,
830 * happening in pure Eifel.
835 m -= (tp->mdev_us >> 2); /* similar update on mdev */
837 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
838 if (tp->mdev_us > tp->mdev_max_us) {
839 tp->mdev_max_us = tp->mdev_us;
840 if (tp->mdev_max_us > tp->rttvar_us)
841 tp->rttvar_us = tp->mdev_max_us;
843 if (after(tp->snd_una, tp->rtt_seq)) {
844 if (tp->mdev_max_us < tp->rttvar_us)
845 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
846 tp->rtt_seq = tp->snd_nxt;
847 tp->mdev_max_us = tcp_rto_min_us(sk);
852 /* no previous measure. */
853 srtt = m << 3; /* take the measured time to be rtt */
854 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
855 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
856 tp->mdev_max_us = tp->rttvar_us;
857 tp->rtt_seq = tp->snd_nxt;
861 tp->srtt_us = max(1U, srtt);
864 static void tcp_update_pacing_rate(struct sock *sk)
866 const struct tcp_sock *tp = tcp_sk(sk);
869 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
870 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
872 /* current rate is (cwnd * mss) / srtt
873 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
874 * In Congestion Avoidance phase, set it to 120 % the current rate.
876 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
877 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
878 * end of slow start and should slow down.
880 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
881 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
883 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
885 rate *= max(tp->snd_cwnd, tp->packets_out);
887 if (likely(tp->srtt_us))
888 do_div(rate, tp->srtt_us);
890 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
891 * without any lock. We want to make sure compiler wont store
892 * intermediate values in this location.
894 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
895 sk->sk_max_pacing_rate));
898 /* Calculate rto without backoff. This is the second half of Van Jacobson's
899 * routine referred to above.
901 static void tcp_set_rto(struct sock *sk)
903 const struct tcp_sock *tp = tcp_sk(sk);
904 /* Old crap is replaced with new one. 8)
907 * 1. If rtt variance happened to be less 50msec, it is hallucination.
908 * It cannot be less due to utterly erratic ACK generation made
909 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
910 * to do with delayed acks, because at cwnd>2 true delack timeout
911 * is invisible. Actually, Linux-2.4 also generates erratic
912 * ACKs in some circumstances.
914 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
916 /* 2. Fixups made earlier cannot be right.
917 * If we do not estimate RTO correctly without them,
918 * all the algo is pure shit and should be replaced
919 * with correct one. It is exactly, which we pretend to do.
922 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
923 * guarantees that rto is higher.
928 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
930 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
933 cwnd = TCP_INIT_CWND;
934 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
937 struct tcp_sacktag_state {
938 /* Timestamps for earliest and latest never-retransmitted segment
939 * that was SACKed. RTO needs the earliest RTT to stay conservative,
940 * but congestion control should still get an accurate delay signal.
947 unsigned int mss_now;
948 struct rate_sample *rate;
951 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
952 * and spurious retransmission information if this DSACK is unlikely caused by
954 * - DSACKed sequence range is larger than maximum receiver's window.
955 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
957 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
958 u32 end_seq, struct tcp_sacktag_state *state)
960 u32 seq_len, dup_segs = 1;
962 if (!before(start_seq, end_seq))
965 seq_len = end_seq - start_seq;
966 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
967 if (seq_len > tp->max_window)
969 if (seq_len > tp->mss_cache)
970 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
972 tp->dsack_dups += dup_segs;
973 /* Skip the DSACK if dup segs weren't retransmitted by sender */
974 if (tp->dsack_dups > tp->total_retrans)
977 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
978 tp->rack.dsack_seen = 1;
980 state->flag |= FLAG_DSACKING_ACK;
981 /* A spurious retransmission is delivered */
982 state->sack_delivered += dup_segs;
987 /* It's reordering when higher sequence was delivered (i.e. sacked) before
988 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
989 * distance is approximated in full-mss packet distance ("reordering").
991 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
994 struct tcp_sock *tp = tcp_sk(sk);
995 const u32 mss = tp->mss_cache;
998 fack = tcp_highest_sack_seq(tp);
999 if (!before(low_seq, fack))
1002 metric = fack - low_seq;
1003 if ((metric > tp->reordering * mss) && mss) {
1004 #if FASTRETRANS_DEBUG > 1
1005 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1006 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1010 tp->undo_marker ? tp->undo_retrans : 0);
1012 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1013 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1016 /* This exciting event is worth to be remembered. 8) */
1018 NET_INC_STATS(sock_net(sk),
1019 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1022 /* This must be called before lost_out or retrans_out are updated
1023 * on a new loss, because we want to know if all skbs previously
1024 * known to be lost have already been retransmitted, indicating
1025 * that this newly lost skb is our next skb to retransmit.
1027 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1029 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1030 (tp->retransmit_skb_hint &&
1031 before(TCP_SKB_CB(skb)->seq,
1032 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1033 tp->retransmit_skb_hint = skb;
1036 /* Sum the number of packets on the wire we have marked as lost, and
1037 * notify the congestion control module that the given skb was marked lost.
1039 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1041 tp->lost += tcp_skb_pcount(skb);
1044 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1046 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1047 struct tcp_sock *tp = tcp_sk(sk);
1049 if (sacked & TCPCB_SACKED_ACKED)
1052 tcp_verify_retransmit_hint(tp, skb);
1053 if (sacked & TCPCB_LOST) {
1054 if (sacked & TCPCB_SACKED_RETRANS) {
1055 /* Account for retransmits that are lost again */
1056 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1057 tp->retrans_out -= tcp_skb_pcount(skb);
1058 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1059 tcp_skb_pcount(skb));
1060 tcp_notify_skb_loss_event(tp, skb);
1063 tp->lost_out += tcp_skb_pcount(skb);
1064 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1065 tcp_notify_skb_loss_event(tp, skb);
1069 /* Updates the delivered and delivered_ce counts */
1070 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1073 tp->delivered += delivered;
1075 tp->delivered_ce += delivered;
1078 /* This procedure tags the retransmission queue when SACKs arrive.
1080 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1081 * Packets in queue with these bits set are counted in variables
1082 * sacked_out, retrans_out and lost_out, correspondingly.
1084 * Valid combinations are:
1085 * Tag InFlight Description
1086 * 0 1 - orig segment is in flight.
1087 * S 0 - nothing flies, orig reached receiver.
1088 * L 0 - nothing flies, orig lost by net.
1089 * R 2 - both orig and retransmit are in flight.
1090 * L|R 1 - orig is lost, retransmit is in flight.
1091 * S|R 1 - orig reached receiver, retrans is still in flight.
1092 * (L|S|R is logically valid, it could occur when L|R is sacked,
1093 * but it is equivalent to plain S and code short-curcuits it to S.
1094 * L|S is logically invalid, it would mean -1 packet in flight 8))
1096 * These 6 states form finite state machine, controlled by the following events:
1097 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1098 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1099 * 3. Loss detection event of two flavors:
1100 * A. Scoreboard estimator decided the packet is lost.
1101 * A'. Reno "three dupacks" marks head of queue lost.
1102 * B. SACK arrives sacking SND.NXT at the moment, when the
1103 * segment was retransmitted.
1104 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1106 * It is pleasant to note, that state diagram turns out to be commutative,
1107 * so that we are allowed not to be bothered by order of our actions,
1108 * when multiple events arrive simultaneously. (see the function below).
1110 * Reordering detection.
1111 * --------------------
1112 * Reordering metric is maximal distance, which a packet can be displaced
1113 * in packet stream. With SACKs we can estimate it:
1115 * 1. SACK fills old hole and the corresponding segment was not
1116 * ever retransmitted -> reordering. Alas, we cannot use it
1117 * when segment was retransmitted.
1118 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1119 * for retransmitted and already SACKed segment -> reordering..
1120 * Both of these heuristics are not used in Loss state, when we cannot
1121 * account for retransmits accurately.
1123 * SACK block validation.
1124 * ----------------------
1126 * SACK block range validation checks that the received SACK block fits to
1127 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1128 * Note that SND.UNA is not included to the range though being valid because
1129 * it means that the receiver is rather inconsistent with itself reporting
1130 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1131 * perfectly valid, however, in light of RFC2018 which explicitly states
1132 * that "SACK block MUST reflect the newest segment. Even if the newest
1133 * segment is going to be discarded ...", not that it looks very clever
1134 * in case of head skb. Due to potentional receiver driven attacks, we
1135 * choose to avoid immediate execution of a walk in write queue due to
1136 * reneging and defer head skb's loss recovery to standard loss recovery
1137 * procedure that will eventually trigger (nothing forbids us doing this).
1139 * Implements also blockage to start_seq wrap-around. Problem lies in the
1140 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1141 * there's no guarantee that it will be before snd_nxt (n). The problem
1142 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1145 * <- outs wnd -> <- wrapzone ->
1146 * u e n u_w e_w s n_w
1148 * |<------------+------+----- TCP seqno space --------------+---------->|
1149 * ...-- <2^31 ->| |<--------...
1150 * ...---- >2^31 ------>| |<--------...
1152 * Current code wouldn't be vulnerable but it's better still to discard such
1153 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1154 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1155 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1156 * equal to the ideal case (infinite seqno space without wrap caused issues).
1158 * With D-SACK the lower bound is extended to cover sequence space below
1159 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1160 * again, D-SACK block must not to go across snd_una (for the same reason as
1161 * for the normal SACK blocks, explained above). But there all simplicity
1162 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1163 * fully below undo_marker they do not affect behavior in anyway and can
1164 * therefore be safely ignored. In rare cases (which are more or less
1165 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1166 * fragmentation and packet reordering past skb's retransmission. To consider
1167 * them correctly, the acceptable range must be extended even more though
1168 * the exact amount is rather hard to quantify. However, tp->max_window can
1169 * be used as an exaggerated estimate.
1171 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1172 u32 start_seq, u32 end_seq)
1174 /* Too far in future, or reversed (interpretation is ambiguous) */
1175 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1178 /* Nasty start_seq wrap-around check (see comments above) */
1179 if (!before(start_seq, tp->snd_nxt))
1182 /* In outstanding window? ...This is valid exit for D-SACKs too.
1183 * start_seq == snd_una is non-sensical (see comments above)
1185 if (after(start_seq, tp->snd_una))
1188 if (!is_dsack || !tp->undo_marker)
1191 /* ...Then it's D-SACK, and must reside below snd_una completely */
1192 if (after(end_seq, tp->snd_una))
1195 if (!before(start_seq, tp->undo_marker))
1199 if (!after(end_seq, tp->undo_marker))
1202 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1203 * start_seq < undo_marker and end_seq >= undo_marker.
1205 return !before(start_seq, end_seq - tp->max_window);
1208 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1209 struct tcp_sack_block_wire *sp, int num_sacks,
1210 u32 prior_snd_una, struct tcp_sacktag_state *state)
1212 struct tcp_sock *tp = tcp_sk(sk);
1213 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1214 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1217 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1218 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1219 } else if (num_sacks > 1) {
1220 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1221 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1223 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1225 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1230 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1231 if (!dup_segs) { /* Skip dubious DSACK */
1232 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1236 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1238 /* D-SACK for already forgotten data... Do dumb counting. */
1239 if (tp->undo_marker && tp->undo_retrans > 0 &&
1240 !after(end_seq_0, prior_snd_una) &&
1241 after(end_seq_0, tp->undo_marker))
1242 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1247 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1248 * the incoming SACK may not exactly match but we can find smaller MSS
1249 * aligned portion of it that matches. Therefore we might need to fragment
1250 * which may fail and creates some hassle (caller must handle error case
1253 * FIXME: this could be merged to shift decision code
1255 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1256 u32 start_seq, u32 end_seq)
1260 unsigned int pkt_len;
1263 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1264 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1266 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1267 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1268 mss = tcp_skb_mss(skb);
1269 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1272 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1276 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1281 /* Round if necessary so that SACKs cover only full MSSes
1282 * and/or the remaining small portion (if present)
1284 if (pkt_len > mss) {
1285 unsigned int new_len = (pkt_len / mss) * mss;
1286 if (!in_sack && new_len < pkt_len)
1291 if (pkt_len >= skb->len && !in_sack)
1294 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1295 pkt_len, mss, GFP_ATOMIC);
1303 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1304 static u8 tcp_sacktag_one(struct sock *sk,
1305 struct tcp_sacktag_state *state, u8 sacked,
1306 u32 start_seq, u32 end_seq,
1307 int dup_sack, int pcount,
1310 struct tcp_sock *tp = tcp_sk(sk);
1312 /* Account D-SACK for retransmitted packet. */
1313 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1314 if (tp->undo_marker && tp->undo_retrans > 0 &&
1315 after(end_seq, tp->undo_marker))
1317 if ((sacked & TCPCB_SACKED_ACKED) &&
1318 before(start_seq, state->reord))
1319 state->reord = start_seq;
1322 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1323 if (!after(end_seq, tp->snd_una))
1326 if (!(sacked & TCPCB_SACKED_ACKED)) {
1327 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1329 if (sacked & TCPCB_SACKED_RETRANS) {
1330 /* If the segment is not tagged as lost,
1331 * we do not clear RETRANS, believing
1332 * that retransmission is still in flight.
1334 if (sacked & TCPCB_LOST) {
1335 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1336 tp->lost_out -= pcount;
1337 tp->retrans_out -= pcount;
1340 if (!(sacked & TCPCB_RETRANS)) {
1341 /* New sack for not retransmitted frame,
1342 * which was in hole. It is reordering.
1344 if (before(start_seq,
1345 tcp_highest_sack_seq(tp)) &&
1346 before(start_seq, state->reord))
1347 state->reord = start_seq;
1349 if (!after(end_seq, tp->high_seq))
1350 state->flag |= FLAG_ORIG_SACK_ACKED;
1351 if (state->first_sackt == 0)
1352 state->first_sackt = xmit_time;
1353 state->last_sackt = xmit_time;
1356 if (sacked & TCPCB_LOST) {
1357 sacked &= ~TCPCB_LOST;
1358 tp->lost_out -= pcount;
1362 sacked |= TCPCB_SACKED_ACKED;
1363 state->flag |= FLAG_DATA_SACKED;
1364 tp->sacked_out += pcount;
1365 /* Out-of-order packets delivered */
1366 state->sack_delivered += pcount;
1368 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1369 if (tp->lost_skb_hint &&
1370 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1371 tp->lost_cnt_hint += pcount;
1374 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1375 * frames and clear it. undo_retrans is decreased above, L|R frames
1376 * are accounted above as well.
1378 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1379 sacked &= ~TCPCB_SACKED_RETRANS;
1380 tp->retrans_out -= pcount;
1386 /* Shift newly-SACKed bytes from this skb to the immediately previous
1387 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1389 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1390 struct sk_buff *skb,
1391 struct tcp_sacktag_state *state,
1392 unsigned int pcount, int shifted, int mss,
1395 struct tcp_sock *tp = tcp_sk(sk);
1396 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1397 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1401 /* Adjust counters and hints for the newly sacked sequence
1402 * range but discard the return value since prev is already
1403 * marked. We must tag the range first because the seq
1404 * advancement below implicitly advances
1405 * tcp_highest_sack_seq() when skb is highest_sack.
1407 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1408 start_seq, end_seq, dup_sack, pcount,
1409 tcp_skb_timestamp_us(skb));
1410 tcp_rate_skb_delivered(sk, skb, state->rate);
1412 if (skb == tp->lost_skb_hint)
1413 tp->lost_cnt_hint += pcount;
1415 TCP_SKB_CB(prev)->end_seq += shifted;
1416 TCP_SKB_CB(skb)->seq += shifted;
1418 tcp_skb_pcount_add(prev, pcount);
1419 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1420 tcp_skb_pcount_add(skb, -pcount);
1422 /* When we're adding to gso_segs == 1, gso_size will be zero,
1423 * in theory this shouldn't be necessary but as long as DSACK
1424 * code can come after this skb later on it's better to keep
1425 * setting gso_size to something.
1427 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1428 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1430 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1431 if (tcp_skb_pcount(skb) <= 1)
1432 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1434 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1435 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1438 BUG_ON(!tcp_skb_pcount(skb));
1439 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1443 /* Whole SKB was eaten :-) */
1445 if (skb == tp->retransmit_skb_hint)
1446 tp->retransmit_skb_hint = prev;
1447 if (skb == tp->lost_skb_hint) {
1448 tp->lost_skb_hint = prev;
1449 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1452 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1453 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1454 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1455 TCP_SKB_CB(prev)->end_seq++;
1457 if (skb == tcp_highest_sack(sk))
1458 tcp_advance_highest_sack(sk, skb);
1460 tcp_skb_collapse_tstamp(prev, skb);
1461 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1462 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1464 tcp_rtx_queue_unlink_and_free(skb, sk);
1466 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1471 /* I wish gso_size would have a bit more sane initialization than
1472 * something-or-zero which complicates things
1474 static int tcp_skb_seglen(const struct sk_buff *skb)
1476 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1479 /* Shifting pages past head area doesn't work */
1480 static int skb_can_shift(const struct sk_buff *skb)
1482 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1485 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1486 int pcount, int shiftlen)
1488 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1489 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1490 * to make sure not storing more than 65535 * 8 bytes per skb,
1491 * even if current MSS is bigger.
1493 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1495 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1497 return skb_shift(to, from, shiftlen);
1500 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1503 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1504 struct tcp_sacktag_state *state,
1505 u32 start_seq, u32 end_seq,
1508 struct tcp_sock *tp = tcp_sk(sk);
1509 struct sk_buff *prev;
1515 /* Normally R but no L won't result in plain S */
1517 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1519 if (!skb_can_shift(skb))
1521 /* This frame is about to be dropped (was ACKed). */
1522 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1525 /* Can only happen with delayed DSACK + discard craziness */
1526 prev = skb_rb_prev(skb);
1530 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1533 if (!tcp_skb_can_collapse(prev, skb))
1536 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1537 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1541 pcount = tcp_skb_pcount(skb);
1542 mss = tcp_skb_seglen(skb);
1544 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1545 * drop this restriction as unnecessary
1547 if (mss != tcp_skb_seglen(prev))
1550 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1552 /* CHECKME: This is non-MSS split case only?, this will
1553 * cause skipped skbs due to advancing loop btw, original
1554 * has that feature too
1556 if (tcp_skb_pcount(skb) <= 1)
1559 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1561 /* TODO: head merge to next could be attempted here
1562 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1563 * though it might not be worth of the additional hassle
1565 * ...we can probably just fallback to what was done
1566 * previously. We could try merging non-SACKed ones
1567 * as well but it probably isn't going to buy off
1568 * because later SACKs might again split them, and
1569 * it would make skb timestamp tracking considerably
1575 len = end_seq - TCP_SKB_CB(skb)->seq;
1577 BUG_ON(len > skb->len);
1579 /* MSS boundaries should be honoured or else pcount will
1580 * severely break even though it makes things bit trickier.
1581 * Optimize common case to avoid most of the divides
1583 mss = tcp_skb_mss(skb);
1585 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1586 * drop this restriction as unnecessary
1588 if (mss != tcp_skb_seglen(prev))
1593 } else if (len < mss) {
1601 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1602 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1605 if (!tcp_skb_shift(prev, skb, pcount, len))
1607 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1610 /* Hole filled allows collapsing with the next as well, this is very
1611 * useful when hole on every nth skb pattern happens
1613 skb = skb_rb_next(prev);
1617 if (!skb_can_shift(skb) ||
1618 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1619 (mss != tcp_skb_seglen(skb)))
1623 pcount = tcp_skb_pcount(skb);
1624 if (tcp_skb_shift(prev, skb, pcount, len))
1625 tcp_shifted_skb(sk, prev, skb, state, pcount,
1635 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1639 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1640 struct tcp_sack_block *next_dup,
1641 struct tcp_sacktag_state *state,
1642 u32 start_seq, u32 end_seq,
1645 struct tcp_sock *tp = tcp_sk(sk);
1646 struct sk_buff *tmp;
1648 skb_rbtree_walk_from(skb) {
1650 bool dup_sack = dup_sack_in;
1652 /* queue is in-order => we can short-circuit the walk early */
1653 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1657 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1658 in_sack = tcp_match_skb_to_sack(sk, skb,
1659 next_dup->start_seq,
1665 /* skb reference here is a bit tricky to get right, since
1666 * shifting can eat and free both this skb and the next,
1667 * so not even _safe variant of the loop is enough.
1670 tmp = tcp_shift_skb_data(sk, skb, state,
1671 start_seq, end_seq, dup_sack);
1680 in_sack = tcp_match_skb_to_sack(sk, skb,
1686 if (unlikely(in_sack < 0))
1690 TCP_SKB_CB(skb)->sacked =
1693 TCP_SKB_CB(skb)->sacked,
1694 TCP_SKB_CB(skb)->seq,
1695 TCP_SKB_CB(skb)->end_seq,
1697 tcp_skb_pcount(skb),
1698 tcp_skb_timestamp_us(skb));
1699 tcp_rate_skb_delivered(sk, skb, state->rate);
1700 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1701 list_del_init(&skb->tcp_tsorted_anchor);
1703 if (!before(TCP_SKB_CB(skb)->seq,
1704 tcp_highest_sack_seq(tp)))
1705 tcp_advance_highest_sack(sk, skb);
1711 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1713 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1714 struct sk_buff *skb;
1718 skb = rb_to_skb(parent);
1719 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1720 p = &parent->rb_left;
1723 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1724 p = &parent->rb_right;
1732 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1735 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1738 return tcp_sacktag_bsearch(sk, skip_to_seq);
1741 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1743 struct tcp_sack_block *next_dup,
1744 struct tcp_sacktag_state *state,
1750 if (before(next_dup->start_seq, skip_to_seq)) {
1751 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1752 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1753 next_dup->start_seq, next_dup->end_seq,
1760 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1762 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1766 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1767 u32 prior_snd_una, struct tcp_sacktag_state *state)
1769 struct tcp_sock *tp = tcp_sk(sk);
1770 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1771 TCP_SKB_CB(ack_skb)->sacked);
1772 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1773 struct tcp_sack_block sp[TCP_NUM_SACKS];
1774 struct tcp_sack_block *cache;
1775 struct sk_buff *skb;
1776 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1778 bool found_dup_sack = false;
1780 int first_sack_index;
1783 state->reord = tp->snd_nxt;
1785 if (!tp->sacked_out)
1786 tcp_highest_sack_reset(sk);
1788 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1789 num_sacks, prior_snd_una, state);
1791 /* Eliminate too old ACKs, but take into
1792 * account more or less fresh ones, they can
1793 * contain valid SACK info.
1795 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1798 if (!tp->packets_out)
1802 first_sack_index = 0;
1803 for (i = 0; i < num_sacks; i++) {
1804 bool dup_sack = !i && found_dup_sack;
1806 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1807 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1809 if (!tcp_is_sackblock_valid(tp, dup_sack,
1810 sp[used_sacks].start_seq,
1811 sp[used_sacks].end_seq)) {
1815 if (!tp->undo_marker)
1816 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1818 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1820 /* Don't count olds caused by ACK reordering */
1821 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1822 !after(sp[used_sacks].end_seq, tp->snd_una))
1824 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1827 NET_INC_STATS(sock_net(sk), mib_idx);
1829 first_sack_index = -1;
1833 /* Ignore very old stuff early */
1834 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1836 first_sack_index = -1;
1843 /* order SACK blocks to allow in order walk of the retrans queue */
1844 for (i = used_sacks - 1; i > 0; i--) {
1845 for (j = 0; j < i; j++) {
1846 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1847 swap(sp[j], sp[j + 1]);
1849 /* Track where the first SACK block goes to */
1850 if (j == first_sack_index)
1851 first_sack_index = j + 1;
1856 state->mss_now = tcp_current_mss(sk);
1860 if (!tp->sacked_out) {
1861 /* It's already past, so skip checking against it */
1862 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1864 cache = tp->recv_sack_cache;
1865 /* Skip empty blocks in at head of the cache */
1866 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1871 while (i < used_sacks) {
1872 u32 start_seq = sp[i].start_seq;
1873 u32 end_seq = sp[i].end_seq;
1874 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1875 struct tcp_sack_block *next_dup = NULL;
1877 if (found_dup_sack && ((i + 1) == first_sack_index))
1878 next_dup = &sp[i + 1];
1880 /* Skip too early cached blocks */
1881 while (tcp_sack_cache_ok(tp, cache) &&
1882 !before(start_seq, cache->end_seq))
1885 /* Can skip some work by looking recv_sack_cache? */
1886 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1887 after(end_seq, cache->start_seq)) {
1890 if (before(start_seq, cache->start_seq)) {
1891 skb = tcp_sacktag_skip(skb, sk, start_seq);
1892 skb = tcp_sacktag_walk(skb, sk, next_dup,
1899 /* Rest of the block already fully processed? */
1900 if (!after(end_seq, cache->end_seq))
1903 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1907 /* ...tail remains todo... */
1908 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1909 /* ...but better entrypoint exists! */
1910 skb = tcp_highest_sack(sk);
1917 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1918 /* Check overlap against next cached too (past this one already) */
1923 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1924 skb = tcp_highest_sack(sk);
1928 skb = tcp_sacktag_skip(skb, sk, start_seq);
1931 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1932 start_seq, end_seq, dup_sack);
1938 /* Clear the head of the cache sack blocks so we can skip it next time */
1939 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1940 tp->recv_sack_cache[i].start_seq = 0;
1941 tp->recv_sack_cache[i].end_seq = 0;
1943 for (j = 0; j < used_sacks; j++)
1944 tp->recv_sack_cache[i++] = sp[j];
1946 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1947 tcp_check_sack_reordering(sk, state->reord, 0);
1949 tcp_verify_left_out(tp);
1952 #if FASTRETRANS_DEBUG > 0
1953 WARN_ON((int)tp->sacked_out < 0);
1954 WARN_ON((int)tp->lost_out < 0);
1955 WARN_ON((int)tp->retrans_out < 0);
1956 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1961 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1962 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1964 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1968 holes = max(tp->lost_out, 1U);
1969 holes = min(holes, tp->packets_out);
1971 if ((tp->sacked_out + holes) > tp->packets_out) {
1972 tp->sacked_out = tp->packets_out - holes;
1978 /* If we receive more dupacks than we expected counting segments
1979 * in assumption of absent reordering, interpret this as reordering.
1980 * The only another reason could be bug in receiver TCP.
1982 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1984 struct tcp_sock *tp = tcp_sk(sk);
1986 if (!tcp_limit_reno_sacked(tp))
1989 tp->reordering = min_t(u32, tp->packets_out + addend,
1990 sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1992 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1995 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1997 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2000 struct tcp_sock *tp = tcp_sk(sk);
2001 u32 prior_sacked = tp->sacked_out;
2004 tp->sacked_out += num_dupack;
2005 tcp_check_reno_reordering(sk, 0);
2006 delivered = tp->sacked_out - prior_sacked;
2008 tcp_count_delivered(tp, delivered, ece_ack);
2009 tcp_verify_left_out(tp);
2013 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2015 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2017 struct tcp_sock *tp = tcp_sk(sk);
2020 /* One ACK acked hole. The rest eat duplicate ACKs. */
2021 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2023 if (acked - 1 >= tp->sacked_out)
2026 tp->sacked_out -= acked - 1;
2028 tcp_check_reno_reordering(sk, acked);
2029 tcp_verify_left_out(tp);
2032 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2037 void tcp_clear_retrans(struct tcp_sock *tp)
2039 tp->retrans_out = 0;
2041 tp->undo_marker = 0;
2042 tp->undo_retrans = -1;
2046 static inline void tcp_init_undo(struct tcp_sock *tp)
2048 tp->undo_marker = tp->snd_una;
2049 /* Retransmission still in flight may cause DSACKs later. */
2050 tp->undo_retrans = tp->retrans_out ? : -1;
2053 static bool tcp_is_rack(const struct sock *sk)
2055 return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
2058 /* If we detect SACK reneging, forget all SACK information
2059 * and reset tags completely, otherwise preserve SACKs. If receiver
2060 * dropped its ofo queue, we will know this due to reneging detection.
2062 static void tcp_timeout_mark_lost(struct sock *sk)
2064 struct tcp_sock *tp = tcp_sk(sk);
2065 struct sk_buff *skb, *head;
2066 bool is_reneg; /* is receiver reneging on SACKs? */
2068 head = tcp_rtx_queue_head(sk);
2069 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2071 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2073 /* Mark SACK reneging until we recover from this loss event. */
2074 tp->is_sack_reneg = 1;
2075 } else if (tcp_is_reno(tp)) {
2076 tcp_reset_reno_sack(tp);
2080 skb_rbtree_walk_from(skb) {
2082 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2083 else if (tcp_is_rack(sk) && skb != head &&
2084 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2085 continue; /* Don't mark recently sent ones lost yet */
2086 tcp_mark_skb_lost(sk, skb);
2088 tcp_verify_left_out(tp);
2089 tcp_clear_all_retrans_hints(tp);
2092 /* Enter Loss state. */
2093 void tcp_enter_loss(struct sock *sk)
2095 const struct inet_connection_sock *icsk = inet_csk(sk);
2096 struct tcp_sock *tp = tcp_sk(sk);
2097 struct net *net = sock_net(sk);
2098 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2100 tcp_timeout_mark_lost(sk);
2102 /* Reduce ssthresh if it has not yet been made inside this window. */
2103 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2104 !after(tp->high_seq, tp->snd_una) ||
2105 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2106 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2107 tp->prior_cwnd = tp->snd_cwnd;
2108 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2109 tcp_ca_event(sk, CA_EVENT_LOSS);
2112 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
2113 tp->snd_cwnd_cnt = 0;
2114 tp->snd_cwnd_stamp = tcp_jiffies32;
2116 /* Timeout in disordered state after receiving substantial DUPACKs
2117 * suggests that the degree of reordering is over-estimated.
2119 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2120 tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2121 tp->reordering = min_t(unsigned int, tp->reordering,
2122 net->ipv4.sysctl_tcp_reordering);
2123 tcp_set_ca_state(sk, TCP_CA_Loss);
2124 tp->high_seq = tp->snd_nxt;
2125 tcp_ecn_queue_cwr(tp);
2127 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2128 * loss recovery is underway except recurring timeout(s) on
2129 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2131 tp->frto = net->ipv4.sysctl_tcp_frto &&
2132 (new_recovery || icsk->icsk_retransmits) &&
2133 !inet_csk(sk)->icsk_mtup.probe_size;
2136 /* If ACK arrived pointing to a remembered SACK, it means that our
2137 * remembered SACKs do not reflect real state of receiver i.e.
2138 * receiver _host_ is heavily congested (or buggy).
2140 * To avoid big spurious retransmission bursts due to transient SACK
2141 * scoreboard oddities that look like reneging, we give the receiver a
2142 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2143 * restore sanity to the SACK scoreboard. If the apparent reneging
2144 * persists until this RTO then we'll clear the SACK scoreboard.
2146 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2148 if (flag & FLAG_SACK_RENEGING) {
2149 struct tcp_sock *tp = tcp_sk(sk);
2150 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2151 msecs_to_jiffies(10));
2153 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2154 delay, TCP_RTO_MAX);
2160 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2161 * counter when SACK is enabled (without SACK, sacked_out is used for
2164 * With reordering, holes may still be in flight, so RFC3517 recovery
2165 * uses pure sacked_out (total number of SACKed segments) even though
2166 * it violates the RFC that uses duplicate ACKs, often these are equal
2167 * but when e.g. out-of-window ACKs or packet duplication occurs,
2168 * they differ. Since neither occurs due to loss, TCP should really
2171 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2173 return tp->sacked_out + 1;
2176 /* Linux NewReno/SACK/ECN state machine.
2177 * --------------------------------------
2179 * "Open" Normal state, no dubious events, fast path.
2180 * "Disorder" In all the respects it is "Open",
2181 * but requires a bit more attention. It is entered when
2182 * we see some SACKs or dupacks. It is split of "Open"
2183 * mainly to move some processing from fast path to slow one.
2184 * "CWR" CWND was reduced due to some Congestion Notification event.
2185 * It can be ECN, ICMP source quench, local device congestion.
2186 * "Recovery" CWND was reduced, we are fast-retransmitting.
2187 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2189 * tcp_fastretrans_alert() is entered:
2190 * - each incoming ACK, if state is not "Open"
2191 * - when arrived ACK is unusual, namely:
2196 * Counting packets in flight is pretty simple.
2198 * in_flight = packets_out - left_out + retrans_out
2200 * packets_out is SND.NXT-SND.UNA counted in packets.
2202 * retrans_out is number of retransmitted segments.
2204 * left_out is number of segments left network, but not ACKed yet.
2206 * left_out = sacked_out + lost_out
2208 * sacked_out: Packets, which arrived to receiver out of order
2209 * and hence not ACKed. With SACKs this number is simply
2210 * amount of SACKed data. Even without SACKs
2211 * it is easy to give pretty reliable estimate of this number,
2212 * counting duplicate ACKs.
2214 * lost_out: Packets lost by network. TCP has no explicit
2215 * "loss notification" feedback from network (for now).
2216 * It means that this number can be only _guessed_.
2217 * Actually, it is the heuristics to predict lossage that
2218 * distinguishes different algorithms.
2220 * F.e. after RTO, when all the queue is considered as lost,
2221 * lost_out = packets_out and in_flight = retrans_out.
2223 * Essentially, we have now a few algorithms detecting
2226 * If the receiver supports SACK:
2228 * RFC6675/3517: It is the conventional algorithm. A packet is
2229 * considered lost if the number of higher sequence packets
2230 * SACKed is greater than or equal the DUPACK thoreshold
2231 * (reordering). This is implemented in tcp_mark_head_lost and
2232 * tcp_update_scoreboard.
2234 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2235 * (2017-) that checks timing instead of counting DUPACKs.
2236 * Essentially a packet is considered lost if it's not S/ACKed
2237 * after RTT + reordering_window, where both metrics are
2238 * dynamically measured and adjusted. This is implemented in
2239 * tcp_rack_mark_lost.
2241 * If the receiver does not support SACK:
2243 * NewReno (RFC6582): in Recovery we assume that one segment
2244 * is lost (classic Reno). While we are in Recovery and
2245 * a partial ACK arrives, we assume that one more packet
2246 * is lost (NewReno). This heuristics are the same in NewReno
2249 * Really tricky (and requiring careful tuning) part of algorithm
2250 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2251 * The first determines the moment _when_ we should reduce CWND and,
2252 * hence, slow down forward transmission. In fact, it determines the moment
2253 * when we decide that hole is caused by loss, rather than by a reorder.
2255 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2256 * holes, caused by lost packets.
2258 * And the most logically complicated part of algorithm is undo
2259 * heuristics. We detect false retransmits due to both too early
2260 * fast retransmit (reordering) and underestimated RTO, analyzing
2261 * timestamps and D-SACKs. When we detect that some segments were
2262 * retransmitted by mistake and CWND reduction was wrong, we undo
2263 * window reduction and abort recovery phase. This logic is hidden
2264 * inside several functions named tcp_try_undo_<something>.
2267 /* This function decides, when we should leave Disordered state
2268 * and enter Recovery phase, reducing congestion window.
2270 * Main question: may we further continue forward transmission
2271 * with the same cwnd?
2273 static bool tcp_time_to_recover(struct sock *sk, int flag)
2275 struct tcp_sock *tp = tcp_sk(sk);
2277 /* Trick#1: The loss is proven. */
2281 /* Not-A-Trick#2 : Classic rule... */
2282 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2288 /* Detect loss in event "A" above by marking head of queue up as lost.
2289 * For RFC3517 SACK, a segment is considered lost if it
2290 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2291 * the maximum SACKed segments to pass before reaching this limit.
2293 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2295 struct tcp_sock *tp = tcp_sk(sk);
2296 struct sk_buff *skb;
2298 /* Use SACK to deduce losses of new sequences sent during recovery */
2299 const u32 loss_high = tp->snd_nxt;
2301 WARN_ON(packets > tp->packets_out);
2302 skb = tp->lost_skb_hint;
2304 /* Head already handled? */
2305 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2307 cnt = tp->lost_cnt_hint;
2309 skb = tcp_rtx_queue_head(sk);
2313 skb_rbtree_walk_from(skb) {
2314 /* TODO: do this better */
2315 /* this is not the most efficient way to do this... */
2316 tp->lost_skb_hint = skb;
2317 tp->lost_cnt_hint = cnt;
2319 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2322 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2323 cnt += tcp_skb_pcount(skb);
2328 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2329 tcp_mark_skb_lost(sk, skb);
2334 tcp_verify_left_out(tp);
2337 /* Account newly detected lost packet(s) */
2339 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2341 struct tcp_sock *tp = tcp_sk(sk);
2343 if (tcp_is_sack(tp)) {
2344 int sacked_upto = tp->sacked_out - tp->reordering;
2345 if (sacked_upto >= 0)
2346 tcp_mark_head_lost(sk, sacked_upto, 0);
2347 else if (fast_rexmit)
2348 tcp_mark_head_lost(sk, 1, 1);
2352 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2354 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2355 before(tp->rx_opt.rcv_tsecr, when);
2358 /* skb is spurious retransmitted if the returned timestamp echo
2359 * reply is prior to the skb transmission time
2361 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2362 const struct sk_buff *skb)
2364 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2365 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2368 /* Nothing was retransmitted or returned timestamp is less
2369 * than timestamp of the first retransmission.
2371 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2373 return tp->retrans_stamp &&
2374 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2377 /* Undo procedures. */
2379 /* We can clear retrans_stamp when there are no retransmissions in the
2380 * window. It would seem that it is trivially available for us in
2381 * tp->retrans_out, however, that kind of assumptions doesn't consider
2382 * what will happen if errors occur when sending retransmission for the
2383 * second time. ...It could the that such segment has only
2384 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2385 * the head skb is enough except for some reneging corner cases that
2386 * are not worth the effort.
2388 * Main reason for all this complexity is the fact that connection dying
2389 * time now depends on the validity of the retrans_stamp, in particular,
2390 * that successive retransmissions of a segment must not advance
2391 * retrans_stamp under any conditions.
2393 static bool tcp_any_retrans_done(const struct sock *sk)
2395 const struct tcp_sock *tp = tcp_sk(sk);
2396 struct sk_buff *skb;
2398 if (tp->retrans_out)
2401 skb = tcp_rtx_queue_head(sk);
2402 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2408 static void DBGUNDO(struct sock *sk, const char *msg)
2410 #if FASTRETRANS_DEBUG > 1
2411 struct tcp_sock *tp = tcp_sk(sk);
2412 struct inet_sock *inet = inet_sk(sk);
2414 if (sk->sk_family == AF_INET) {
2415 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2417 &inet->inet_daddr, ntohs(inet->inet_dport),
2418 tp->snd_cwnd, tcp_left_out(tp),
2419 tp->snd_ssthresh, tp->prior_ssthresh,
2422 #if IS_ENABLED(CONFIG_IPV6)
2423 else if (sk->sk_family == AF_INET6) {
2424 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2426 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2427 tp->snd_cwnd, tcp_left_out(tp),
2428 tp->snd_ssthresh, tp->prior_ssthresh,
2435 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2437 struct tcp_sock *tp = tcp_sk(sk);
2440 struct sk_buff *skb;
2442 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2443 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2446 tcp_clear_all_retrans_hints(tp);
2449 if (tp->prior_ssthresh) {
2450 const struct inet_connection_sock *icsk = inet_csk(sk);
2452 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2454 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2455 tp->snd_ssthresh = tp->prior_ssthresh;
2456 tcp_ecn_withdraw_cwr(tp);
2459 tp->snd_cwnd_stamp = tcp_jiffies32;
2460 tp->undo_marker = 0;
2461 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2464 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2466 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2469 /* People celebrate: "We love our President!" */
2470 static bool tcp_try_undo_recovery(struct sock *sk)
2472 struct tcp_sock *tp = tcp_sk(sk);
2474 if (tcp_may_undo(tp)) {
2477 /* Happy end! We did not retransmit anything
2478 * or our original transmission succeeded.
2480 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2481 tcp_undo_cwnd_reduction(sk, false);
2482 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2483 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2485 mib_idx = LINUX_MIB_TCPFULLUNDO;
2487 NET_INC_STATS(sock_net(sk), mib_idx);
2488 } else if (tp->rack.reo_wnd_persist) {
2489 tp->rack.reo_wnd_persist--;
2491 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2492 /* Hold old state until something *above* high_seq
2493 * is ACKed. For Reno it is MUST to prevent false
2494 * fast retransmits (RFC2582). SACK TCP is safe. */
2495 if (!tcp_any_retrans_done(sk))
2496 tp->retrans_stamp = 0;
2499 tcp_set_ca_state(sk, TCP_CA_Open);
2500 tp->is_sack_reneg = 0;
2504 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2505 static bool tcp_try_undo_dsack(struct sock *sk)
2507 struct tcp_sock *tp = tcp_sk(sk);
2509 if (tp->undo_marker && !tp->undo_retrans) {
2510 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2511 tp->rack.reo_wnd_persist + 1);
2512 DBGUNDO(sk, "D-SACK");
2513 tcp_undo_cwnd_reduction(sk, false);
2514 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2520 /* Undo during loss recovery after partial ACK or using F-RTO. */
2521 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2523 struct tcp_sock *tp = tcp_sk(sk);
2525 if (frto_undo || tcp_may_undo(tp)) {
2526 tcp_undo_cwnd_reduction(sk, true);
2528 DBGUNDO(sk, "partial loss");
2529 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2531 NET_INC_STATS(sock_net(sk),
2532 LINUX_MIB_TCPSPURIOUSRTOS);
2533 inet_csk(sk)->icsk_retransmits = 0;
2534 if (frto_undo || tcp_is_sack(tp)) {
2535 tcp_set_ca_state(sk, TCP_CA_Open);
2536 tp->is_sack_reneg = 0;
2543 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2544 * It computes the number of packets to send (sndcnt) based on packets newly
2546 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2547 * cwnd reductions across a full RTT.
2548 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2549 * But when the retransmits are acked without further losses, PRR
2550 * slow starts cwnd up to ssthresh to speed up the recovery.
2552 static void tcp_init_cwnd_reduction(struct sock *sk)
2554 struct tcp_sock *tp = tcp_sk(sk);
2556 tp->high_seq = tp->snd_nxt;
2557 tp->tlp_high_seq = 0;
2558 tp->snd_cwnd_cnt = 0;
2559 tp->prior_cwnd = tp->snd_cwnd;
2560 tp->prr_delivered = 0;
2562 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2563 tcp_ecn_queue_cwr(tp);
2566 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2568 struct tcp_sock *tp = tcp_sk(sk);
2570 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2572 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2575 tp->prr_delivered += newly_acked_sacked;
2577 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2579 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2580 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2581 FLAG_RETRANS_DATA_ACKED) {
2582 sndcnt = min_t(int, delta,
2583 max_t(int, tp->prr_delivered - tp->prr_out,
2584 newly_acked_sacked) + 1);
2586 sndcnt = min(delta, newly_acked_sacked);
2588 /* Force a fast retransmit upon entering fast recovery */
2589 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2590 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2593 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2595 struct tcp_sock *tp = tcp_sk(sk);
2597 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2600 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2601 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2602 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2603 tp->snd_cwnd = tp->snd_ssthresh;
2604 tp->snd_cwnd_stamp = tcp_jiffies32;
2606 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2609 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2610 void tcp_enter_cwr(struct sock *sk)
2612 struct tcp_sock *tp = tcp_sk(sk);
2614 tp->prior_ssthresh = 0;
2615 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2616 tp->undo_marker = 0;
2617 tcp_init_cwnd_reduction(sk);
2618 tcp_set_ca_state(sk, TCP_CA_CWR);
2621 EXPORT_SYMBOL(tcp_enter_cwr);
2623 static void tcp_try_keep_open(struct sock *sk)
2625 struct tcp_sock *tp = tcp_sk(sk);
2626 int state = TCP_CA_Open;
2628 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2629 state = TCP_CA_Disorder;
2631 if (inet_csk(sk)->icsk_ca_state != state) {
2632 tcp_set_ca_state(sk, state);
2633 tp->high_seq = tp->snd_nxt;
2637 static void tcp_try_to_open(struct sock *sk, int flag)
2639 struct tcp_sock *tp = tcp_sk(sk);
2641 tcp_verify_left_out(tp);
2643 if (!tcp_any_retrans_done(sk))
2644 tp->retrans_stamp = 0;
2646 if (flag & FLAG_ECE)
2649 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2650 tcp_try_keep_open(sk);
2654 static void tcp_mtup_probe_failed(struct sock *sk)
2656 struct inet_connection_sock *icsk = inet_csk(sk);
2658 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2659 icsk->icsk_mtup.probe_size = 0;
2660 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2663 static void tcp_mtup_probe_success(struct sock *sk)
2665 struct tcp_sock *tp = tcp_sk(sk);
2666 struct inet_connection_sock *icsk = inet_csk(sk);
2668 /* FIXME: breaks with very large cwnd */
2669 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2670 tp->snd_cwnd = tp->snd_cwnd *
2671 tcp_mss_to_mtu(sk, tp->mss_cache) /
2672 icsk->icsk_mtup.probe_size;
2673 tp->snd_cwnd_cnt = 0;
2674 tp->snd_cwnd_stamp = tcp_jiffies32;
2675 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2677 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2678 icsk->icsk_mtup.probe_size = 0;
2679 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2680 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2683 /* Do a simple retransmit without using the backoff mechanisms in
2684 * tcp_timer. This is used for path mtu discovery.
2685 * The socket is already locked here.
2687 void tcp_simple_retransmit(struct sock *sk)
2689 const struct inet_connection_sock *icsk = inet_csk(sk);
2690 struct tcp_sock *tp = tcp_sk(sk);
2691 struct sk_buff *skb;
2692 unsigned int mss = tcp_current_mss(sk);
2694 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2695 if (tcp_skb_seglen(skb) > mss)
2696 tcp_mark_skb_lost(sk, skb);
2699 tcp_clear_retrans_hints_partial(tp);
2704 if (tcp_is_reno(tp))
2705 tcp_limit_reno_sacked(tp);
2707 tcp_verify_left_out(tp);
2709 /* Don't muck with the congestion window here.
2710 * Reason is that we do not increase amount of _data_
2711 * in network, but units changed and effective
2712 * cwnd/ssthresh really reduced now.
2714 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2715 tp->high_seq = tp->snd_nxt;
2716 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2717 tp->prior_ssthresh = 0;
2718 tp->undo_marker = 0;
2719 tcp_set_ca_state(sk, TCP_CA_Loss);
2721 tcp_xmit_retransmit_queue(sk);
2723 EXPORT_SYMBOL(tcp_simple_retransmit);
2725 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2727 struct tcp_sock *tp = tcp_sk(sk);
2730 if (tcp_is_reno(tp))
2731 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2733 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2735 NET_INC_STATS(sock_net(sk), mib_idx);
2737 tp->prior_ssthresh = 0;
2740 if (!tcp_in_cwnd_reduction(sk)) {
2742 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2743 tcp_init_cwnd_reduction(sk);
2745 tcp_set_ca_state(sk, TCP_CA_Recovery);
2748 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2749 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2751 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2754 struct tcp_sock *tp = tcp_sk(sk);
2755 bool recovered = !before(tp->snd_una, tp->high_seq);
2757 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2758 tcp_try_undo_loss(sk, false))
2761 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2762 /* Step 3.b. A timeout is spurious if not all data are
2763 * lost, i.e., never-retransmitted data are (s)acked.
2765 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2766 tcp_try_undo_loss(sk, true))
2769 if (after(tp->snd_nxt, tp->high_seq)) {
2770 if (flag & FLAG_DATA_SACKED || num_dupack)
2771 tp->frto = 0; /* Step 3.a. loss was real */
2772 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2773 tp->high_seq = tp->snd_nxt;
2774 /* Step 2.b. Try send new data (but deferred until cwnd
2775 * is updated in tcp_ack()). Otherwise fall back to
2776 * the conventional recovery.
2778 if (!tcp_write_queue_empty(sk) &&
2779 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2780 *rexmit = REXMIT_NEW;
2788 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2789 tcp_try_undo_recovery(sk);
2792 if (tcp_is_reno(tp)) {
2793 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2794 * delivered. Lower inflight to clock out (re)tranmissions.
2796 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2797 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2798 else if (flag & FLAG_SND_UNA_ADVANCED)
2799 tcp_reset_reno_sack(tp);
2801 *rexmit = REXMIT_LOST;
2804 /* Undo during fast recovery after partial ACK. */
2805 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2807 struct tcp_sock *tp = tcp_sk(sk);
2809 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2810 /* Plain luck! Hole if filled with delayed
2811 * packet, rather than with a retransmit. Check reordering.
2813 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2815 /* We are getting evidence that the reordering degree is higher
2816 * than we realized. If there are no retransmits out then we
2817 * can undo. Otherwise we clock out new packets but do not
2818 * mark more packets lost or retransmit more.
2820 if (tp->retrans_out)
2823 if (!tcp_any_retrans_done(sk))
2824 tp->retrans_stamp = 0;
2826 DBGUNDO(sk, "partial recovery");
2827 tcp_undo_cwnd_reduction(sk, true);
2828 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2829 tcp_try_keep_open(sk);
2835 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2837 struct tcp_sock *tp = tcp_sk(sk);
2839 if (tcp_rtx_queue_empty(sk))
2842 if (unlikely(tcp_is_reno(tp))) {
2843 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2844 } else if (tcp_is_rack(sk)) {
2845 u32 prior_retrans = tp->retrans_out;
2847 tcp_rack_mark_lost(sk);
2848 if (prior_retrans > tp->retrans_out)
2849 *ack_flag |= FLAG_LOST_RETRANS;
2853 static bool tcp_force_fast_retransmit(struct sock *sk)
2855 struct tcp_sock *tp = tcp_sk(sk);
2857 return after(tcp_highest_sack_seq(tp),
2858 tp->snd_una + tp->reordering * tp->mss_cache);
2861 /* Process an event, which can update packets-in-flight not trivially.
2862 * Main goal of this function is to calculate new estimate for left_out,
2863 * taking into account both packets sitting in receiver's buffer and
2864 * packets lost by network.
2866 * Besides that it updates the congestion state when packet loss or ECN
2867 * is detected. But it does not reduce the cwnd, it is done by the
2868 * congestion control later.
2870 * It does _not_ decide what to send, it is made in function
2871 * tcp_xmit_retransmit_queue().
2873 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2874 int num_dupack, int *ack_flag, int *rexmit)
2876 struct inet_connection_sock *icsk = inet_csk(sk);
2877 struct tcp_sock *tp = tcp_sk(sk);
2878 int fast_rexmit = 0, flag = *ack_flag;
2879 bool ece_ack = flag & FLAG_ECE;
2880 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2881 tcp_force_fast_retransmit(sk));
2883 if (!tp->packets_out && tp->sacked_out)
2886 /* Now state machine starts.
2887 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2889 tp->prior_ssthresh = 0;
2891 /* B. In all the states check for reneging SACKs. */
2892 if (tcp_check_sack_reneging(sk, flag))
2895 /* C. Check consistency of the current state. */
2896 tcp_verify_left_out(tp);
2898 /* D. Check state exit conditions. State can be terminated
2899 * when high_seq is ACKed. */
2900 if (icsk->icsk_ca_state == TCP_CA_Open) {
2901 WARN_ON(tp->retrans_out != 0);
2902 tp->retrans_stamp = 0;
2903 } else if (!before(tp->snd_una, tp->high_seq)) {
2904 switch (icsk->icsk_ca_state) {
2906 /* CWR is to be held something *above* high_seq
2907 * is ACKed for CWR bit to reach receiver. */
2908 if (tp->snd_una != tp->high_seq) {
2909 tcp_end_cwnd_reduction(sk);
2910 tcp_set_ca_state(sk, TCP_CA_Open);
2914 case TCP_CA_Recovery:
2915 if (tcp_is_reno(tp))
2916 tcp_reset_reno_sack(tp);
2917 if (tcp_try_undo_recovery(sk))
2919 tcp_end_cwnd_reduction(sk);
2924 /* E. Process state. */
2925 switch (icsk->icsk_ca_state) {
2926 case TCP_CA_Recovery:
2927 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2928 if (tcp_is_reno(tp))
2929 tcp_add_reno_sack(sk, num_dupack, ece_ack);
2931 if (tcp_try_undo_partial(sk, prior_snd_una))
2933 /* Partial ACK arrived. Force fast retransmit. */
2934 do_lost = tcp_force_fast_retransmit(sk);
2936 if (tcp_try_undo_dsack(sk)) {
2937 tcp_try_keep_open(sk);
2940 tcp_identify_packet_loss(sk, ack_flag);
2943 tcp_process_loss(sk, flag, num_dupack, rexmit);
2944 tcp_identify_packet_loss(sk, ack_flag);
2945 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2946 (*ack_flag & FLAG_LOST_RETRANS)))
2948 /* Change state if cwnd is undone or retransmits are lost */
2951 if (tcp_is_reno(tp)) {
2952 if (flag & FLAG_SND_UNA_ADVANCED)
2953 tcp_reset_reno_sack(tp);
2954 tcp_add_reno_sack(sk, num_dupack, ece_ack);
2957 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2958 tcp_try_undo_dsack(sk);
2960 tcp_identify_packet_loss(sk, ack_flag);
2961 if (!tcp_time_to_recover(sk, flag)) {
2962 tcp_try_to_open(sk, flag);
2966 /* MTU probe failure: don't reduce cwnd */
2967 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2968 icsk->icsk_mtup.probe_size &&
2969 tp->snd_una == tp->mtu_probe.probe_seq_start) {
2970 tcp_mtup_probe_failed(sk);
2971 /* Restores the reduction we did in tcp_mtup_probe() */
2973 tcp_simple_retransmit(sk);
2977 /* Otherwise enter Recovery state */
2978 tcp_enter_recovery(sk, ece_ack);
2982 if (!tcp_is_rack(sk) && do_lost)
2983 tcp_update_scoreboard(sk, fast_rexmit);
2984 *rexmit = REXMIT_LOST;
2987 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2989 u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2990 struct tcp_sock *tp = tcp_sk(sk);
2992 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2993 /* If the remote keeps returning delayed ACKs, eventually
2994 * the min filter would pick it up and overestimate the
2995 * prop. delay when it expires. Skip suspected delayed ACKs.
2999 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3000 rtt_us ? : jiffies_to_usecs(1));
3003 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3004 long seq_rtt_us, long sack_rtt_us,
3005 long ca_rtt_us, struct rate_sample *rs)
3007 const struct tcp_sock *tp = tcp_sk(sk);
3009 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3010 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3011 * Karn's algorithm forbids taking RTT if some retransmitted data
3012 * is acked (RFC6298).
3015 seq_rtt_us = sack_rtt_us;
3017 /* RTTM Rule: A TSecr value received in a segment is used to
3018 * update the averaged RTT measurement only if the segment
3019 * acknowledges some new data, i.e., only if it advances the
3020 * left edge of the send window.
3021 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3023 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3024 flag & FLAG_ACKED) {
3025 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3027 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3030 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3031 ca_rtt_us = seq_rtt_us;
3034 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3038 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3039 * always taken together with ACK, SACK, or TS-opts. Any negative
3040 * values will be skipped with the seq_rtt_us < 0 check above.
3042 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3043 tcp_rtt_estimator(sk, seq_rtt_us);
3046 /* RFC6298: only reset backoff on valid RTT measurement. */
3047 inet_csk(sk)->icsk_backoff = 0;
3051 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3052 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3054 struct rate_sample rs;
3057 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3058 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3060 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3064 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3066 const struct inet_connection_sock *icsk = inet_csk(sk);
3068 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3069 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3072 /* Restart timer after forward progress on connection.
3073 * RFC2988 recommends to restart timer to now+rto.
3075 void tcp_rearm_rto(struct sock *sk)
3077 const struct inet_connection_sock *icsk = inet_csk(sk);
3078 struct tcp_sock *tp = tcp_sk(sk);
3080 /* If the retrans timer is currently being used by Fast Open
3081 * for SYN-ACK retrans purpose, stay put.
3083 if (rcu_access_pointer(tp->fastopen_rsk))
3086 if (!tp->packets_out) {
3087 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3089 u32 rto = inet_csk(sk)->icsk_rto;
3090 /* Offset the time elapsed after installing regular RTO */
3091 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3092 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3093 s64 delta_us = tcp_rto_delta_us(sk);
3094 /* delta_us may not be positive if the socket is locked
3095 * when the retrans timer fires and is rescheduled.
3097 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3099 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3104 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3105 static void tcp_set_xmit_timer(struct sock *sk)
3107 if (!tcp_schedule_loss_probe(sk, true))
3111 /* If we get here, the whole TSO packet has not been acked. */
3112 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3114 struct tcp_sock *tp = tcp_sk(sk);
3117 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3119 packets_acked = tcp_skb_pcount(skb);
3120 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3122 packets_acked -= tcp_skb_pcount(skb);
3124 if (packets_acked) {
3125 BUG_ON(tcp_skb_pcount(skb) == 0);
3126 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3129 return packets_acked;
3132 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3135 const struct skb_shared_info *shinfo;
3137 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3138 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3141 shinfo = skb_shinfo(skb);
3142 if (!before(shinfo->tskey, prior_snd_una) &&
3143 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3144 tcp_skb_tsorted_save(skb) {
3145 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3146 } tcp_skb_tsorted_restore(skb);
3150 /* Remove acknowledged frames from the retransmission queue. If our packet
3151 * is before the ack sequence we can discard it as it's confirmed to have
3152 * arrived at the other end.
3154 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3156 struct tcp_sacktag_state *sack, bool ece_ack)
3158 const struct inet_connection_sock *icsk = inet_csk(sk);
3159 u64 first_ackt, last_ackt;
3160 struct tcp_sock *tp = tcp_sk(sk);
3161 u32 prior_sacked = tp->sacked_out;
3162 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3163 struct sk_buff *skb, *next;
3164 bool fully_acked = true;
3165 long sack_rtt_us = -1L;
3166 long seq_rtt_us = -1L;
3167 long ca_rtt_us = -1L;
3169 u32 last_in_flight = 0;
3175 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3176 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3177 const u32 start_seq = scb->seq;
3178 u8 sacked = scb->sacked;
3181 /* Determine how many packets and what bytes were acked, tso and else */
3182 if (after(scb->end_seq, tp->snd_una)) {
3183 if (tcp_skb_pcount(skb) == 1 ||
3184 !after(tp->snd_una, scb->seq))
3187 acked_pcount = tcp_tso_acked(sk, skb);
3190 fully_acked = false;
3192 acked_pcount = tcp_skb_pcount(skb);
3195 if (unlikely(sacked & TCPCB_RETRANS)) {
3196 if (sacked & TCPCB_SACKED_RETRANS)
3197 tp->retrans_out -= acked_pcount;
3198 flag |= FLAG_RETRANS_DATA_ACKED;
3199 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3200 last_ackt = tcp_skb_timestamp_us(skb);
3201 WARN_ON_ONCE(last_ackt == 0);
3203 first_ackt = last_ackt;
3205 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3206 if (before(start_seq, reord))
3208 if (!after(scb->end_seq, tp->high_seq))
3209 flag |= FLAG_ORIG_SACK_ACKED;
3212 if (sacked & TCPCB_SACKED_ACKED) {
3213 tp->sacked_out -= acked_pcount;
3214 } else if (tcp_is_sack(tp)) {
3215 tcp_count_delivered(tp, acked_pcount, ece_ack);
3216 if (!tcp_skb_spurious_retrans(tp, skb))
3217 tcp_rack_advance(tp, sacked, scb->end_seq,
3218 tcp_skb_timestamp_us(skb));
3220 if (sacked & TCPCB_LOST)
3221 tp->lost_out -= acked_pcount;
3223 tp->packets_out -= acked_pcount;
3224 pkts_acked += acked_pcount;
3225 tcp_rate_skb_delivered(sk, skb, sack->rate);
3227 /* Initial outgoing SYN's get put onto the write_queue
3228 * just like anything else we transmit. It is not
3229 * true data, and if we misinform our callers that
3230 * this ACK acks real data, we will erroneously exit
3231 * connection startup slow start one packet too
3232 * quickly. This is severely frowned upon behavior.
3234 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3235 flag |= FLAG_DATA_ACKED;
3237 flag |= FLAG_SYN_ACKED;
3238 tp->retrans_stamp = 0;
3244 tcp_ack_tstamp(sk, skb, prior_snd_una);
3246 next = skb_rb_next(skb);
3247 if (unlikely(skb == tp->retransmit_skb_hint))
3248 tp->retransmit_skb_hint = NULL;
3249 if (unlikely(skb == tp->lost_skb_hint))
3250 tp->lost_skb_hint = NULL;
3251 tcp_highest_sack_replace(sk, skb, next);
3252 tcp_rtx_queue_unlink_and_free(skb, sk);
3256 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3258 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3259 tp->snd_up = tp->snd_una;
3262 tcp_ack_tstamp(sk, skb, prior_snd_una);
3263 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3264 flag |= FLAG_SACK_RENEGING;
3267 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3268 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3269 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3271 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3272 last_in_flight && !prior_sacked && fully_acked &&
3273 sack->rate->prior_delivered + 1 == tp->delivered &&
3274 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3275 /* Conservatively mark a delayed ACK. It's typically
3276 * from a lone runt packet over the round trip to
3277 * a receiver w/o out-of-order or CE events.
3279 flag |= FLAG_ACK_MAYBE_DELAYED;
3282 if (sack->first_sackt) {
3283 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3284 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3286 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3287 ca_rtt_us, sack->rate);
3289 if (flag & FLAG_ACKED) {
3290 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3291 if (unlikely(icsk->icsk_mtup.probe_size &&
3292 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3293 tcp_mtup_probe_success(sk);
3296 if (tcp_is_reno(tp)) {
3297 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3299 /* If any of the cumulatively ACKed segments was
3300 * retransmitted, non-SACK case cannot confirm that
3301 * progress was due to original transmission due to
3302 * lack of TCPCB_SACKED_ACKED bits even if some of
3303 * the packets may have been never retransmitted.
3305 if (flag & FLAG_RETRANS_DATA_ACKED)
3306 flag &= ~FLAG_ORIG_SACK_ACKED;
3310 /* Non-retransmitted hole got filled? That's reordering */
3311 if (before(reord, prior_fack))
3312 tcp_check_sack_reordering(sk, reord, 0);
3314 delta = prior_sacked - tp->sacked_out;
3315 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3317 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3318 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3319 tcp_skb_timestamp_us(skb))) {
3320 /* Do not re-arm RTO if the sack RTT is measured from data sent
3321 * after when the head was last (re)transmitted. Otherwise the
3322 * timeout may continue to extend in loss recovery.
3324 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3327 if (icsk->icsk_ca_ops->pkts_acked) {
3328 struct ack_sample sample = { .pkts_acked = pkts_acked,
3329 .rtt_us = sack->rate->rtt_us,
3330 .in_flight = last_in_flight };
3332 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3335 #if FASTRETRANS_DEBUG > 0
3336 WARN_ON((int)tp->sacked_out < 0);
3337 WARN_ON((int)tp->lost_out < 0);
3338 WARN_ON((int)tp->retrans_out < 0);
3339 if (!tp->packets_out && tcp_is_sack(tp)) {
3340 icsk = inet_csk(sk);
3342 pr_debug("Leak l=%u %d\n",
3343 tp->lost_out, icsk->icsk_ca_state);
3346 if (tp->sacked_out) {
3347 pr_debug("Leak s=%u %d\n",
3348 tp->sacked_out, icsk->icsk_ca_state);
3351 if (tp->retrans_out) {
3352 pr_debug("Leak r=%u %d\n",
3353 tp->retrans_out, icsk->icsk_ca_state);
3354 tp->retrans_out = 0;
3361 static void tcp_ack_probe(struct sock *sk)
3363 struct inet_connection_sock *icsk = inet_csk(sk);
3364 struct sk_buff *head = tcp_send_head(sk);
3365 const struct tcp_sock *tp = tcp_sk(sk);
3367 /* Was it a usable window open? */
3370 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3371 icsk->icsk_backoff = 0;
3372 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3373 /* Socket must be waked up by subsequent tcp_data_snd_check().
3374 * This function is not for random using!
3377 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3379 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3384 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3386 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3387 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3390 /* Decide wheather to run the increase function of congestion control. */
3391 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3393 /* If reordering is high then always grow cwnd whenever data is
3394 * delivered regardless of its ordering. Otherwise stay conservative
3395 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3396 * new SACK or ECE mark may first advance cwnd here and later reduce
3397 * cwnd in tcp_fastretrans_alert() based on more states.
3399 if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3400 return flag & FLAG_FORWARD_PROGRESS;
3402 return flag & FLAG_DATA_ACKED;
3405 /* The "ultimate" congestion control function that aims to replace the rigid
3406 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3407 * It's called toward the end of processing an ACK with precise rate
3408 * information. All transmission or retransmission are delayed afterwards.
3410 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3411 int flag, const struct rate_sample *rs)
3413 const struct inet_connection_sock *icsk = inet_csk(sk);
3415 if (icsk->icsk_ca_ops->cong_control) {
3416 icsk->icsk_ca_ops->cong_control(sk, rs);
3420 if (tcp_in_cwnd_reduction(sk)) {
3421 /* Reduce cwnd if state mandates */
3422 tcp_cwnd_reduction(sk, acked_sacked, flag);
3423 } else if (tcp_may_raise_cwnd(sk, flag)) {
3424 /* Advance cwnd if state allows */
3425 tcp_cong_avoid(sk, ack, acked_sacked);
3427 tcp_update_pacing_rate(sk);
3430 /* Check that window update is acceptable.
3431 * The function assumes that snd_una<=ack<=snd_next.
3433 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3434 const u32 ack, const u32 ack_seq,
3437 return after(ack, tp->snd_una) ||
3438 after(ack_seq, tp->snd_wl1) ||
3439 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3442 /* If we update tp->snd_una, also update tp->bytes_acked */
3443 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3445 u32 delta = ack - tp->snd_una;
3447 sock_owned_by_me((struct sock *)tp);
3448 tp->bytes_acked += delta;
3452 /* If we update tp->rcv_nxt, also update tp->bytes_received */
3453 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3455 u32 delta = seq - tp->rcv_nxt;
3457 sock_owned_by_me((struct sock *)tp);
3458 tp->bytes_received += delta;
3459 WRITE_ONCE(tp->rcv_nxt, seq);
3462 /* Update our send window.
3464 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3465 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3467 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3470 struct tcp_sock *tp = tcp_sk(sk);
3472 u32 nwin = ntohs(tcp_hdr(skb)->window);
3474 if (likely(!tcp_hdr(skb)->syn))
3475 nwin <<= tp->rx_opt.snd_wscale;
3477 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3478 flag |= FLAG_WIN_UPDATE;
3479 tcp_update_wl(tp, ack_seq);
3481 if (tp->snd_wnd != nwin) {
3484 /* Note, it is the only place, where
3485 * fast path is recovered for sending TCP.
3488 tcp_fast_path_check(sk);
3490 if (!tcp_write_queue_empty(sk))
3491 tcp_slow_start_after_idle_check(sk);
3493 if (nwin > tp->max_window) {
3494 tp->max_window = nwin;
3495 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3500 tcp_snd_una_update(tp, ack);
3505 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3506 u32 *last_oow_ack_time)
3508 if (*last_oow_ack_time) {
3509 s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3511 if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3512 NET_INC_STATS(net, mib_idx);
3513 return true; /* rate-limited: don't send yet! */
3517 *last_oow_ack_time = tcp_jiffies32;
3519 return false; /* not rate-limited: go ahead, send dupack now! */
3522 /* Return true if we're currently rate-limiting out-of-window ACKs and
3523 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3524 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3525 * attacks that send repeated SYNs or ACKs for the same connection. To
3526 * do this, we do not send a duplicate SYNACK or ACK if the remote
3527 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3529 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3530 int mib_idx, u32 *last_oow_ack_time)
3532 /* Data packets without SYNs are not likely part of an ACK loop. */
3533 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3537 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3540 /* RFC 5961 7 [ACK Throttling] */
3541 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3543 /* unprotected vars, we dont care of overwrites */
3544 static u32 challenge_timestamp;
3545 static unsigned int challenge_count;
3546 struct tcp_sock *tp = tcp_sk(sk);
3547 struct net *net = sock_net(sk);
3550 /* First check our per-socket dupack rate limit. */
3551 if (__tcp_oow_rate_limited(net,
3552 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3553 &tp->last_oow_ack_time))
3556 /* Then check host-wide RFC 5961 rate limit. */
3558 if (now != challenge_timestamp) {
3559 u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3560 u32 half = (ack_limit + 1) >> 1;
3562 challenge_timestamp = now;
3563 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3565 count = READ_ONCE(challenge_count);
3567 WRITE_ONCE(challenge_count, count - 1);
3568 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3573 static void tcp_store_ts_recent(struct tcp_sock *tp)
3575 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3576 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3579 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3581 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3582 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3583 * extra check below makes sure this can only happen
3584 * for pure ACK frames. -DaveM
3586 * Not only, also it occurs for expired timestamps.
3589 if (tcp_paws_check(&tp->rx_opt, 0))
3590 tcp_store_ts_recent(tp);
3594 /* This routine deals with acks during a TLP episode and ends an episode by
3595 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3597 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3599 struct tcp_sock *tp = tcp_sk(sk);
3601 if (before(ack, tp->tlp_high_seq))
3604 if (!tp->tlp_retrans) {
3605 /* TLP of new data has been acknowledged */
3606 tp->tlp_high_seq = 0;
3607 } else if (flag & FLAG_DSACKING_ACK) {
3608 /* This DSACK means original and TLP probe arrived; no loss */
3609 tp->tlp_high_seq = 0;
3610 } else if (after(ack, tp->tlp_high_seq)) {
3611 /* ACK advances: there was a loss, so reduce cwnd. Reset
3612 * tlp_high_seq in tcp_init_cwnd_reduction()
3614 tcp_init_cwnd_reduction(sk);
3615 tcp_set_ca_state(sk, TCP_CA_CWR);
3616 tcp_end_cwnd_reduction(sk);
3617 tcp_try_keep_open(sk);
3618 NET_INC_STATS(sock_net(sk),
3619 LINUX_MIB_TCPLOSSPROBERECOVERY);
3620 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3621 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3622 /* Pure dupack: original and TLP probe arrived; no loss */
3623 tp->tlp_high_seq = 0;
3627 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3629 const struct inet_connection_sock *icsk = inet_csk(sk);
3631 if (icsk->icsk_ca_ops->in_ack_event)
3632 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3635 /* Congestion control has updated the cwnd already. So if we're in
3636 * loss recovery then now we do any new sends (for FRTO) or
3637 * retransmits (for CA_Loss or CA_recovery) that make sense.
3639 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3641 struct tcp_sock *tp = tcp_sk(sk);
3643 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3646 if (unlikely(rexmit == REXMIT_NEW)) {
3647 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3649 if (after(tp->snd_nxt, tp->high_seq))
3653 tcp_xmit_retransmit_queue(sk);
3656 /* Returns the number of packets newly acked or sacked by the current ACK */
3657 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3659 const struct net *net = sock_net(sk);
3660 struct tcp_sock *tp = tcp_sk(sk);
3663 delivered = tp->delivered - prior_delivered;
3664 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3665 if (flag & FLAG_ECE)
3666 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3671 /* This routine deals with incoming acks, but not outgoing ones. */
3672 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3674 struct inet_connection_sock *icsk = inet_csk(sk);
3675 struct tcp_sock *tp = tcp_sk(sk);
3676 struct tcp_sacktag_state sack_state;
3677 struct rate_sample rs = { .prior_delivered = 0 };
3678 u32 prior_snd_una = tp->snd_una;
3679 bool is_sack_reneg = tp->is_sack_reneg;
3680 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3681 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3683 int prior_packets = tp->packets_out;
3684 u32 delivered = tp->delivered;
3685 u32 lost = tp->lost;
3686 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3689 sack_state.first_sackt = 0;
3690 sack_state.rate = &rs;
3691 sack_state.sack_delivered = 0;
3693 /* We very likely will need to access rtx queue. */
3694 prefetch(sk->tcp_rtx_queue.rb_node);
3696 /* If the ack is older than previous acks
3697 * then we can probably ignore it.
3699 if (before(ack, prior_snd_una)) {
3700 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3701 if (before(ack, prior_snd_una - tp->max_window)) {
3702 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3703 tcp_send_challenge_ack(sk, skb);
3709 /* If the ack includes data we haven't sent yet, discard
3710 * this segment (RFC793 Section 3.9).
3712 if (after(ack, tp->snd_nxt))
3715 if (after(ack, prior_snd_una)) {
3716 flag |= FLAG_SND_UNA_ADVANCED;
3717 icsk->icsk_retransmits = 0;
3719 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3720 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3721 if (icsk->icsk_clean_acked)
3722 icsk->icsk_clean_acked(sk, ack);
3726 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3727 rs.prior_in_flight = tcp_packets_in_flight(tp);
3729 /* ts_recent update must be made after we are sure that the packet
3732 if (flag & FLAG_UPDATE_TS_RECENT)
3733 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3735 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3736 FLAG_SND_UNA_ADVANCED) {
3737 /* Window is constant, pure forward advance.
3738 * No more checks are required.
3739 * Note, we use the fact that SND.UNA>=SND.WL2.
3741 tcp_update_wl(tp, ack_seq);
3742 tcp_snd_una_update(tp, ack);
3743 flag |= FLAG_WIN_UPDATE;
3745 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3747 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3749 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3751 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3754 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3756 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3758 if (TCP_SKB_CB(skb)->sacked)
3759 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3762 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3764 ack_ev_flags |= CA_ACK_ECE;
3767 if (sack_state.sack_delivered)
3768 tcp_count_delivered(tp, sack_state.sack_delivered,
3771 if (flag & FLAG_WIN_UPDATE)
3772 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3774 tcp_in_ack_event(sk, ack_ev_flags);
3777 /* This is a deviation from RFC3168 since it states that:
3778 * "When the TCP data sender is ready to set the CWR bit after reducing
3779 * the congestion window, it SHOULD set the CWR bit only on the first
3780 * new data packet that it transmits."
3781 * We accept CWR on pure ACKs to be more robust
3782 * with widely-deployed TCP implementations that do this.
3784 tcp_ecn_accept_cwr(sk, skb);
3786 /* We passed data and got it acked, remove any soft error
3787 * log. Something worked...
3789 sk->sk_err_soft = 0;
3790 icsk->icsk_probes_out = 0;
3791 tp->rcv_tstamp = tcp_jiffies32;
3795 /* See if we can take anything off of the retransmit queue. */
3796 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3799 tcp_rack_update_reo_wnd(sk, &rs);
3801 if (tp->tlp_high_seq)
3802 tcp_process_tlp_ack(sk, ack, flag);
3803 /* If needed, reset TLP/RTO timer; RACK may later override this. */
3804 if (flag & FLAG_SET_XMIT_TIMER)
3805 tcp_set_xmit_timer(sk);
3807 if (tcp_ack_is_dubious(sk, flag)) {
3808 if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3810 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3811 if (!(flag & FLAG_DATA))
3812 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3814 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3818 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3821 delivered = tcp_newly_delivered(sk, delivered, flag);
3822 lost = tp->lost - lost; /* freshly marked lost */
3823 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3824 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3825 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3826 tcp_xmit_recovery(sk, rexmit);
3830 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3831 if (flag & FLAG_DSACKING_ACK) {
3832 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3834 tcp_newly_delivered(sk, delivered, flag);
3836 /* If this ack opens up a zero window, clear backoff. It was
3837 * being used to time the probes, and is probably far higher than
3838 * it needs to be for normal retransmission.
3842 if (tp->tlp_high_seq)
3843 tcp_process_tlp_ack(sk, ack, flag);
3847 /* If data was SACKed, tag it and see if we should send more data.
3848 * If data was DSACKed, see if we can undo a cwnd reduction.
3850 if (TCP_SKB_CB(skb)->sacked) {
3851 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3853 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3855 tcp_newly_delivered(sk, delivered, flag);
3856 tcp_xmit_recovery(sk, rexmit);
3862 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3863 bool syn, struct tcp_fastopen_cookie *foc,
3866 /* Valid only in SYN or SYN-ACK with an even length. */
3867 if (!foc || !syn || len < 0 || (len & 1))
3870 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3871 len <= TCP_FASTOPEN_COOKIE_MAX)
3872 memcpy(foc->val, cookie, len);
3879 static bool smc_parse_options(const struct tcphdr *th,
3880 struct tcp_options_received *opt_rx,
3881 const unsigned char *ptr,
3884 #if IS_ENABLED(CONFIG_SMC)
3885 if (static_branch_unlikely(&tcp_have_smc)) {
3886 if (th->syn && !(opsize & 1) &&
3887 opsize >= TCPOLEN_EXP_SMC_BASE &&
3888 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3897 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3900 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3902 const unsigned char *ptr = (const unsigned char *)(th + 1);
3903 int length = (th->doff * 4) - sizeof(struct tcphdr);
3906 while (length > 0) {
3907 int opcode = *ptr++;
3913 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3920 if (opsize < 2) /* "silly options" */
3922 if (opsize > length)
3923 return mss; /* fail on partial options */
3924 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3925 u16 in_mss = get_unaligned_be16(ptr);
3928 if (user_mss && user_mss < in_mss)
3940 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3941 * But, this can also be called on packets in the established flow when
3942 * the fast version below fails.
3944 void tcp_parse_options(const struct net *net,
3945 const struct sk_buff *skb,
3946 struct tcp_options_received *opt_rx, int estab,
3947 struct tcp_fastopen_cookie *foc)
3949 const unsigned char *ptr;
3950 const struct tcphdr *th = tcp_hdr(skb);
3951 int length = (th->doff * 4) - sizeof(struct tcphdr);
3953 ptr = (const unsigned char *)(th + 1);
3954 opt_rx->saw_tstamp = 0;
3955 opt_rx->saw_unknown = 0;
3957 while (length > 0) {
3958 int opcode = *ptr++;
3964 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3971 if (opsize < 2) /* "silly options" */
3973 if (opsize > length)
3974 return; /* don't parse partial options */
3977 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3978 u16 in_mss = get_unaligned_be16(ptr);
3980 if (opt_rx->user_mss &&
3981 opt_rx->user_mss < in_mss)
3982 in_mss = opt_rx->user_mss;
3983 opt_rx->mss_clamp = in_mss;
3988 if (opsize == TCPOLEN_WINDOW && th->syn &&
3989 !estab && net->ipv4.sysctl_tcp_window_scaling) {
3990 __u8 snd_wscale = *(__u8 *)ptr;
3991 opt_rx->wscale_ok = 1;
3992 if (snd_wscale > TCP_MAX_WSCALE) {
3993 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3997 snd_wscale = TCP_MAX_WSCALE;
3999 opt_rx->snd_wscale = snd_wscale;
4002 case TCPOPT_TIMESTAMP:
4003 if ((opsize == TCPOLEN_TIMESTAMP) &&
4004 ((estab && opt_rx->tstamp_ok) ||
4005 (!estab && net->ipv4.sysctl_tcp_timestamps))) {
4006 opt_rx->saw_tstamp = 1;
4007 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4008 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4011 case TCPOPT_SACK_PERM:
4012 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4013 !estab && net->ipv4.sysctl_tcp_sack) {
4014 opt_rx->sack_ok = TCP_SACK_SEEN;
4015 tcp_sack_reset(opt_rx);
4020 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4021 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4023 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4026 #ifdef CONFIG_TCP_MD5SIG
4029 * The MD5 Hash has already been
4030 * checked (see tcp_v{4,6}_do_rcv()).
4034 case TCPOPT_FASTOPEN:
4035 tcp_parse_fastopen_option(
4036 opsize - TCPOLEN_FASTOPEN_BASE,
4037 ptr, th->syn, foc, false);
4041 /* Fast Open option shares code 254 using a
4042 * 16 bits magic number.
4044 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4045 get_unaligned_be16(ptr) ==
4046 TCPOPT_FASTOPEN_MAGIC) {
4047 tcp_parse_fastopen_option(opsize -
4048 TCPOLEN_EXP_FASTOPEN_BASE,
4049 ptr + 2, th->syn, foc, true);
4053 if (smc_parse_options(th, opt_rx, ptr, opsize))
4056 opt_rx->saw_unknown = 1;
4060 opt_rx->saw_unknown = 1;
4067 EXPORT_SYMBOL(tcp_parse_options);
4069 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4071 const __be32 *ptr = (const __be32 *)(th + 1);
4073 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4074 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4075 tp->rx_opt.saw_tstamp = 1;
4077 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4080 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4082 tp->rx_opt.rcv_tsecr = 0;
4088 /* Fast parse options. This hopes to only see timestamps.
4089 * If it is wrong it falls back on tcp_parse_options().
4091 static bool tcp_fast_parse_options(const struct net *net,
4092 const struct sk_buff *skb,
4093 const struct tcphdr *th, struct tcp_sock *tp)
4095 /* In the spirit of fast parsing, compare doff directly to constant
4096 * values. Because equality is used, short doff can be ignored here.
4098 if (th->doff == (sizeof(*th) / 4)) {
4099 tp->rx_opt.saw_tstamp = 0;
4101 } else if (tp->rx_opt.tstamp_ok &&
4102 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4103 if (tcp_parse_aligned_timestamp(tp, th))
4107 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4108 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4109 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4114 #ifdef CONFIG_TCP_MD5SIG
4116 * Parse MD5 Signature option
4118 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4120 int length = (th->doff << 2) - sizeof(*th);
4121 const u8 *ptr = (const u8 *)(th + 1);
4123 /* If not enough data remaining, we can short cut */
4124 while (length >= TCPOLEN_MD5SIG) {
4125 int opcode = *ptr++;
4136 if (opsize < 2 || opsize > length)
4138 if (opcode == TCPOPT_MD5SIG)
4139 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4146 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4149 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4151 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4152 * it can pass through stack. So, the following predicate verifies that
4153 * this segment is not used for anything but congestion avoidance or
4154 * fast retransmit. Moreover, we even are able to eliminate most of such
4155 * second order effects, if we apply some small "replay" window (~RTO)
4156 * to timestamp space.
4158 * All these measures still do not guarantee that we reject wrapped ACKs
4159 * on networks with high bandwidth, when sequence space is recycled fastly,
4160 * but it guarantees that such events will be very rare and do not affect
4161 * connection seriously. This doesn't look nice, but alas, PAWS is really
4164 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4165 * states that events when retransmit arrives after original data are rare.
4166 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4167 * the biggest problem on large power networks even with minor reordering.
4168 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4169 * up to bandwidth of 18Gigabit/sec. 8) ]
4172 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4174 const struct tcp_sock *tp = tcp_sk(sk);
4175 const struct tcphdr *th = tcp_hdr(skb);
4176 u32 seq = TCP_SKB_CB(skb)->seq;
4177 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4179 return (/* 1. Pure ACK with correct sequence number. */
4180 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4182 /* 2. ... and duplicate ACK. */
4183 ack == tp->snd_una &&
4185 /* 3. ... and does not update window. */
4186 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4188 /* 4. ... and sits in replay window. */
4189 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4192 static inline bool tcp_paws_discard(const struct sock *sk,
4193 const struct sk_buff *skb)
4195 const struct tcp_sock *tp = tcp_sk(sk);
4197 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4198 !tcp_disordered_ack(sk, skb);
4201 /* Check segment sequence number for validity.
4203 * Segment controls are considered valid, if the segment
4204 * fits to the window after truncation to the window. Acceptability
4205 * of data (and SYN, FIN, of course) is checked separately.
4206 * See tcp_data_queue(), for example.
4208 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4209 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4210 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4211 * (borrowed from freebsd)
4214 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4216 return !before(end_seq, tp->rcv_wup) &&
4217 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4220 /* When we get a reset we do this. */
4221 void tcp_reset(struct sock *sk)
4223 trace_tcp_receive_reset(sk);
4225 /* We want the right error as BSD sees it (and indeed as we do). */
4226 switch (sk->sk_state) {
4228 sk->sk_err = ECONNREFUSED;
4230 case TCP_CLOSE_WAIT:
4236 sk->sk_err = ECONNRESET;
4238 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4241 tcp_write_queue_purge(sk);
4244 if (!sock_flag(sk, SOCK_DEAD))
4245 sk->sk_error_report(sk);
4249 * Process the FIN bit. This now behaves as it is supposed to work
4250 * and the FIN takes effect when it is validly part of sequence
4251 * space. Not before when we get holes.
4253 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4254 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4257 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4258 * close and we go into CLOSING (and later onto TIME-WAIT)
4260 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4262 void tcp_fin(struct sock *sk)
4264 struct tcp_sock *tp = tcp_sk(sk);
4266 inet_csk_schedule_ack(sk);
4268 sk->sk_shutdown |= RCV_SHUTDOWN;
4269 sock_set_flag(sk, SOCK_DONE);
4271 switch (sk->sk_state) {
4273 case TCP_ESTABLISHED:
4274 /* Move to CLOSE_WAIT */
4275 tcp_set_state(sk, TCP_CLOSE_WAIT);
4276 inet_csk_enter_pingpong_mode(sk);
4279 case TCP_CLOSE_WAIT:
4281 /* Received a retransmission of the FIN, do
4286 /* RFC793: Remain in the LAST-ACK state. */
4290 /* This case occurs when a simultaneous close
4291 * happens, we must ack the received FIN and
4292 * enter the CLOSING state.
4295 tcp_set_state(sk, TCP_CLOSING);
4298 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4300 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4303 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4304 * cases we should never reach this piece of code.
4306 pr_err("%s: Impossible, sk->sk_state=%d\n",
4307 __func__, sk->sk_state);
4311 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4312 * Probably, we should reset in this case. For now drop them.
4314 skb_rbtree_purge(&tp->out_of_order_queue);
4315 if (tcp_is_sack(tp))
4316 tcp_sack_reset(&tp->rx_opt);
4319 if (!sock_flag(sk, SOCK_DEAD)) {
4320 sk->sk_state_change(sk);
4322 /* Do not send POLL_HUP for half duplex close. */
4323 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4324 sk->sk_state == TCP_CLOSE)
4325 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4327 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4331 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4334 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4335 if (before(seq, sp->start_seq))
4336 sp->start_seq = seq;
4337 if (after(end_seq, sp->end_seq))
4338 sp->end_seq = end_seq;
4344 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4346 struct tcp_sock *tp = tcp_sk(sk);
4348 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4351 if (before(seq, tp->rcv_nxt))
4352 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4354 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4356 NET_INC_STATS(sock_net(sk), mib_idx);
4358 tp->rx_opt.dsack = 1;
4359 tp->duplicate_sack[0].start_seq = seq;
4360 tp->duplicate_sack[0].end_seq = end_seq;
4364 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4366 struct tcp_sock *tp = tcp_sk(sk);
4368 if (!tp->rx_opt.dsack)
4369 tcp_dsack_set(sk, seq, end_seq);
4371 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4374 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4376 /* When the ACK path fails or drops most ACKs, the sender would
4377 * timeout and spuriously retransmit the same segment repeatedly.
4378 * The receiver remembers and reflects via DSACKs. Leverage the
4379 * DSACK state and change the txhash to re-route speculatively.
4381 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq) {
4382 sk_rethink_txhash(sk);
4383 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4387 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4389 struct tcp_sock *tp = tcp_sk(sk);
4391 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4392 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4393 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4394 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4396 if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4397 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4399 tcp_rcv_spurious_retrans(sk, skb);
4400 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4401 end_seq = tp->rcv_nxt;
4402 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4409 /* These routines update the SACK block as out-of-order packets arrive or
4410 * in-order packets close up the sequence space.
4412 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4415 struct tcp_sack_block *sp = &tp->selective_acks[0];
4416 struct tcp_sack_block *swalk = sp + 1;
4418 /* See if the recent change to the first SACK eats into
4419 * or hits the sequence space of other SACK blocks, if so coalesce.
4421 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4422 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4425 /* Zap SWALK, by moving every further SACK up by one slot.
4426 * Decrease num_sacks.
4428 tp->rx_opt.num_sacks--;
4429 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4438 static void tcp_sack_compress_send_ack(struct sock *sk)
4440 struct tcp_sock *tp = tcp_sk(sk);
4442 if (!tp->compressed_ack)
4445 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4448 /* Since we have to send one ack finally,
4449 * substract one from tp->compressed_ack to keep
4450 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4452 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4453 tp->compressed_ack - 1);
4455 tp->compressed_ack = 0;
4459 /* Reasonable amount of sack blocks included in TCP SACK option
4460 * The max is 4, but this becomes 3 if TCP timestamps are there.
4461 * Given that SACK packets might be lost, be conservative and use 2.
4463 #define TCP_SACK_BLOCKS_EXPECTED 2
4465 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4467 struct tcp_sock *tp = tcp_sk(sk);
4468 struct tcp_sack_block *sp = &tp->selective_acks[0];
4469 int cur_sacks = tp->rx_opt.num_sacks;
4475 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4476 if (tcp_sack_extend(sp, seq, end_seq)) {
4477 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4478 tcp_sack_compress_send_ack(sk);
4479 /* Rotate this_sack to the first one. */
4480 for (; this_sack > 0; this_sack--, sp--)
4481 swap(*sp, *(sp - 1));
4483 tcp_sack_maybe_coalesce(tp);
4488 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4489 tcp_sack_compress_send_ack(sk);
4491 /* Could not find an adjacent existing SACK, build a new one,
4492 * put it at the front, and shift everyone else down. We
4493 * always know there is at least one SACK present already here.
4495 * If the sack array is full, forget about the last one.
4497 if (this_sack >= TCP_NUM_SACKS) {
4499 tp->rx_opt.num_sacks--;
4502 for (; this_sack > 0; this_sack--, sp--)
4506 /* Build the new head SACK, and we're done. */
4507 sp->start_seq = seq;
4508 sp->end_seq = end_seq;
4509 tp->rx_opt.num_sacks++;
4512 /* RCV.NXT advances, some SACKs should be eaten. */
4514 static void tcp_sack_remove(struct tcp_sock *tp)
4516 struct tcp_sack_block *sp = &tp->selective_acks[0];
4517 int num_sacks = tp->rx_opt.num_sacks;
4520 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4521 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4522 tp->rx_opt.num_sacks = 0;
4526 for (this_sack = 0; this_sack < num_sacks;) {
4527 /* Check if the start of the sack is covered by RCV.NXT. */
4528 if (!before(tp->rcv_nxt, sp->start_seq)) {
4531 /* RCV.NXT must cover all the block! */
4532 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4534 /* Zap this SACK, by moving forward any other SACKS. */
4535 for (i = this_sack+1; i < num_sacks; i++)
4536 tp->selective_acks[i-1] = tp->selective_acks[i];
4543 tp->rx_opt.num_sacks = num_sacks;
4547 * tcp_try_coalesce - try to merge skb to prior one
4550 * @from: buffer to add in queue
4551 * @fragstolen: pointer to boolean
4553 * Before queueing skb @from after @to, try to merge them
4554 * to reduce overall memory use and queue lengths, if cost is small.
4555 * Packets in ofo or receive queues can stay a long time.
4556 * Better try to coalesce them right now to avoid future collapses.
4557 * Returns true if caller should free @from instead of queueing it
4559 static bool tcp_try_coalesce(struct sock *sk,
4561 struct sk_buff *from,
4566 *fragstolen = false;
4568 /* Its possible this segment overlaps with prior segment in queue */
4569 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4572 if (!mptcp_skb_can_collapse(to, from))
4575 #ifdef CONFIG_TLS_DEVICE
4576 if (from->decrypted != to->decrypted)
4580 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4583 atomic_add(delta, &sk->sk_rmem_alloc);
4584 sk_mem_charge(sk, delta);
4585 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4586 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4587 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4588 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4590 if (TCP_SKB_CB(from)->has_rxtstamp) {
4591 TCP_SKB_CB(to)->has_rxtstamp = true;
4592 to->tstamp = from->tstamp;
4593 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4599 static bool tcp_ooo_try_coalesce(struct sock *sk,
4601 struct sk_buff *from,
4604 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4606 /* In case tcp_drop() is called later, update to->gso_segs */
4608 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4609 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4611 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4616 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4618 sk_drops_add(sk, skb);
4622 /* This one checks to see if we can put data from the
4623 * out_of_order queue into the receive_queue.
4625 static void tcp_ofo_queue(struct sock *sk)
4627 struct tcp_sock *tp = tcp_sk(sk);
4628 __u32 dsack_high = tp->rcv_nxt;
4629 bool fin, fragstolen, eaten;
4630 struct sk_buff *skb, *tail;
4633 p = rb_first(&tp->out_of_order_queue);
4636 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4639 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4640 __u32 dsack = dsack_high;
4641 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4642 dsack_high = TCP_SKB_CB(skb)->end_seq;
4643 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4646 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4648 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4653 tail = skb_peek_tail(&sk->sk_receive_queue);
4654 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4655 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4656 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4658 __skb_queue_tail(&sk->sk_receive_queue, skb);
4660 kfree_skb_partial(skb, fragstolen);
4662 if (unlikely(fin)) {
4664 /* tcp_fin() purges tp->out_of_order_queue,
4665 * so we must end this loop right now.
4672 static bool tcp_prune_ofo_queue(struct sock *sk);
4673 static int tcp_prune_queue(struct sock *sk);
4675 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4678 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4679 !sk_rmem_schedule(sk, skb, size)) {
4681 if (tcp_prune_queue(sk) < 0)
4684 while (!sk_rmem_schedule(sk, skb, size)) {
4685 if (!tcp_prune_ofo_queue(sk))
4692 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4694 struct tcp_sock *tp = tcp_sk(sk);
4695 struct rb_node **p, *parent;
4696 struct sk_buff *skb1;
4700 tcp_ecn_check_ce(sk, skb);
4702 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4703 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4704 sk->sk_data_ready(sk);
4709 /* Disable header prediction. */
4711 inet_csk_schedule_ack(sk);
4713 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4714 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4715 seq = TCP_SKB_CB(skb)->seq;
4716 end_seq = TCP_SKB_CB(skb)->end_seq;
4718 p = &tp->out_of_order_queue.rb_node;
4719 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4720 /* Initial out of order segment, build 1 SACK. */
4721 if (tcp_is_sack(tp)) {
4722 tp->rx_opt.num_sacks = 1;
4723 tp->selective_acks[0].start_seq = seq;
4724 tp->selective_acks[0].end_seq = end_seq;
4726 rb_link_node(&skb->rbnode, NULL, p);
4727 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4728 tp->ooo_last_skb = skb;
4732 /* In the typical case, we are adding an skb to the end of the list.
4733 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4735 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4736 skb, &fragstolen)) {
4738 /* For non sack flows, do not grow window to force DUPACK
4739 * and trigger fast retransmit.
4741 if (tcp_is_sack(tp))
4742 tcp_grow_window(sk, skb);
4743 kfree_skb_partial(skb, fragstolen);
4747 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4748 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4749 parent = &tp->ooo_last_skb->rbnode;
4750 p = &parent->rb_right;
4754 /* Find place to insert this segment. Handle overlaps on the way. */
4758 skb1 = rb_to_skb(parent);
4759 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4760 p = &parent->rb_left;
4763 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4764 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4765 /* All the bits are present. Drop. */
4766 NET_INC_STATS(sock_net(sk),
4767 LINUX_MIB_TCPOFOMERGE);
4770 tcp_dsack_set(sk, seq, end_seq);
4773 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4774 /* Partial overlap. */
4775 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4777 /* skb's seq == skb1's seq and skb covers skb1.
4778 * Replace skb1 with skb.
4780 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4781 &tp->out_of_order_queue);
4782 tcp_dsack_extend(sk,
4783 TCP_SKB_CB(skb1)->seq,
4784 TCP_SKB_CB(skb1)->end_seq);
4785 NET_INC_STATS(sock_net(sk),
4786 LINUX_MIB_TCPOFOMERGE);
4790 } else if (tcp_ooo_try_coalesce(sk, skb1,
4791 skb, &fragstolen)) {
4794 p = &parent->rb_right;
4797 /* Insert segment into RB tree. */
4798 rb_link_node(&skb->rbnode, parent, p);
4799 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4802 /* Remove other segments covered by skb. */
4803 while ((skb1 = skb_rb_next(skb)) != NULL) {
4804 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4806 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4807 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4811 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4812 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4813 TCP_SKB_CB(skb1)->end_seq);
4814 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4817 /* If there is no skb after us, we are the last_skb ! */
4819 tp->ooo_last_skb = skb;
4822 if (tcp_is_sack(tp))
4823 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4826 /* For non sack flows, do not grow window to force DUPACK
4827 * and trigger fast retransmit.
4829 if (tcp_is_sack(tp))
4830 tcp_grow_window(sk, skb);
4832 skb_set_owner_r(skb, sk);
4836 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4840 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4843 tcp_try_coalesce(sk, tail,
4844 skb, fragstolen)) ? 1 : 0;
4845 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4847 __skb_queue_tail(&sk->sk_receive_queue, skb);
4848 skb_set_owner_r(skb, sk);
4853 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4855 struct sk_buff *skb;
4863 if (size > PAGE_SIZE) {
4864 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4866 data_len = npages << PAGE_SHIFT;
4867 size = data_len + (size & ~PAGE_MASK);
4869 skb = alloc_skb_with_frags(size - data_len, data_len,
4870 PAGE_ALLOC_COSTLY_ORDER,
4871 &err, sk->sk_allocation);
4875 skb_put(skb, size - data_len);
4876 skb->data_len = data_len;
4879 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4880 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4884 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4888 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4889 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4890 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4892 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4893 WARN_ON_ONCE(fragstolen); /* should not happen */
4905 void tcp_data_ready(struct sock *sk)
4907 const struct tcp_sock *tp = tcp_sk(sk);
4908 int avail = tp->rcv_nxt - tp->copied_seq;
4910 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4911 !sock_flag(sk, SOCK_DONE) &&
4912 tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4915 sk->sk_data_ready(sk);
4918 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4920 struct tcp_sock *tp = tcp_sk(sk);
4924 if (sk_is_mptcp(sk))
4925 mptcp_incoming_options(sk, skb);
4927 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4932 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4934 tp->rx_opt.dsack = 0;
4936 /* Queue data for delivery to the user.
4937 * Packets in sequence go to the receive queue.
4938 * Out of sequence packets to the out_of_order_queue.
4940 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4941 if (tcp_receive_window(tp) == 0) {
4942 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4946 /* Ok. In sequence. In window. */
4948 if (skb_queue_len(&sk->sk_receive_queue) == 0)
4949 sk_forced_mem_schedule(sk, skb->truesize);
4950 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4951 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4952 sk->sk_data_ready(sk);
4956 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4958 tcp_event_data_recv(sk, skb);
4959 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4962 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4965 /* RFC5681. 4.2. SHOULD send immediate ACK, when
4966 * gap in queue is filled.
4968 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4969 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4972 if (tp->rx_opt.num_sacks)
4973 tcp_sack_remove(tp);
4975 tcp_fast_path_check(sk);
4978 kfree_skb_partial(skb, fragstolen);
4979 if (!sock_flag(sk, SOCK_DEAD))
4984 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4985 tcp_rcv_spurious_retrans(sk, skb);
4986 /* A retransmit, 2nd most common case. Force an immediate ack. */
4987 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4988 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4991 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4992 inet_csk_schedule_ack(sk);
4998 /* Out of window. F.e. zero window probe. */
4999 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5002 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5003 /* Partial packet, seq < rcv_next < end_seq */
5004 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5006 /* If window is closed, drop tail of packet. But after
5007 * remembering D-SACK for its head made in previous line.
5009 if (!tcp_receive_window(tp)) {
5010 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5016 tcp_data_queue_ofo(sk, skb);
5019 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5022 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5024 return skb_rb_next(skb);
5027 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5028 struct sk_buff_head *list,
5029 struct rb_root *root)
5031 struct sk_buff *next = tcp_skb_next(skb, list);
5034 __skb_unlink(skb, list);
5036 rb_erase(&skb->rbnode, root);
5039 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5044 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5045 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5047 struct rb_node **p = &root->rb_node;
5048 struct rb_node *parent = NULL;
5049 struct sk_buff *skb1;
5053 skb1 = rb_to_skb(parent);
5054 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5055 p = &parent->rb_left;
5057 p = &parent->rb_right;
5059 rb_link_node(&skb->rbnode, parent, p);
5060 rb_insert_color(&skb->rbnode, root);
5063 /* Collapse contiguous sequence of skbs head..tail with
5064 * sequence numbers start..end.
5066 * If tail is NULL, this means until the end of the queue.
5068 * Segments with FIN/SYN are not collapsed (only because this
5072 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5073 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5075 struct sk_buff *skb = head, *n;
5076 struct sk_buff_head tmp;
5079 /* First, check that queue is collapsible and find
5080 * the point where collapsing can be useful.
5083 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5084 n = tcp_skb_next(skb, list);
5086 /* No new bits? It is possible on ofo queue. */
5087 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5088 skb = tcp_collapse_one(sk, skb, list, root);
5094 /* The first skb to collapse is:
5096 * - bloated or contains data before "start" or
5097 * overlaps to the next one and mptcp allow collapsing.
5099 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5100 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5101 before(TCP_SKB_CB(skb)->seq, start))) {
5102 end_of_skbs = false;
5106 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5107 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5108 end_of_skbs = false;
5112 /* Decided to skip this, advance start seq. */
5113 start = TCP_SKB_CB(skb)->end_seq;
5116 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5119 __skb_queue_head_init(&tmp);
5121 while (before(start, end)) {
5122 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5123 struct sk_buff *nskb;
5125 nskb = alloc_skb(copy, GFP_ATOMIC);
5129 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5130 #ifdef CONFIG_TLS_DEVICE
5131 nskb->decrypted = skb->decrypted;
5133 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5135 __skb_queue_before(list, skb, nskb);
5137 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5138 skb_set_owner_r(nskb, sk);
5139 mptcp_skb_ext_move(nskb, skb);
5141 /* Copy data, releasing collapsed skbs. */
5143 int offset = start - TCP_SKB_CB(skb)->seq;
5144 int size = TCP_SKB_CB(skb)->end_seq - start;
5148 size = min(copy, size);
5149 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5151 TCP_SKB_CB(nskb)->end_seq += size;
5155 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5156 skb = tcp_collapse_one(sk, skb, list, root);
5159 !mptcp_skb_can_collapse(nskb, skb) ||
5160 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5162 #ifdef CONFIG_TLS_DEVICE
5163 if (skb->decrypted != nskb->decrypted)
5170 skb_queue_walk_safe(&tmp, skb, n)
5171 tcp_rbtree_insert(root, skb);
5174 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5175 * and tcp_collapse() them until all the queue is collapsed.
5177 static void tcp_collapse_ofo_queue(struct sock *sk)
5179 struct tcp_sock *tp = tcp_sk(sk);
5180 u32 range_truesize, sum_tiny = 0;
5181 struct sk_buff *skb, *head;
5184 skb = skb_rb_first(&tp->out_of_order_queue);
5187 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5190 start = TCP_SKB_CB(skb)->seq;
5191 end = TCP_SKB_CB(skb)->end_seq;
5192 range_truesize = skb->truesize;
5194 for (head = skb;;) {
5195 skb = skb_rb_next(skb);
5197 /* Range is terminated when we see a gap or when
5198 * we are at the queue end.
5201 after(TCP_SKB_CB(skb)->seq, end) ||
5202 before(TCP_SKB_CB(skb)->end_seq, start)) {
5203 /* Do not attempt collapsing tiny skbs */
5204 if (range_truesize != head->truesize ||
5205 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5206 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5207 head, skb, start, end);
5209 sum_tiny += range_truesize;
5210 if (sum_tiny > sk->sk_rcvbuf >> 3)
5216 range_truesize += skb->truesize;
5217 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5218 start = TCP_SKB_CB(skb)->seq;
5219 if (after(TCP_SKB_CB(skb)->end_seq, end))
5220 end = TCP_SKB_CB(skb)->end_seq;
5225 * Clean the out-of-order queue to make room.
5226 * We drop high sequences packets to :
5227 * 1) Let a chance for holes to be filled.
5228 * 2) not add too big latencies if thousands of packets sit there.
5229 * (But if application shrinks SO_RCVBUF, we could still end up
5230 * freeing whole queue here)
5231 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5233 * Return true if queue has shrunk.
5235 static bool tcp_prune_ofo_queue(struct sock *sk)
5237 struct tcp_sock *tp = tcp_sk(sk);
5238 struct rb_node *node, *prev;
5241 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5244 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5245 goal = sk->sk_rcvbuf >> 3;
5246 node = &tp->ooo_last_skb->rbnode;
5248 prev = rb_prev(node);
5249 rb_erase(node, &tp->out_of_order_queue);
5250 goal -= rb_to_skb(node)->truesize;
5251 tcp_drop(sk, rb_to_skb(node));
5252 if (!prev || goal <= 0) {
5254 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5255 !tcp_under_memory_pressure(sk))
5257 goal = sk->sk_rcvbuf >> 3;
5261 tp->ooo_last_skb = rb_to_skb(prev);
5263 /* Reset SACK state. A conforming SACK implementation will
5264 * do the same at a timeout based retransmit. When a connection
5265 * is in a sad state like this, we care only about integrity
5266 * of the connection not performance.
5268 if (tp->rx_opt.sack_ok)
5269 tcp_sack_reset(&tp->rx_opt);
5273 /* Reduce allocated memory if we can, trying to get
5274 * the socket within its memory limits again.
5276 * Return less than zero if we should start dropping frames
5277 * until the socket owning process reads some of the data
5278 * to stabilize the situation.
5280 static int tcp_prune_queue(struct sock *sk)
5282 struct tcp_sock *tp = tcp_sk(sk);
5284 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5286 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5287 tcp_clamp_window(sk);
5288 else if (tcp_under_memory_pressure(sk))
5289 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5291 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5294 tcp_collapse_ofo_queue(sk);
5295 if (!skb_queue_empty(&sk->sk_receive_queue))
5296 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5297 skb_peek(&sk->sk_receive_queue),
5299 tp->copied_seq, tp->rcv_nxt);
5302 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5305 /* Collapsing did not help, destructive actions follow.
5306 * This must not ever occur. */
5308 tcp_prune_ofo_queue(sk);
5310 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5313 /* If we are really being abused, tell the caller to silently
5314 * drop receive data on the floor. It will get retransmitted
5315 * and hopefully then we'll have sufficient space.
5317 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5319 /* Massive buffer overcommit. */
5324 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5326 const struct tcp_sock *tp = tcp_sk(sk);
5328 /* If the user specified a specific send buffer setting, do
5331 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5334 /* If we are under global TCP memory pressure, do not expand. */
5335 if (tcp_under_memory_pressure(sk))
5338 /* If we are under soft global TCP memory pressure, do not expand. */
5339 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5342 /* If we filled the congestion window, do not expand. */
5343 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5349 static void tcp_new_space(struct sock *sk)
5351 struct tcp_sock *tp = tcp_sk(sk);
5353 if (tcp_should_expand_sndbuf(sk)) {
5354 tcp_sndbuf_expand(sk);
5355 tp->snd_cwnd_stamp = tcp_jiffies32;
5358 sk->sk_write_space(sk);
5361 static void tcp_check_space(struct sock *sk)
5363 /* pairs with tcp_poll() */
5365 if (sk->sk_socket &&
5366 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5368 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5369 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5373 static inline void tcp_data_snd_check(struct sock *sk)
5375 tcp_push_pending_frames(sk);
5376 tcp_check_space(sk);
5380 * Check if sending an ack is needed.
5382 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5384 struct tcp_sock *tp = tcp_sk(sk);
5385 unsigned long rtt, delay;
5387 /* More than one full frame received... */
5388 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5389 /* ... and right edge of window advances far enough.
5390 * (tcp_recvmsg() will send ACK otherwise).
5391 * If application uses SO_RCVLOWAT, we want send ack now if
5392 * we have not received enough bytes to satisfy the condition.
5394 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5395 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5396 /* We ACK each frame or... */
5397 tcp_in_quickack_mode(sk) ||
5398 /* Protocol state mandates a one-time immediate ACK */
5399 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5405 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5406 tcp_send_delayed_ack(sk);
5410 if (!tcp_is_sack(tp) ||
5411 tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5414 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5415 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5416 tp->dup_ack_counter = 0;
5418 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5419 tp->dup_ack_counter++;
5422 tp->compressed_ack++;
5423 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5426 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5428 rtt = tp->rcv_rtt_est.rtt_us;
5429 if (tp->srtt_us && tp->srtt_us < rtt)
5432 delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5433 rtt * (NSEC_PER_USEC >> 3)/20);
5435 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5436 sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns,
5437 HRTIMER_MODE_REL_PINNED_SOFT);
5440 static inline void tcp_ack_snd_check(struct sock *sk)
5442 if (!inet_csk_ack_scheduled(sk)) {
5443 /* We sent a data segment already. */
5446 __tcp_ack_snd_check(sk, 1);
5450 * This routine is only called when we have urgent data
5451 * signaled. Its the 'slow' part of tcp_urg. It could be
5452 * moved inline now as tcp_urg is only called from one
5453 * place. We handle URGent data wrong. We have to - as
5454 * BSD still doesn't use the correction from RFC961.
5455 * For 1003.1g we should support a new option TCP_STDURG to permit
5456 * either form (or just set the sysctl tcp_stdurg).
5459 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5461 struct tcp_sock *tp = tcp_sk(sk);
5462 u32 ptr = ntohs(th->urg_ptr);
5464 if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5466 ptr += ntohl(th->seq);
5468 /* Ignore urgent data that we've already seen and read. */
5469 if (after(tp->copied_seq, ptr))
5472 /* Do not replay urg ptr.
5474 * NOTE: interesting situation not covered by specs.
5475 * Misbehaving sender may send urg ptr, pointing to segment,
5476 * which we already have in ofo queue. We are not able to fetch
5477 * such data and will stay in TCP_URG_NOTYET until will be eaten
5478 * by recvmsg(). Seems, we are not obliged to handle such wicked
5479 * situations. But it is worth to think about possibility of some
5480 * DoSes using some hypothetical application level deadlock.
5482 if (before(ptr, tp->rcv_nxt))
5485 /* Do we already have a newer (or duplicate) urgent pointer? */
5486 if (tp->urg_data && !after(ptr, tp->urg_seq))
5489 /* Tell the world about our new urgent pointer. */
5492 /* We may be adding urgent data when the last byte read was
5493 * urgent. To do this requires some care. We cannot just ignore
5494 * tp->copied_seq since we would read the last urgent byte again
5495 * as data, nor can we alter copied_seq until this data arrives
5496 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5498 * NOTE. Double Dutch. Rendering to plain English: author of comment
5499 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5500 * and expect that both A and B disappear from stream. This is _wrong_.
5501 * Though this happens in BSD with high probability, this is occasional.
5502 * Any application relying on this is buggy. Note also, that fix "works"
5503 * only in this artificial test. Insert some normal data between A and B and we will
5504 * decline of BSD again. Verdict: it is better to remove to trap
5507 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5508 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5509 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5511 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5512 __skb_unlink(skb, &sk->sk_receive_queue);
5517 tp->urg_data = TCP_URG_NOTYET;
5518 WRITE_ONCE(tp->urg_seq, ptr);
5520 /* Disable header prediction. */
5524 /* This is the 'fast' part of urgent handling. */
5525 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5527 struct tcp_sock *tp = tcp_sk(sk);
5529 /* Check if we get a new urgent pointer - normally not. */
5531 tcp_check_urg(sk, th);
5533 /* Do we wait for any urgent data? - normally not... */
5534 if (tp->urg_data == TCP_URG_NOTYET) {
5535 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5538 /* Is the urgent pointer pointing into this packet? */
5539 if (ptr < skb->len) {
5541 if (skb_copy_bits(skb, ptr, &tmp, 1))
5543 tp->urg_data = TCP_URG_VALID | tmp;
5544 if (!sock_flag(sk, SOCK_DEAD))
5545 sk->sk_data_ready(sk);
5550 /* Accept RST for rcv_nxt - 1 after a FIN.
5551 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5552 * FIN is sent followed by a RST packet. The RST is sent with the same
5553 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5554 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5555 * ACKs on the closed socket. In addition middleboxes can drop either the
5556 * challenge ACK or a subsequent RST.
5558 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5560 struct tcp_sock *tp = tcp_sk(sk);
5562 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5563 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5567 /* Does PAWS and seqno based validation of an incoming segment, flags will
5568 * play significant role here.
5570 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5571 const struct tcphdr *th, int syn_inerr)
5573 struct tcp_sock *tp = tcp_sk(sk);
5574 bool rst_seq_match = false;
5576 /* RFC1323: H1. Apply PAWS check first. */
5577 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5578 tp->rx_opt.saw_tstamp &&
5579 tcp_paws_discard(sk, skb)) {
5581 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5582 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5583 LINUX_MIB_TCPACKSKIPPEDPAWS,
5584 &tp->last_oow_ack_time))
5585 tcp_send_dupack(sk, skb);
5588 /* Reset is accepted even if it did not pass PAWS. */
5591 /* Step 1: check sequence number */
5592 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5593 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5594 * (RST) segments are validated by checking their SEQ-fields."
5595 * And page 69: "If an incoming segment is not acceptable,
5596 * an acknowledgment should be sent in reply (unless the RST
5597 * bit is set, if so drop the segment and return)".
5602 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5603 LINUX_MIB_TCPACKSKIPPEDSEQ,
5604 &tp->last_oow_ack_time))
5605 tcp_send_dupack(sk, skb);
5606 } else if (tcp_reset_check(sk, skb)) {
5612 /* Step 2: check RST bit */
5614 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5615 * FIN and SACK too if available):
5616 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5617 * the right-most SACK block,
5619 * RESET the connection
5621 * Send a challenge ACK
5623 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5624 tcp_reset_check(sk, skb)) {
5625 rst_seq_match = true;
5626 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5627 struct tcp_sack_block *sp = &tp->selective_acks[0];
5628 int max_sack = sp[0].end_seq;
5631 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5633 max_sack = after(sp[this_sack].end_seq,
5635 sp[this_sack].end_seq : max_sack;
5638 if (TCP_SKB_CB(skb)->seq == max_sack)
5639 rst_seq_match = true;
5645 /* Disable TFO if RST is out-of-order
5646 * and no data has been received
5647 * for current active TFO socket
5649 if (tp->syn_fastopen && !tp->data_segs_in &&
5650 sk->sk_state == TCP_ESTABLISHED)
5651 tcp_fastopen_active_disable(sk);
5652 tcp_send_challenge_ack(sk, skb);
5657 /* step 3: check security and precedence [ignored] */
5659 /* step 4: Check for a SYN
5660 * RFC 5961 4.2 : Send a challenge ack
5665 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5666 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5667 tcp_send_challenge_ack(sk, skb);
5671 bpf_skops_parse_hdr(sk, skb);
5681 * TCP receive function for the ESTABLISHED state.
5683 * It is split into a fast path and a slow path. The fast path is
5685 * - A zero window was announced from us - zero window probing
5686 * is only handled properly in the slow path.
5687 * - Out of order segments arrived.
5688 * - Urgent data is expected.
5689 * - There is no buffer space left
5690 * - Unexpected TCP flags/window values/header lengths are received
5691 * (detected by checking the TCP header against pred_flags)
5692 * - Data is sent in both directions. Fast path only supports pure senders
5693 * or pure receivers (this means either the sequence number or the ack
5694 * value must stay constant)
5695 * - Unexpected TCP option.
5697 * When these conditions are not satisfied it drops into a standard
5698 * receive procedure patterned after RFC793 to handle all cases.
5699 * The first three cases are guaranteed by proper pred_flags setting,
5700 * the rest is checked inline. Fast processing is turned on in
5701 * tcp_data_queue when everything is OK.
5703 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5705 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5706 struct tcp_sock *tp = tcp_sk(sk);
5707 unsigned int len = skb->len;
5709 /* TCP congestion window tracking */
5710 trace_tcp_probe(sk, skb);
5712 tcp_mstamp_refresh(tp);
5713 if (unlikely(!sk->sk_rx_dst))
5714 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5716 * Header prediction.
5717 * The code loosely follows the one in the famous
5718 * "30 instruction TCP receive" Van Jacobson mail.
5720 * Van's trick is to deposit buffers into socket queue
5721 * on a device interrupt, to call tcp_recv function
5722 * on the receive process context and checksum and copy
5723 * the buffer to user space. smart...
5725 * Our current scheme is not silly either but we take the
5726 * extra cost of the net_bh soft interrupt processing...
5727 * We do checksum and copy also but from device to kernel.
5730 tp->rx_opt.saw_tstamp = 0;
5732 /* pred_flags is 0xS?10 << 16 + snd_wnd
5733 * if header_prediction is to be made
5734 * 'S' will always be tp->tcp_header_len >> 2
5735 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5736 * turn it off (when there are holes in the receive
5737 * space for instance)
5738 * PSH flag is ignored.
5741 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5742 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5743 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5744 int tcp_header_len = tp->tcp_header_len;
5746 /* Timestamp header prediction: tcp_header_len
5747 * is automatically equal to th->doff*4 due to pred_flags
5751 /* Check timestamp */
5752 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5753 /* No? Slow path! */
5754 if (!tcp_parse_aligned_timestamp(tp, th))
5757 /* If PAWS failed, check it more carefully in slow path */
5758 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5761 /* DO NOT update ts_recent here, if checksum fails
5762 * and timestamp was corrupted part, it will result
5763 * in a hung connection since we will drop all
5764 * future packets due to the PAWS test.
5768 if (len <= tcp_header_len) {
5769 /* Bulk data transfer: sender */
5770 if (len == tcp_header_len) {
5771 /* Predicted packet is in window by definition.
5772 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5773 * Hence, check seq<=rcv_wup reduces to:
5775 if (tcp_header_len ==
5776 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5777 tp->rcv_nxt == tp->rcv_wup)
5778 tcp_store_ts_recent(tp);
5780 /* We know that such packets are checksummed
5783 tcp_ack(sk, skb, 0);
5785 tcp_data_snd_check(sk);
5786 /* When receiving pure ack in fast path, update
5787 * last ts ecr directly instead of calling
5788 * tcp_rcv_rtt_measure_ts()
5790 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5792 } else { /* Header too small */
5793 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5798 bool fragstolen = false;
5800 if (tcp_checksum_complete(skb))
5803 if ((int)skb->truesize > sk->sk_forward_alloc)
5806 /* Predicted packet is in window by definition.
5807 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5808 * Hence, check seq<=rcv_wup reduces to:
5810 if (tcp_header_len ==
5811 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5812 tp->rcv_nxt == tp->rcv_wup)
5813 tcp_store_ts_recent(tp);
5815 tcp_rcv_rtt_measure_ts(sk, skb);
5817 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5819 /* Bulk data transfer: receiver */
5820 __skb_pull(skb, tcp_header_len);
5821 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5823 tcp_event_data_recv(sk, skb);
5825 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5826 /* Well, only one small jumplet in fast path... */
5827 tcp_ack(sk, skb, FLAG_DATA);
5828 tcp_data_snd_check(sk);
5829 if (!inet_csk_ack_scheduled(sk))
5832 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5835 __tcp_ack_snd_check(sk, 0);
5838 kfree_skb_partial(skb, fragstolen);
5845 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5848 if (!th->ack && !th->rst && !th->syn)
5852 * Standard slow path.
5855 if (!tcp_validate_incoming(sk, skb, th, 1))
5859 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5862 tcp_rcv_rtt_measure_ts(sk, skb);
5864 /* Process urgent data. */
5865 tcp_urg(sk, skb, th);
5867 /* step 7: process the segment text */
5868 tcp_data_queue(sk, skb);
5870 tcp_data_snd_check(sk);
5871 tcp_ack_snd_check(sk);
5875 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5876 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5881 EXPORT_SYMBOL(tcp_rcv_established);
5883 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5885 struct inet_connection_sock *icsk = inet_csk(sk);
5886 struct tcp_sock *tp = tcp_sk(sk);
5889 icsk->icsk_af_ops->rebuild_header(sk);
5890 tcp_init_metrics(sk);
5892 /* Initialize the congestion window to start the transfer.
5893 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5894 * retransmitted. In light of RFC6298 more aggressive 1sec
5895 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5896 * retransmission has occurred.
5898 if (tp->total_retrans > 1 && tp->undo_marker)
5901 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5902 tp->snd_cwnd_stamp = tcp_jiffies32;
5904 icsk->icsk_ca_initialized = 0;
5905 bpf_skops_established(sk, bpf_op, skb);
5906 if (!icsk->icsk_ca_initialized)
5907 tcp_init_congestion_control(sk);
5908 tcp_init_buffer_space(sk);
5911 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5913 struct tcp_sock *tp = tcp_sk(sk);
5914 struct inet_connection_sock *icsk = inet_csk(sk);
5916 tcp_set_state(sk, TCP_ESTABLISHED);
5917 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5920 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5921 security_inet_conn_established(sk, skb);
5922 sk_mark_napi_id(sk, skb);
5925 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
5927 /* Prevent spurious tcp_cwnd_restart() on first data
5930 tp->lsndtime = tcp_jiffies32;
5932 if (sock_flag(sk, SOCK_KEEPOPEN))
5933 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5935 if (!tp->rx_opt.snd_wscale)
5936 __tcp_fast_path_on(tp, tp->snd_wnd);
5941 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5942 struct tcp_fastopen_cookie *cookie)
5944 struct tcp_sock *tp = tcp_sk(sk);
5945 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5946 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5947 bool syn_drop = false;
5949 if (mss == tp->rx_opt.user_mss) {
5950 struct tcp_options_received opt;
5952 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5953 tcp_clear_options(&opt);
5954 opt.user_mss = opt.mss_clamp = 0;
5955 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5956 mss = opt.mss_clamp;
5959 if (!tp->syn_fastopen) {
5960 /* Ignore an unsolicited cookie */
5962 } else if (tp->total_retrans) {
5963 /* SYN timed out and the SYN-ACK neither has a cookie nor
5964 * acknowledges data. Presumably the remote received only
5965 * the retransmitted (regular) SYNs: either the original
5966 * SYN-data or the corresponding SYN-ACK was dropped.
5968 syn_drop = (cookie->len < 0 && data);
5969 } else if (cookie->len < 0 && !tp->syn_data) {
5970 /* We requested a cookie but didn't get it. If we did not use
5971 * the (old) exp opt format then try so next time (try_exp=1).
5972 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5974 try_exp = tp->syn_fastopen_exp ? 2 : 1;
5977 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5979 if (data) { /* Retransmit unacked data in SYN */
5980 if (tp->total_retrans)
5981 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
5983 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
5984 skb_rbtree_walk_from(data) {
5985 if (__tcp_retransmit_skb(sk, data, 1))
5989 NET_INC_STATS(sock_net(sk),
5990 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5993 tp->syn_data_acked = tp->syn_data;
5994 if (tp->syn_data_acked) {
5995 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5996 /* SYN-data is counted as two separate packets in tcp_ack() */
5997 if (tp->delivered > 1)
6001 tcp_fastopen_add_skb(sk, synack);
6006 static void smc_check_reset_syn(struct tcp_sock *tp)
6008 #if IS_ENABLED(CONFIG_SMC)
6009 if (static_branch_unlikely(&tcp_have_smc)) {
6010 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6016 static void tcp_try_undo_spurious_syn(struct sock *sk)
6018 struct tcp_sock *tp = tcp_sk(sk);
6021 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6022 * spurious if the ACK's timestamp option echo value matches the
6023 * original SYN timestamp.
6025 syn_stamp = tp->retrans_stamp;
6026 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6027 syn_stamp == tp->rx_opt.rcv_tsecr)
6028 tp->undo_marker = 0;
6031 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6032 const struct tcphdr *th)
6034 struct inet_connection_sock *icsk = inet_csk(sk);
6035 struct tcp_sock *tp = tcp_sk(sk);
6036 struct tcp_fastopen_cookie foc = { .len = -1 };
6037 int saved_clamp = tp->rx_opt.mss_clamp;
6040 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6041 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6042 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6046 * "If the state is SYN-SENT then
6047 * first check the ACK bit
6048 * If the ACK bit is set
6049 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6050 * a reset (unless the RST bit is set, if so drop
6051 * the segment and return)"
6053 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6054 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6055 /* Previous FIN/ACK or RST/ACK might be ignored. */
6056 if (icsk->icsk_retransmits == 0)
6057 inet_csk_reset_xmit_timer(sk,
6059 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6060 goto reset_and_undo;
6063 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6064 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6065 tcp_time_stamp(tp))) {
6066 NET_INC_STATS(sock_net(sk),
6067 LINUX_MIB_PAWSACTIVEREJECTED);
6068 goto reset_and_undo;
6071 /* Now ACK is acceptable.
6073 * "If the RST bit is set
6074 * If the ACK was acceptable then signal the user "error:
6075 * connection reset", drop the segment, enter CLOSED state,
6076 * delete TCB, and return."
6085 * "fifth, if neither of the SYN or RST bits is set then
6086 * drop the segment and return."
6092 goto discard_and_undo;
6095 * "If the SYN bit is on ...
6096 * are acceptable then ...
6097 * (our SYN has been ACKed), change the connection
6098 * state to ESTABLISHED..."
6101 tcp_ecn_rcv_synack(tp, th);
6103 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6104 tcp_try_undo_spurious_syn(sk);
6105 tcp_ack(sk, skb, FLAG_SLOWPATH);
6107 /* Ok.. it's good. Set up sequence numbers and
6108 * move to established.
6110 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6111 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6113 /* RFC1323: The window in SYN & SYN/ACK segments is
6116 tp->snd_wnd = ntohs(th->window);
6118 if (!tp->rx_opt.wscale_ok) {
6119 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6120 tp->window_clamp = min(tp->window_clamp, 65535U);
6123 if (tp->rx_opt.saw_tstamp) {
6124 tp->rx_opt.tstamp_ok = 1;
6125 tp->tcp_header_len =
6126 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6127 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6128 tcp_store_ts_recent(tp);
6130 tp->tcp_header_len = sizeof(struct tcphdr);
6133 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6134 tcp_initialize_rcv_mss(sk);
6136 /* Remember, tcp_poll() does not lock socket!
6137 * Change state from SYN-SENT only after copied_seq
6138 * is initialized. */
6139 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6141 smc_check_reset_syn(tp);
6145 tcp_finish_connect(sk, skb);
6147 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6148 tcp_rcv_fastopen_synack(sk, skb, &foc);
6150 if (!sock_flag(sk, SOCK_DEAD)) {
6151 sk->sk_state_change(sk);
6152 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6156 if (sk->sk_write_pending ||
6157 icsk->icsk_accept_queue.rskq_defer_accept ||
6158 inet_csk_in_pingpong_mode(sk)) {
6159 /* Save one ACK. Data will be ready after
6160 * several ticks, if write_pending is set.
6162 * It may be deleted, but with this feature tcpdumps
6163 * look so _wonderfully_ clever, that I was not able
6164 * to stand against the temptation 8) --ANK
6166 inet_csk_schedule_ack(sk);
6167 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6168 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6169 TCP_DELACK_MAX, TCP_RTO_MAX);
6180 /* No ACK in the segment */
6184 * "If the RST bit is set
6186 * Otherwise (no ACK) drop the segment and return."
6189 goto discard_and_undo;
6193 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6194 tcp_paws_reject(&tp->rx_opt, 0))
6195 goto discard_and_undo;
6198 /* We see SYN without ACK. It is attempt of
6199 * simultaneous connect with crossed SYNs.
6200 * Particularly, it can be connect to self.
6202 tcp_set_state(sk, TCP_SYN_RECV);
6204 if (tp->rx_opt.saw_tstamp) {
6205 tp->rx_opt.tstamp_ok = 1;
6206 tcp_store_ts_recent(tp);
6207 tp->tcp_header_len =
6208 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6210 tp->tcp_header_len = sizeof(struct tcphdr);
6213 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6214 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6215 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6217 /* RFC1323: The window in SYN & SYN/ACK segments is
6220 tp->snd_wnd = ntohs(th->window);
6221 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6222 tp->max_window = tp->snd_wnd;
6224 tcp_ecn_rcv_syn(tp, th);
6227 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6228 tcp_initialize_rcv_mss(sk);
6230 tcp_send_synack(sk);
6232 /* Note, we could accept data and URG from this segment.
6233 * There are no obstacles to make this (except that we must
6234 * either change tcp_recvmsg() to prevent it from returning data
6235 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6237 * However, if we ignore data in ACKless segments sometimes,
6238 * we have no reasons to accept it sometimes.
6239 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6240 * is not flawless. So, discard packet for sanity.
6241 * Uncomment this return to process the data.
6248 /* "fifth, if neither of the SYN or RST bits is set then
6249 * drop the segment and return."
6253 tcp_clear_options(&tp->rx_opt);
6254 tp->rx_opt.mss_clamp = saved_clamp;
6258 tcp_clear_options(&tp->rx_opt);
6259 tp->rx_opt.mss_clamp = saved_clamp;
6263 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6265 struct request_sock *req;
6267 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6268 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6270 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6271 tcp_try_undo_loss(sk, false);
6273 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6274 tcp_sk(sk)->retrans_stamp = 0;
6275 inet_csk(sk)->icsk_retransmits = 0;
6277 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6278 * we no longer need req so release it.
6280 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6281 lockdep_sock_is_held(sk));
6282 reqsk_fastopen_remove(sk, req, false);
6284 /* Re-arm the timer because data may have been sent out.
6285 * This is similar to the regular data transmission case
6286 * when new data has just been ack'ed.
6288 * (TFO) - we could try to be more aggressive and
6289 * retransmitting any data sooner based on when they
6296 * This function implements the receiving procedure of RFC 793 for
6297 * all states except ESTABLISHED and TIME_WAIT.
6298 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6299 * address independent.
6302 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6304 struct tcp_sock *tp = tcp_sk(sk);
6305 struct inet_connection_sock *icsk = inet_csk(sk);
6306 const struct tcphdr *th = tcp_hdr(skb);
6307 struct request_sock *req;
6311 switch (sk->sk_state) {
6325 /* It is possible that we process SYN packets from backlog,
6326 * so we need to make sure to disable BH and RCU right there.
6330 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6342 tp->rx_opt.saw_tstamp = 0;
6343 tcp_mstamp_refresh(tp);
6344 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6348 /* Do step6 onward by hand. */
6349 tcp_urg(sk, skb, th);
6351 tcp_data_snd_check(sk);
6355 tcp_mstamp_refresh(tp);
6356 tp->rx_opt.saw_tstamp = 0;
6357 req = rcu_dereference_protected(tp->fastopen_rsk,
6358 lockdep_sock_is_held(sk));
6362 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6363 sk->sk_state != TCP_FIN_WAIT1);
6365 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6369 if (!th->ack && !th->rst && !th->syn)
6372 if (!tcp_validate_incoming(sk, skb, th, 0))
6375 /* step 5: check the ACK field */
6376 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6377 FLAG_UPDATE_TS_RECENT |
6378 FLAG_NO_CHALLENGE_ACK) > 0;
6381 if (sk->sk_state == TCP_SYN_RECV)
6382 return 1; /* send one RST */
6383 tcp_send_challenge_ack(sk, skb);
6386 switch (sk->sk_state) {
6388 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6390 tcp_synack_rtt_meas(sk, req);
6393 tcp_rcv_synrecv_state_fastopen(sk);
6395 tcp_try_undo_spurious_syn(sk);
6396 tp->retrans_stamp = 0;
6397 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6399 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6402 tcp_set_state(sk, TCP_ESTABLISHED);
6403 sk->sk_state_change(sk);
6405 /* Note, that this wakeup is only for marginal crossed SYN case.
6406 * Passively open sockets are not waked up, because
6407 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6410 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6412 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6413 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6414 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6416 if (tp->rx_opt.tstamp_ok)
6417 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6419 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6420 tcp_update_pacing_rate(sk);
6422 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6423 tp->lsndtime = tcp_jiffies32;
6425 tcp_initialize_rcv_mss(sk);
6426 tcp_fast_path_on(tp);
6429 case TCP_FIN_WAIT1: {
6433 tcp_rcv_synrecv_state_fastopen(sk);
6435 if (tp->snd_una != tp->write_seq)
6438 tcp_set_state(sk, TCP_FIN_WAIT2);
6439 sk->sk_shutdown |= SEND_SHUTDOWN;
6443 if (!sock_flag(sk, SOCK_DEAD)) {
6444 /* Wake up lingering close() */
6445 sk->sk_state_change(sk);
6449 if (tp->linger2 < 0) {
6451 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6454 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6455 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6456 /* Receive out of order FIN after close() */
6457 if (tp->syn_fastopen && th->fin)
6458 tcp_fastopen_active_disable(sk);
6460 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6464 tmo = tcp_fin_time(sk);
6465 if (tmo > TCP_TIMEWAIT_LEN) {
6466 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6467 } else if (th->fin || sock_owned_by_user(sk)) {
6468 /* Bad case. We could lose such FIN otherwise.
6469 * It is not a big problem, but it looks confusing
6470 * and not so rare event. We still can lose it now,
6471 * if it spins in bh_lock_sock(), but it is really
6474 inet_csk_reset_keepalive_timer(sk, tmo);
6476 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6483 if (tp->snd_una == tp->write_seq) {
6484 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6490 if (tp->snd_una == tp->write_seq) {
6491 tcp_update_metrics(sk);
6498 /* step 6: check the URG bit */
6499 tcp_urg(sk, skb, th);
6501 /* step 7: process the segment text */
6502 switch (sk->sk_state) {
6503 case TCP_CLOSE_WAIT:
6506 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6507 if (sk_is_mptcp(sk))
6508 mptcp_incoming_options(sk, skb);
6514 /* RFC 793 says to queue data in these states,
6515 * RFC 1122 says we MUST send a reset.
6516 * BSD 4.4 also does reset.
6518 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6519 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6520 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6521 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6527 case TCP_ESTABLISHED:
6528 tcp_data_queue(sk, skb);
6533 /* tcp_data could move socket to TIME-WAIT */
6534 if (sk->sk_state != TCP_CLOSE) {
6535 tcp_data_snd_check(sk);
6536 tcp_ack_snd_check(sk);
6545 EXPORT_SYMBOL(tcp_rcv_state_process);
6547 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6549 struct inet_request_sock *ireq = inet_rsk(req);
6551 if (family == AF_INET)
6552 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6553 &ireq->ir_rmt_addr, port);
6554 #if IS_ENABLED(CONFIG_IPV6)
6555 else if (family == AF_INET6)
6556 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6557 &ireq->ir_v6_rmt_addr, port);
6561 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6563 * If we receive a SYN packet with these bits set, it means a
6564 * network is playing bad games with TOS bits. In order to
6565 * avoid possible false congestion notifications, we disable
6566 * TCP ECN negotiation.
6568 * Exception: tcp_ca wants ECN. This is required for DCTCP
6569 * congestion control: Linux DCTCP asserts ECT on all packets,
6570 * including SYN, which is most optimal solution; however,
6571 * others, such as FreeBSD do not.
6573 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6574 * set, indicating the use of a future TCP extension (such as AccECN). See
6575 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6578 static void tcp_ecn_create_request(struct request_sock *req,
6579 const struct sk_buff *skb,
6580 const struct sock *listen_sk,
6581 const struct dst_entry *dst)
6583 const struct tcphdr *th = tcp_hdr(skb);
6584 const struct net *net = sock_net(listen_sk);
6585 bool th_ecn = th->ece && th->cwr;
6592 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6593 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6594 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6596 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6597 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6598 tcp_bpf_ca_needs_ecn((struct sock *)req))
6599 inet_rsk(req)->ecn_ok = 1;
6602 static void tcp_openreq_init(struct request_sock *req,
6603 const struct tcp_options_received *rx_opt,
6604 struct sk_buff *skb, const struct sock *sk)
6606 struct inet_request_sock *ireq = inet_rsk(req);
6608 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6609 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6610 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6611 tcp_rsk(req)->snt_synack = 0;
6612 tcp_rsk(req)->last_oow_ack_time = 0;
6613 req->mss = rx_opt->mss_clamp;
6614 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6615 ireq->tstamp_ok = rx_opt->tstamp_ok;
6616 ireq->sack_ok = rx_opt->sack_ok;
6617 ireq->snd_wscale = rx_opt->snd_wscale;
6618 ireq->wscale_ok = rx_opt->wscale_ok;
6621 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6622 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6623 ireq->ir_mark = inet_request_mark(sk, skb);
6624 #if IS_ENABLED(CONFIG_SMC)
6625 ireq->smc_ok = rx_opt->smc_ok;
6629 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6630 struct sock *sk_listener,
6631 bool attach_listener)
6633 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6637 struct inet_request_sock *ireq = inet_rsk(req);
6639 ireq->ireq_opt = NULL;
6640 #if IS_ENABLED(CONFIG_IPV6)
6641 ireq->pktopts = NULL;
6643 atomic64_set(&ireq->ir_cookie, 0);
6644 ireq->ireq_state = TCP_NEW_SYN_RECV;
6645 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6646 ireq->ireq_family = sk_listener->sk_family;
6651 EXPORT_SYMBOL(inet_reqsk_alloc);
6654 * Return true if a syncookie should be sent
6656 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6658 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6659 const char *msg = "Dropping request";
6660 bool want_cookie = false;
6661 struct net *net = sock_net(sk);
6663 #ifdef CONFIG_SYN_COOKIES
6664 if (net->ipv4.sysctl_tcp_syncookies) {
6665 msg = "Sending cookies";
6667 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6670 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6672 if (!queue->synflood_warned &&
6673 net->ipv4.sysctl_tcp_syncookies != 2 &&
6674 xchg(&queue->synflood_warned, 1) == 0)
6675 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6676 proto, sk->sk_num, msg);
6681 static void tcp_reqsk_record_syn(const struct sock *sk,
6682 struct request_sock *req,
6683 const struct sk_buff *skb)
6685 if (tcp_sk(sk)->save_syn) {
6686 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6687 struct saved_syn *saved_syn;
6691 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
6692 base = skb_mac_header(skb);
6693 mac_hdrlen = skb_mac_header_len(skb);
6696 base = skb_network_header(skb);
6700 saved_syn = kmalloc(struct_size(saved_syn, data, len),
6703 saved_syn->mac_hdrlen = mac_hdrlen;
6704 saved_syn->network_hdrlen = skb_network_header_len(skb);
6705 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6706 memcpy(saved_syn->data, base, len);
6707 req->saved_syn = saved_syn;
6712 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6713 * used for SYN cookie generation.
6715 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6716 const struct tcp_request_sock_ops *af_ops,
6717 struct sock *sk, struct tcphdr *th)
6719 struct tcp_sock *tp = tcp_sk(sk);
6722 if (sock_net(sk)->ipv4.sysctl_tcp_syncookies != 2 &&
6723 !inet_csk_reqsk_queue_is_full(sk))
6726 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6729 if (sk_acceptq_is_full(sk)) {
6730 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6734 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6736 mss = af_ops->mss_clamp;
6740 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6742 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6743 const struct tcp_request_sock_ops *af_ops,
6744 struct sock *sk, struct sk_buff *skb)
6746 struct tcp_fastopen_cookie foc = { .len = -1 };
6747 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6748 struct tcp_options_received tmp_opt;
6749 struct tcp_sock *tp = tcp_sk(sk);
6750 struct net *net = sock_net(sk);
6751 struct sock *fastopen_sk = NULL;
6752 struct request_sock *req;
6753 bool want_cookie = false;
6754 struct dst_entry *dst;
6757 /* TW buckets are converted to open requests without
6758 * limitations, they conserve resources and peer is
6759 * evidently real one.
6761 if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6762 inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6763 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6768 if (sk_acceptq_is_full(sk)) {
6769 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6773 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6777 req->syncookie = want_cookie;
6778 tcp_rsk(req)->af_specific = af_ops;
6779 tcp_rsk(req)->ts_off = 0;
6780 #if IS_ENABLED(CONFIG_MPTCP)
6781 tcp_rsk(req)->is_mptcp = 0;
6784 tcp_clear_options(&tmp_opt);
6785 tmp_opt.mss_clamp = af_ops->mss_clamp;
6786 tmp_opt.user_mss = tp->rx_opt.user_mss;
6787 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6788 want_cookie ? NULL : &foc);
6790 if (want_cookie && !tmp_opt.saw_tstamp)
6791 tcp_clear_options(&tmp_opt);
6793 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6796 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6797 tcp_openreq_init(req, &tmp_opt, skb, sk);
6798 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6800 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6801 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6803 af_ops->init_req(req, sk, skb);
6805 if (security_inet_conn_request(sk, skb, req))
6808 if (tmp_opt.tstamp_ok)
6809 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6811 dst = af_ops->route_req(sk, &fl, req);
6815 if (!want_cookie && !isn) {
6816 /* Kill the following clause, if you dislike this way. */
6817 if (!net->ipv4.sysctl_tcp_syncookies &&
6818 (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6819 (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6820 !tcp_peer_is_proven(req, dst)) {
6821 /* Without syncookies last quarter of
6822 * backlog is filled with destinations,
6823 * proven to be alive.
6824 * It means that we continue to communicate
6825 * to destinations, already remembered
6826 * to the moment of synflood.
6828 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6830 goto drop_and_release;
6833 isn = af_ops->init_seq(skb);
6836 tcp_ecn_create_request(req, skb, sk, dst);
6839 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6840 if (!tmp_opt.tstamp_ok)
6841 inet_rsk(req)->ecn_ok = 0;
6844 tcp_rsk(req)->snt_isn = isn;
6845 tcp_rsk(req)->txhash = net_tx_rndhash();
6846 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6847 tcp_openreq_init_rwin(req, sk, dst);
6848 sk_rx_queue_set(req_to_sk(req), skb);
6850 tcp_reqsk_record_syn(sk, req, skb);
6851 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6854 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6855 &foc, TCP_SYNACK_FASTOPEN, skb);
6856 /* Add the child socket directly into the accept queue */
6857 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6858 reqsk_fastopen_remove(fastopen_sk, req, false);
6859 bh_unlock_sock(fastopen_sk);
6860 sock_put(fastopen_sk);
6863 sk->sk_data_ready(sk);
6864 bh_unlock_sock(fastopen_sk);
6865 sock_put(fastopen_sk);
6867 tcp_rsk(req)->tfo_listener = false;
6869 inet_csk_reqsk_queue_hash_add(sk, req,
6870 tcp_timeout_init((struct sock *)req));
6871 af_ops->send_synack(sk, dst, &fl, req, &foc,
6872 !want_cookie ? TCP_SYNACK_NORMAL :
6891 EXPORT_SYMBOL(tcp_conn_request);